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Abstract

A challenge in medical genomics is to identify variants and genes associated with severe

genetic disorders. Based on the premise that severe, early-onset disorders often result in a

reduction of evolutionary fitness, several statistical methods have been developed to predict

pathogenic variants or constrained genes based on the signatures of negative selection in

human populations. However, we currently lack a statistical framework to jointly predict del-

eterious variants and constrained genes from both variant-level features and gene-level

selective constraints. Here we present such a unified approach, UNEECON, based on deep

learning and population genetics. UNEECON treats the contributions of variant-level fea-

tures and gene-level constraints as a variant-level fixed effect and a gene-level random

effect, respectively. The sum of the fixed and random effects is then combined with an evo-

lutionary model to infer the strength of negative selection at both variant and gene levels.

Compared with previously published methods, UNEECON shows improved performance in

predicting missense variants and protein-coding genes associated with autosomal dominant

disorders, and feature importance analysis suggests that both gene-level selective con-

straints and variant-level predictors are important for accurate variant prioritization. Further-

more, based on UNEECON, we observe a low correlation between gene-level intolerance to

missense mutations and that to loss-of-function mutations, which can be partially explained

by the prevalence of disordered protein regions that are highly tolerant to missense muta-

tions. Finally, we show that genes intolerant to both missense and loss-of-function mutations

play key roles in the central nervous system and the autism spectrum disorders. Overall,

UNEECON is a promising framework for both variant and gene prioritization.

Author summary

Numerous statistical methods have been developed to predict deleterious missense vari-

ants or constrained genes in the human genome, but unified prioritization methods that

utilize both variant- and gene-level information are underdeveloped. Here we present

UNEECON, an evolution-based deep learning framework for unified variant and gene

prioritization. By integrating variant-level predictors and gene-level selective constraints,
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UNEECON outperforms existing methods in predicting missense variants and protein-

coding genes associated with dominant disorders. Based on UNEECON, we show that

disordered proteins are tolerant to missense mutations but not to loss-of-function muta-

tions. In addition, we find that genes under strong selective constraints at both missense

and loss-of-function levels are strongly associated with the central nervous system and

the autism spectrum disorders, highlighting the need to investigate the function of these

highly constrained genes in future studies.

Introduction

A fundamental question in biology is to understand how genomic variation contributes to

phenotypic variation and disease risk. While millions of protein-altering variants have been

identified in the human genome, it is challenging to assess the functional and clinical signifi-

cance of these variants. In particular, a large fraction of missense variants have been annotated

as “variants of uncertain significance” (VUS) [1, 2], forming a major hurdle for both basic

research and medical practice. This problem is further exacerbated by the difficulty of experi-

mentally validating the function of large numbers of missense variants in vivo. Therefore,

there is a tremendous need for accurate computational tools to prioritize deleterious missense

variants [3].

Since early-onset, severe genetic disorders are often associated with a reduction of evolu-

tionary fitness, signatures of negative (purifying) selection, such as sequence conservation,

have been widely used to predict deleterious variants associated with Mendelian disorders [4–

12]. Among existing evolutionary approaches for variant prioritization, recently developed

integrative methods are particularly powerful [8–15]. By learning a linear or nonlinear mathe-

matical function from predictive variant features, such as sequence conservation scores and

protein structural features, to the strength of negative selection, these statistical methods esti-

mate negative selection on observed and potential mutations in the human genome. The esti-

mated strength of negative selection can then be utilized to prioritize deleterious variants

associated with severe genetic disorders. Because these evolutionary approaches are trained on

tremendous natural polymorphisms observed in healthy individuals instead of sparsely anno-

tated pathogenic variants, they have shown good performance in predicting pathogenic vari-

ants, frequently outperforming or on par with supervised machine learning models trained on

disease data [8, 10–12].

Despite the success of evolution-based metrics of variant effects, the existing methods nev-

ertheless suffer from a few critical limitations. First, most existing methods focus on learning

a shared mathematical function from predictive variant features to negative selection and

assume that this function is equally applicable to all protein-coding genes. Instead, a subset of

genes can depart from the genome-wide trend between variant features and negative selection,

possibly due to enhanced or relaxed purifying selection on these genes in the human lineage

[12]. Second, most existing methods are trained on common genetic variants, making it chal-

lenging to distinguish strong negative selection associated with severe genetic diseases from

moderate negative selection without clinical implications. Third, these methods typically are

agnostic to the mode of inheritance and, therefore, may be suboptimal in the prediction of del-

eterious variants associated with dominant disorders on which we focus in this work.

In parallel with the development of variant-level interpretation methods, several comple-

mentary, gene-centric methods have been proposed to predict protein-coding genes associated

with dominant genetic disorders [16–23]. Unlike variant-level predictors, the gene-level
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prioritization methods seek to identify constrained genes that are intolerant to heterozygous

nonsynonymous mutations. These gene-level constraint metrics have been shown to provide

complementary information on variant effects and have been successfully used to prioritize

variants associated with dominant genetic disorders [16, 17, 24]. However, these methods typi-

cally assume that all the missense mutations in a gene or a genic region have identical effects

and, therefore, may not be able to distinguish pathogenic missense variants from proximal

benign missense variants.

Since variant-level and gene-level prioritization methods leverage complementary signa-

tures of negative selection, unifying the two lines of research for joint inference of variant

effects and gene constraints should be beneficial. Recently, a couple of studies have tried to

address this question [25–27], but all of these methods are supervised machine learning mod-

els trained on disease variants. Therefore, we lack an evolution-based statistical framework to

combine predictive variant features and gene-level selective constraints for variant and gene

prioritization. Based on a novel deep learning framework, i.e., deep mixed-effects model, we

develop UNEECON (UNified inferencE of variant Effects and gene CONstraints), an evolu-

tion-based framework to predict deleterious variants and constrained genes from both variant

features and gene-level intolerance to missense mutations. By integrating 30 predictive variant

features and genomic variation from 141,456 human genomes [28, 29], UNEECON outper-

forms existing variant effect predictors and gene constraint scores in predicting pathogenic

missense variants with a dominant mode of inheritance. In addition, deleterious de novo
variants predicted by UNEECON are strongly enriched in individuals affected by severe

development disorders [30, 31], highlighting its power for interpreting the effects of de novo
mutations. Furthermore, UNEECON provides estimates of gene-level selective constraints

(UNEECON-G scores) for all protein-coding genes. In the setting of gene prioritization,

UNEECON-G scores show better performance than previous gene constraint scores in pre-

dicting human essential genes [32], mouse essential genes [33, 34], autosomal dominant dis-

ease genes [35, 36], and haploinsufficient genes [37]. UNEECON is a powerful framework for

both variant and gene prioritization.

Results

UNEECON integrates variant- and gene-level information to predict

detrimental variants and constrained genes

The key idea of UNEECON is to combine variant-level predictive features, such as sequence

conservation scores and protein structural features, and gene-level signatures of selective con-

straints to infer negative selection on every potential missense mutation in the human genome.

Inspired by classical sequence conservation models [38–42], which use site-specific substitu-

tion rate as a proxy of negative selection, we utilize the relative probability of the occurrence of

a potential missense mutation in human populations, compared to neutral mutations, as an

allele-specific predictor of negative selection.

We first fit a mutation model to calculate μij, i.e., the probability of the occurrence of muta-

tion i in gene j when selection is absent. Our mutation model is trained on putatively neutral

mutations in the gnomAD data [29] and captures the impact of multiple neutral and technical

factors, including the 7-mer sequence context centered on the focal site, the identity of the

alternative allele, the local mutation rate, and the average sequencing coverage, on the proba-

bility of occurrence of a neutral mutation. At the gene level, the number of synonymous muta-

tions predicted by the mutation model was nearly perfectly correlated with the observed

number of synonymous mutations (Spearman’s ρ = 0.976; Fig A in S1 File), suggesting that the

mutation model can serve as a proper baseline for inferring negative selection.
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Given the mutation model, UNEECON employs a novel deep learning framework, deep

mixed-effects model, to infer the relative probability of the occurrence of each potential mis-

sense mutation (Fig 1). In more detail, we denote ηij as the relative probability of the occur-

rence of missense mutation i in gene j with respect to the neutral occurrence probability, μij. ηij
captures the impact of natural selection, instead of mutation and genetic drift, on the occur-

rence of a missense mutation. Analogous to generalized linear mixed models, we assume that

ηij depends on the sum of a variant-level fixed effect, zij, and a gene-level random effect, uj. We

assume that zij captures the contribution of predictive variant features to negative selection.

Denoting Xij as the vector of predictive features associated with mutation i in gene j, we use a

feedforward neural network to model the relationship between Xij and zij (Fig 1). Furthermore,

we assume that the random-effect term, uj, is a Gaussian (normal) random variable which

models the variation of gene-level constraints that is not predictable from feature vector Xij.

We then perform a logistic transformation on the sum of zij and uj to obtain ηij. Finally, we

multiply ηij and μij to obtain the occurrence probability of missense mutation i in the gnomAD

exome sequencing data.

We estimate the parameters of the UNEECON model by minimizing the discrepancy

between the predicted occurrence probability, ηij � μij, and the observed presence/absence of

each potential missense mutation, which is equivalent to maximizing a Bernoulli likelihood

function. We also employ regularization techniques, including dropout [43] and early stopping

[44], to avoid overfitting. After training, we calculate variant-effect scores (UNEECON scores)

and gene-level intolerance to missense mutations (UNEECON-G scores) defined as the

expected reduction of the occurrence probability at variant and gene levels, respectively. Both

UNEECON and UNEECON-G scores range from 0 to 1, with higher scores suggesting stron-

ger negative selection.

Fig 1. Overview of the UNEECON model. UNEECON estimates negative selection on missense mutation i in gene j based on the relative probability of

the occurrence of the missense mutation, ηij, compared to the occurrence probability of neutral mutations, μij. ηij depends on the sum of a variant-level

fixed effect, zij, and a gene-level random effect, uj. We assume that zij captures the contribution of variant-level features, Xij, to negative selection, and model

the relationship between Xij and zij with a feedforward neural network. We assume that uj is a Gaussian random variable modeling the gene-level variation

of selective constraints that cannot be predicted from variant features. The sum of zij and uj is then sent to a logistic function to obtain ηij. The neutral

occurrence probability, μij, is from a context-dependent mutation model trained on putatively neutral mutations. Free parameters of the UNEECON model

are estimated by minimizing the discrepancy between the predicted occurrence probability, ηij � μij, and the observed occurrence of each potential missense

mutation in the gnomAD exome sequencing data [29].

https://doi.org/10.1371/journal.pgen.1008922.g001
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UNEECON scores capture variation of negative selection within and across

genes

We trained the UNEECON model with 30 missense variant features, including conservation

scores, protein structural features, and regulatory features (Table A in S1 File), and rare mis-

sense variants with a minor allele frequency (MAF) lower than 0.1% in the gnomAD dataset

[29]. After the training process, we first compared the distributions of UNEECON scores

across potential missense mutations in haploinsufficient genes [37], autosomal dominant dis-

ease genes [35, 36], autosomal recessive disease genes [35, 36], and olfactory receptor genes

[45]. In agreement with previous studies [16, 28, 35], missense mutations in autosomal domi-

nant disease genes had higher UNEECON scores than those in autosomal recessive disease

genes (Fig 2a), suggesting a stronger selection on heterozygous missense mutations in the

genes associated with autosomal dominant disorders. Also, we observed that missense muta-

tions in olfactory receptor genes had much lower UNEECON scores (Fig 2a), potentially due

to relaxed purifying selection or enhanced positive selection in the human lineage [46].

Second, we investigated whether the distributions of UNEECON scores varied across differ-

ent types of protein regions annotated by UniProt [47, 49] and MobiDB [48]. We observed

that the distributions of UNEECON scores were similar among α-helices, β-strands, and

hydrogen-bonded turns (Fig 2b). In contrast, UNEECON scores were significantly lower in

disordered protein regions. As expected, UNEECON scores were significantly higher in func-

tional protein sites, including enzyme active sites and ligand binding sites (Fig 2b), suggesting

much stronger purifying selection on these critical residues.

Interestingly, UNEECON scores showed a bimodal distribution in both enzyme active sites

and ligand binding sites, with the first mode around 0.8 and the second mode around 0.2 (Fig

2b). Therefore, even though most of enzyme active sites and ligand binding sites are believed

to play a crucial role in maintaining the functional integrity of proteins, a substantial fraction

of heterozygous missense mutations in these sites are not subject to strong negative selection.

This result may be due to the fact that heterozygous mutations in recessive genes have a limited

impact on protein function. In agreement with this explanation, functional protein sites in

autosomal recessive disease genes had substantially lower UNEECON scores than those in

haploinsufficient and autosomal dominant genes (Fig B in S1 File).

Furthermore, we used the human CDKL5 protein as an example to illustrate UNEECON’s

capability to capture regional variation of negative selection within a gene. Similar to a previ-

ously published metric of regional missense constraints [25], UNEECON predicted that the N-

terminus of CDKL5 was under strong negative selection (Fig 2c). In agreement with the evi-

dence of strong selection, this region was also enriched with known pathogenic missense

variants and depleted with benign missense variants (Fig 2c). Interestingly, UNEECON also

predicted that the C-terminus of CDKL5 was under much weaker selection compared with the

rest of the protein (Fig 2c). Accordingly, this unconstrained region was enriched with benign

missense variants and depleted with pathogenic missense variants.

UNEECON scores accurately predict missense mutations associated with

dominant genetic disorders

Since UNEECON measures the strength of strong negative selection on heterozygous missense

mutations, we hypothesize that UNEECON scores are predictive of missense variants associ-

ated with dominant Mendelian disorders. To test this hypothesis, we compared the perfor-

mance of UNEECON with eight existing methods in the setting of predicting autosomal

dominant disease variants in ClinVar [30]. The eight previously published methods can be

classified into three categories: 1) variant-level prediction methods, including LASSIE [12],
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Fig 2. Distributions of UNEECON scores across potential missense mutations. (a) Distributions of UNEECON scores estimated for potential missense

mutations in haploinsufficient (HI) genes [37], autosomal dominant disease genes [35, 36], autosomal recessive disease genes [35, 36], and olfactory

receptor genes [45]. (b) Distributions of UNEECON scores estimated for potential missense mutations in various protein regions. The functional sites and

protein secondary structures are based on UniProt annotations [47]. The predicted disordered protein regions are from MobiDB [48]. (c) Average

UNEECON scores estimated for all codon positions in the CDKL5 protein. Each grey dot represents the UNEECON score averaged over all missense

mutations in a codon position. Blue curve represents the locally estimated scatterplot smoothing (LOESS) fit. Blue and red dots represent pathogenic and

benign missense variants from ClinVar [30], respectively. The horizontal line represents a constrained region reported in a previous study [25].

https://doi.org/10.1371/journal.pgen.1008922.g002
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CADD [8], Eigen [50], and PrimateAI [11]; 2) gene-level and region-level prediction methods,

including RVIS [16], pLI [17], and CCR [22]; and 3) MPC [25], a supervised machine learning

method utilized both variant features and regional constraint scores as input features. It is

worth noting that several aforementioned methods, including UNEECON, used the variants

from the gnomAD dataset as a part of their training data. If the same gnomAD variants are

also used as negative controls in the evaluation of performance, we will overestimate the power

of these methods trained on the gnomAD data. To avoid this problem, we used benign mis-

sense variants in ClinVar as negative controls and removed any ClinVar variants that are also

present in gnomAD. Then, we matched the numbers of positives and negatives by random

sampling without replacement.

Overall, UNEECON outperformed previous methods in predicting ClinVar missense vari-

ants associated with autosomal dominant disorders (Fig 3a; Table B in S1 File). Among the

previously published methods, variant-level predictors performed better than gene-level and

region-level constraint scores. To test the robustness of these results, we constructed an alter-

native set of dominant pathogenic variants defined as all the pathogenic missense variants

located in 709 genes associated with autosomal dominant diseases [35, 36]. UNEECON again

outperformed the other methods in this dataset, even though the difference in performance

between UNEECON and LASSIE was not statistically significant (Fig C in S1 File; Table B in

S1 File).

Because some genes are better studied than others in medical genetics, known pathogenic

variants are not evenly distributed across genes [51]. In the ClinVar database, the majority of

protein-coding genes contain only a single class of variants, i.e., either “pathogenic-only” or

“benign-only”. It is considerably more challenging to predict pathogenic variants in “mixed”

genes that contain both pathogenic and benign variants [51]. We evaluated UNEECON on

157 autosomal dominant genes containing both pathogenic and benign variants. UNEECON

again outperformed previous methods in separating pathogenic missense variants from benign

missense variants in these “mixed” genes (Fig D1 in S1 File).

To evaluate the performance of UNEECON when the information of gene-level selective

constraints is absent, we removed all protein-coding genes with at least one ClinVar patho-

genic missense variant from the training data and retrained the UNEECON model on the new

training set. Then, we evaluated the performance of this version of UNEECON in separating

pathogenic missense variants from benign missense variants in the “mixed” genes containing

both pathogenic and benign missense variants. It is worth noting that the “mixed” genes were

not used in the training step. In the step of prediction, UNEECON effectively substituted the

gene-level random-effect term with its genome-wide average, forcing UNEECON to make

predictions solely based on variant-level features. Again, UNEECON outperformed previous

methods in this setting (Fig D2 in S1 File), suggesting that UNEECON is a robust method and

can still predict pathogenic variants when the information of gene-level selective constraints is

absent.

While UNEECON was highly powerful in predicting autosomal dominant disease variants,

it might not be as accurate when applied to predict recessive disease variants which are only

detrimental in the homozygous state. To test this hypothesis, we evaluated UNEECON’s per-

formance in predicting autosomal recessive disease variants in ClinVar [30]. As expected,

UNEECON was outperformed by multiple methods, such as LASSIE [12] and Eigen [50], in

this setting (Fig E in S1 File). Similar results were reached with an alternative set of recessive

pathogenic variants defined as all the pathogenic missense variants located in 1,183 autosomal

recessive genes [35, 36] (Fig F in S1 File).

As an orthogonal benchmark of UNEECON’s performance in predicting dominant disease

variants, we investigated whether UNEECON was able to predict de novo missense mutations
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Fig 3. Predictive power of various methods for distinguishing pathogenic missense variants from benign missense variants. (a) Performance in

predicting autosomal dominant pathogenic variants from ClinVar [30]. True positive and true negative rates correspond to the fractions of

pathogenic and benign variants exceeding various thresholds, respectively. AUC corresponds to the area under the receiver operating characteristic

curve. (b) Enrichment of predicted deleterious de novo variants in individuals affected by developmental disorders [31]. The y-axis corresponds to

the log2 odds ratio of the enrichment of predicted deleterious variants in the affected individuals for a given percentile threshold. The x-axis

corresponds to the various percentile threshold values used in the enrichment analysis. Error bars represent the standard error of the log2 odds ratio.

https://doi.org/10.1371/journal.pgen.1008922.g003
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identified in individuals affected by severe developmental disorders [31]. We obtained de novo
missense variants identified in affected individuals and healthy individuals from denovo-db

[52]. Then, for multiple percentile rank cutoff values (top 10%, 20%, 30%, and 40%), we

evaluated the enrichment of deleterious variants predicted by each method in the affected

individuals. Overall, missense variants predicted by UNEECON and MPC showed the highest

enrichments in the affected individuals (Fig 3b), suggesting that these two methods were more

powerful in predicting de novo risk mutations. The performance gaps between UNEECON/

MPC and the other methods were highest at the most stringent cutoff of 10% (Fig 3b).

UNEECON uses a data-driven approach to combine variant-level features and gene-level

selective constraints. Alternatively, variant-level and gene-level predictors can be used as two

successive filters in the same variant prioritization pipeline. We compared UNEECON with

such a heuristic method [16] in the setting of predicting ClinVar missense variants and de
novo missense mutations associated with severe developmental disorders. The heuristic

method converted RVIS and PolyPhen-2 scores into two binary predictors, and only the vari-

ants predicted by both RVIS and PolyPhen-2 were considered to be deleterious. Compared

with RVIS and the heuristic method combining RVIS and PolyPhen-2, UNEECON showed

significantly better performance in predicting pathogenic missense variants in ClinVar, and

the de novo mutations predicted by UNEECON showed substantially stronger enrichment in

the individuals affected by severe developmental disorders (Fig G in S1 File).

UNEECON-G scores perform favorably in predicting disease genes and

essential genes

The UNEECON model also provided UNEECON-G scores which measure gene-level intoler-

ance to missense mutations. We compared the performance of UNEECON-G scores with

alternative gene constraint scores, including RVIS [16], pLI [17], mis-z [17], and GDI [19], in

the setting of predicting disease genes and essential genes. The disease gene sets included 709

autosomal dominant disease genes [35, 36] and 294 haploinsufficient genes [37]. The essential

gene sets included 2,454 human orthologs of mouse essential genes [33, 34] and 683 human

essential genes identified by CRISPR knockout experiments in human cell lines [32]. For each

set of autosomal dominant disease genes, haploinsufficient genes, and mouse essential genes,

we constructed a negative gene set by sampling a matched number of genes from the other

genes in the human genome. For the essential genes identified by CRISPR in cell lines, we con-

structed a negative gene set by sampling a matched number of genes from the nonessential

genes reported in the same study [32]. Overall, UNEECON-G significantly outperformed

alternative gene-level metrics in predicting the four sets of essential and disease genes (Fig 4;

Table C in S1 File).

Both variant-level features and gene-level constraints are important for

variant interpretation

To gain more insights into which components of the UNEECON model are critical for pre-

dicting detrimental variants, we characterized the contributions of the 30 variant features and

the gene-level random effect to negative selection. Unfortunately, it is challenging to directly

interpret the UNEECON model due to the nonlinearity introduced by the feedforward artifi-

cial neural network. To bypass this difficulty, we used a linear version of the UNEECON

model as an approximation of the nonlinear UNEECON model. The linear UNEECON model

has no hidden units and can be interpreted as a generalized linear mixed model. Then, we eval-

uated the importance of the variant-level features and the gene-level random effect in this lin-

ear surrogate model. The variant score predicted by the linear UNEECON model was nearly

PLOS GENETICS Unified variant and gene prioritization
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perfectly correlated with the UNEECON score predicted by the original nonlinear UNEECON

model (Spearman’s ρ = 0.95), supporting the use of the linear UNEECON model as a surrogate

for model interpretation.

In the linear surrogate model, the relative probability of the occurrence of mutation i in

gene j, ηij, is a linear combination of variant features, Xij, and the gene-level random effect,

uj, up to a logistic transformation. Analogous to the interpretation of canonical linear models,

we defined the contribution score of a variant feature as the negative value of the weight

(regression coefficient) associated with this feature, and similarly defined the contribution

score of the gene-level random effect as the negative value of its standard deviation. Positive

Fig 4. Predictive power of various methods for distinguishing disease and essential genes from genes not likely to have strong

phenotypic effects. (a) Performance in predicting autosomal dominant disease genes [35, 36]. (b) Performance in predicting

haploinsufficient genes [37]. (c) Performance in predicting human orthologs of mouse essential genes [33, 34]. (d) Performance in

predicting human essential genes in cell lines [32]. True positive and true negative rates correspond to the fractions of positive and

negative genes exceeding various thresholds, respectively. AUC corresponds to the area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pgen.1008922.g004
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and negative contribution scores suggest that the corresponding variables are positively

and negatively correlated with negative selection, respectively, and contribution scores near

zero indicate that the corresponding variables are not important for predicting detrimental

mutations.

As shown in Fig H in S1 File, the gene-level random effect was the most important feature

for predicting deleterious variants, highlighting the importance of gene-level constraints for

variant interpretation. In addition, several conservation scores, such as the qualitative predic-

tions from LRT, PROVEAN, and SIFT, and a subset of protein structural features, such as

the predicted probabilities of forming various protein secondary structures, were also impor-

tant for accurate prediction of deleterious variants. Even though these variant features individ-

ually were less important than the gene-level random effect, accumulatively they explained a

significant fraction of the variation of negative selection across missense mutations. Therefore,

both variant features and gene-level constraints are important for predicting deleterious

variants.

Missense constraints and loss-of-function constraints are weakly correlated

across genes

The UNEECON-G score represents gene-level intolerance to missense mutations in human

populations. Alternatively, selective constraint on a gene can be defined as its degree of intoler-

ance to loss-of-function mutations, such as stop-gained, frameshift, and splice-site mutations

[17, 28, 29]. A recent study suggested that gene-level intolerance to loss-of-function mutations

may not be a reliable predictor of pathogenic missense variants [53], implying a weak correla-

tion between gene-level intolerance to loss-of-function mutations and that to missense muta-

tions. To test this hypothesis at a genome-wide scale, we investigated the correlation between

the UNEECON-G score and the pLI score, a metric of gene-level intolerance to loss-of-func-

tion mutations [17]. As expected, the UNEECON-G score was only moderately correlated

with the pLI score (Spearman’s ρ = 0.59; Fig 5a).

Intrinsically disordered proteins play key roles in a multitude of biological processes [54],

but their sequences are poorly conserved across species [55]. Therefore, missense mutations in

intrinsically disordered proteins may be under weak negative selection even if loss-of-function

mutations in these proteins are deleterious. To test this hypothesis, we investigated the distri-

butions of protein disorder content, i.e., the fraction of disordered regions in a protein [48],

across 1,912 protein-coding genes intolerant to heterozygous loss-of-function mutations (pLI

score� 0.9). We split the 1,912 genes into two equal-size groups based on their UNEECON-G

scores, and defined the 956 genes with higher UNEECON-G scores as the gene set intolerant

to both missense and loss-of-function mutations. Accordingly, we defined the 956 genes with

lower UNEECON-G scores as the gene set tolerant to missense but not to loss-of-function

mutations. Compared with the 956 genes intolerant to both missense and loss-of-function

mutations, the disorder contents were significantly higher in the 956 genes tolerant to missense

mutations but not to loss-of-function mutations (Fig 5b). Therefore, disordered protein

regions can at least partially explain the observed discrepancy between missense constraints

and loss-of-function constraints.

We further investigated the enrichment of Reactome pathways [56] and Gene Ontology

terms [57, 58] in the 956 genes intolerant to both missense and loss-of-function mutations,

using the 956 genes tolerant to missense but not to loss-of-function mutations as a back-

ground. Several key pathways associated with central nervous system, gene regulation, cell

cycle, and innate immune response were overrepresented in the genes intolerant to both
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missense and loss-of-function mutations (Fig 5c; Table D in S1 File). We observed an enrich-

ment of similar terms based on the Gene Ontology (Tables E & F in S1 File). In agreement

with the enrichment of pathways associated with the central nervous system, the genes intoler-

ant to both missense and loss-of-function mutations were strongly enriched in the gene set

Fig 5. Distributions of gene-level intolerance to missense and to loss-of-function mutations. (a) Correlation between gene-level intolerance to missense

mutations (UNEECON-G score) and that to loss-of-function (LOF) mutations (pLI score). Blue dots represent 956 genes intolerant to both missense and

LOF mutations. Red dots represent 956 genes tolerant to missense but not to loss-of-function mutations. (b) Distribution of protein disorder content in the

gene sets intolerant to loss-of-function mutations. (c) Enrichment of Reactome pathways in the gene set intolerant to both missense and loss-of-function

mutations. The gene set tolerant to missense but not to loss-of-function mutations is used as a background. Only the highest-level Reactome terms from the

PANTHER hierarchy view are included in the visualization. The term “unclassified” indicates that the corresponding genes have no known or inferred

function. A fold enrichment below 1 indicates a depletion in the gene set intolerant to both missense and loss-of-function mutations, or equivalently, an

enrichment in the gene set tolerant to missense but not to loss-of-function mutations. (d) Enrichment of autism genes in the gene sets intolerant to loss-of-

function mutations. Error bars represent the standard error of the log2 odds ratio.

https://doi.org/10.1371/journal.pgen.1008922.g005
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implicated in the autism spectrum disorders [59] (Fig 5d). In contrast, the genes tolerant to

missense but not to loss-of-function mutations were more likely to have no known or inferred

function (Fig 5c; Table D in S1 File).

Discussion

Here we present UNEECON for a unified prediction of deleterious missense mutations and

highly constrained genes in the human genome. Compared with previously published meth-

ods, UNEECON shows superior performance in predicting missense variants and protein-

coding genes associated with dominant genetic disorders. Therefore, UNEECON is a promis-

ing framework for both variant and gene prioritization. Furthermore, unlike supervised

machine learning approaches, such as MPC [25], UNEECON integrates variant features and

gene constraints based on signatures of negative selection instead of labeled disease variants.

Therefore, UNEECON is unlikely to suffer from the circularity and the inflated performance

commonly found in supervised methods [51].

It is worth noting that UNEECON is different from existing prioritization methods in mul-

tiple important aspects. First, unlike classical sequence conservation metrics [38–42] and inte-

grative variant scores [8–15], UNEECON infers the strength of negative selection based on

rare genetic variants. Therefore, UNEECON predicts strongly deleterious variants with a dom-

inant/semidominant mode of inheritance [60]. Second, unlike previously published gene con-

straint metrics that typically assign the same score to all missense variants within a gene [16–

23], UNEECON assigns different scores to the variants in the same gene in a feature-depen-

dent manner, providing high-resolution maps of variant effects within genes. Third, UNEE-

CON is able to adjust the distribution of variant scores within a gene according to the degree

of depletion of missense variants in this gene, allowing for assigning different scores to mis-

sense mutations with similar variant features but located in different genes.

Similar to other metrics of negative selection, the performance of UNEECON strongly

depends on the correlation between variant penetrance and negative selection. Our analysis

of pathogenic variants suggests that UNEECON can predict deleterious variants associated

with dominant genetic disorders but not necessarily those associated with recessive disor-

ders. Also, because common variants are unlikely to be under strong negative selection [12],

UNEECON scores might not be able to predict common variants associated with complex

traits or late-onset diseases. In contrast, a recent study suggests that rare variants associated

with complex traits are strongly enriched in coding regions and tend to be under negative

selection [61], implying that UNEECON could be a useful tool for rare variant association

studies.

UNEECON is based on a novel machine learning framework, deep mixed-effects model, to

integrate variant features and gene-level constraints. By comparing the nonlinear UNEECON

model with a linear UNEECON model without hidden layers, we observe that the UNEECON

scores from the nonlinear model are nearly perfectly correlated with the scores from the linear

UNEECON model (Spearman’s ρ = 0.95). Therefore, the additional nonlinearity introduced

by neural networks may not be critical for the dataset described in this work. Nevertheless, the

deep mixed-effects model has the flexibility of modeling complex interactions between vari-

ant-level features, which may be important for analyzing other datasets.

Our analysis of the linear UNEECON model suggests that both the predictive variant fea-

tures and the gene-level constraints are important for variant interpretation. In particular,

gene-level evidence of selective constraints is the single most important predictor of negative

selection on missense mutations. Also, predictive variant features accumulatively explain a

large fraction of the variation of negative selection across missense variants. We expect that the
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combination of variant-level predictors and gene-level constraints will be an essential compo-

nent in the future development of variant and gene prioritization methods.

By contrasting UNEECON-G scores against pLI scores, we observe a low correlation

between gene-level intolerance to missense mutations and that to loss-of-function mutations.

The prevalence of disordered protein regions in the human proteome is a key biological factor

contributing to the low correlation between missense and loss-of-function constraints. Fur-

thermore, we observe that the genes intolerant to both loss-of-function mutations and mis-

sense mutations may play key roles in the central nervous system and the autism spectrum

disorders, highlighting the needs to investigate the function of these genes using state-of-the-

art experimental techniques. By combing powerful variant and gene prioritization tools, such

as UNEECON, and high-throughput mutagenesis and genome editing techniques [62, 63], we

will obtain more insights into the function of these strongly constrained genes in the future.

Materials and methods

Predictive variant features

UNEECON was trained on 30 missense variant features previously used to infer fitness effects

of coding variants in the human genome (Table A in S1 File; [12]). These features can be classi-

fied into three categories: sequence conservation scores, protein structural features, and func-

tional genomic features. The sequence conservation scores included SIFT [5], PROVEAN [7],

SLR [64], Grantham [65], PSIC [66], LRT [67], MutationAssessor [4], HMMEntropy [68], and

phyloP scores [40]. The protein structural features included predicted secondary structures, B-

factors, contributions to protein stability, and relative solvent accessibilities from SNVBox [68].

The functional genomic features included the non-commercial version of SPIDEX splicing

scores [69] and the maximum RNA-seq signals from the Roadmap Epigenomics Project [70].

Following a common practice in machine learning and statistics, we standardized continuous

features by subtracting the mean and dividing by the standard deviation. All the features were

based on the hg19 (GRCh37) assembly.

Population genomic data

We dowloaded whole genome variation data, exome variation data, and corresponding

sequencing coverage data from the gnomAD browser [28, 29] (version 2.1.0). We only

retained rare SNVs (MAF < 0.1%) that passed gnomAD’s built-in quality filter for down-

stream analysis.

Context-dependent mutation model

We trained a context-dependent mutation model to capture the impact of 7-mer sequence

context, local mutation rate, and sequencing coverage on the probability of the occurrence of

each mutation in the gnomAD exome sequencing data. Because of the intrinsic sparsity of

putatively neutral variants in coding regions, it is difficult to build a mutation model solely

based on the gnomAD exome sequencing data. Therefore, we first built a mutation model

based on neutral noncoding variants in the gnomAD whole genome sequencing (WGS) data.

Then, we recalibrated the WGS-based mutation model in the gnomAD exome sequencing

data to adjust for the differences in population sample size and sequencing coverage between

the WGS and the exome sequencing data.

To build the WGS-based mutation model, we first compiled a list of putatively neutral non-

coding regions following a strategy described in previous studies [10, 71, 72]. We removed

coding exons [73], conserved phastCons elements [74], nucleotide sites within 1000 bp of any

PLOS GENETICS Unified variant and gene prioritization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008922 July 15, 2020 14 / 24

https://doi.org/10.1371/journal.pgen.1008922


coding exons, and nucleotide sites within 100 bp of any phastCons elements. We assumed

that the remaining noncoding regions were largely depleted with functional elements and,

therefore, mutations in these regions were putatively neutral. It is worth noting that we also

removed any nucleotide sites with an average sequencing coverage below 20, due to the diffi-

culty of variant calling in low coverage regions, and any sites overlapping CpGs, due to the

high mutation rates in these sites.

Then, we fit a WGS-based mutation model to the gnomAD WGS data in putatively neutral

noncoding regions. First, for each possible combination of mutation l and sequence context

k (the focal nucleotide with 3 flanking nucleotides on each side), we calculated its mutability,

fk!l, defined as the proportion of 7-mer sequences of k with observed rare variant l in the gno-

mAD WGS data. We defined Fk!l ¼ logitðfk!lÞ � log fk!l
1� fk!l

� �
, which represents the contribu-

tion of sequence context and mutation type to the probability of variant occurrence in logit

scale. Second, we fit a genome-wide logistic regression model to estimate the contributions of

sequencing depth and context-dependent mutability to the probability of the occurrence of a

mutation. This logistic regression model assumed

PðYWGS
i ¼ 1Þ ¼ logisticða0 þ a1 log ðdiÞ þ a2Fki!li

Þ; ð1Þ

where YWGS
i is a binary indicator of the occurrence of neutral noncoding mutation i in the gno-

mAD WGS data. α0, α1, and α2 are the free parameters in the logistic regression model. di is

the average sequencing depth at the nucleotide position of mutation i. ki and li are the sequence

context and the mutation type of mutation i, respectively. We then fit a local logistic regression

model for each exon m in the human genome with

PðYWGS
i ¼ 1Þ ¼ logisticðam

3
þ â1 log ðdiÞ þ â2Fki!li

Þ; for all mutation i0s

within 60 kb of exon m
ð2Þ

where am
3

is an exon-specific free parameter independently estimated for each exon m, and â1

and â2 are the estimates of regression coefficients in Eq 1. The local regression model effec-

tively added an exon-specific, multiplicative scaling factor to adjust for the variation of local

mutation rates across exons. We defined

qi ¼ âm
3
þ â1 log ðdiÞ þ â2Fki!li ð3Þ

as the logit of the predicted occurrence probability of mutation i in exon m in the WGS-based

mutation model, given the estimated âm
3

, â1, and â2.

Finally, we recalibrated the WGS-based mutation model in the gnomAD exome sequencing

data with a logistic regression model,

PðYexome
i ¼ 1Þ ¼ logisticðb0 þ qiÞ; ð4Þ

where Yexome
i is a binary indicator of the presence of synonymous mutation i in the gnomAD

exome sequencing data, and β0 is the free parameter of the logistic regression model. The

exome-based logistic regression model effectively added a multiplicative scaling factor to

accommodate for the differences in population sample size and sequencing coverage between

the WGS and the exome sequencing data. In the final exome mutation model, we defined the

predicted probability of the occurrence of missense mutation i in gene j as

mij ¼ logisticðb̂0 þ qiÞ �
expðb̂0 þ qiÞ

1þ expðb̂0 þ qiÞ
; ð5Þ
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where b̂0 is the maximum likelihood estimate of β0 in Eq 4. We fit all the logistic regression

models using the glm function in R [75].

Details of the UNEECON model

We assume that negative selection on a potential mutation is a mathematical function of the

sum of a variant-level fixed effect, zij, and a gene-level random effect, uj (Fig 1). Denoting Xij as

the vector of variant features associated with mutation i in gene j, we assume that the variant-

level fixed effect, zij, can be modeled by a feedforward neural network. At the bottom of the

neural network, a nonlinear hidden layer and a dropout layer are employed to transform Xij to

a hidden vector,

Hij ¼ droputðReLUðXij �Whidden þ BhiddenÞÞ; ð6Þ

where ReLU and dropout are the rectified linear layer [76] and the dropout layer [43], respec-

tively. Whidden and Bhidden are the weight matrix and bias vector of the hidden layer, respec-

tively. Then, we assume the fixed effect term, zij, is a linear combination of the hidden vector

Hij,

zij ¼ Hij �Woutput þ boutput; ð7Þ

where Woutput and boutput are the weight vector and the bias term, respectively. We use the

Glorot method [77] to initialize the weights, Whidden and Woutput, and initialize the bias terms,

Bhidden and boutput, with zeros. In the dropout layer, we use a fixed dropout rate of 0.5. It is

worth noting that, if a linear version of the UNEECON model is used, Eq 6 will be replaced by

an identity function Hij� Xij.

To capture the variation of gene-level selective constraints that cannot be predicted from

feature vector Xij, we introduce a gene-level random-effect term following a Gaussian distribu-

tion,

uj � N ð0; sÞ; ð8Þ

where σ is the standard deviation of the Gaussian distribution. Given the fixed and random

effect terms, we assume ηij, the relative probability of the occurrence of mutation i in gene j,
follows

Zij ¼ logisticðzij þ ujÞ �
expðzij þ ujÞ

1þ expðzij þ ujÞ
: ð9Þ

We further assume that the total probability of the occurrence of potential missense muta-

tion i in gene j is equal to the product of ηij and μij, the probability of variant occurrence under

the neutral mutation model described in Eq 5. Accordingly, the likelihood function for the

data associated with gene j is defined as

Lj ¼
Y

i

ðZijmijÞ
Yijð1 � ZijmijÞ

1� Yij ; ð10Þ

where Yij is a binary indicator of the occurrence of missense mutation i in gene j in the gno-

mAD exome sequencing data.

Training the UNEECON model

We trained UNEECON with the Adam optimization algorithm [78]. In each iteration, UNEE-

CON loaded a mini-batch of data consisting of all the potential missense mutations in a single
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gene. Then, we calculated the log likelihood of the mini-batch of data using Eq 10 and numeri-

cally integrated out uj with a 20-point Gaussian Quadrature rule. The negative log value of Eq

10 was used as the objective function in the Adam optimizer.

We randomly split the data into a training set (80% genes; 51,108,443 potential missense

mutations), a validation set (10% genes; 6,435,990 potential missense mutations), and a test set

(10% genes; 6,414,968 potential missense mutations). After each epoch of training, UNEECON

evaluated the objective function in the validation set and stopped training when the objective

function did not improve over 5 successive epochs to avoid overfitting (early stopping). Fur-

thermore, we performed a grid search to optimize two hyperparameters, i.e., the learning rate

of the Adam algorithm (10−2, 10−3, and 10−4) and the number of hidden units (64, 128, 256,

512, and a linear model without hidden units). The model was evaluated on the test dataset to

choose optimal hyperparameters. We observed that a nonlinear UNEECON model with 512

hidden units and a learining rate of 10−4 had the lowest negative log likelihood on the test data-

set. Therefore, we chose this model as the optimal one for downstream analysis.

Calculating UNEECON and UNEECON-G scores

After training, we fixed the free parameters, i.e., Whidden, Woutput, Bhidden, boutput, and σ, to the

estimated values in the optimal model. Then, we calculated the UNEECON score for all the

potential missense mutations in the human genome. For each gene j, UNEECON first calculated

the posterior distribution of the random effect, PðujjDatajÞ, where Dataj = {X1j, X2j, � � �, XNj,

Y1j, Y2j, � � �, YNj} are the features and indicators of occurrence of all the potential missense

mutations in gene j. Denoting Euj jDataj
ðZijjujÞ �

R
ZijPðujjDatajÞduj as expected relative probabil-

ity of the occurrence of mutation i in gene j, we define the UNEECON score of mutation i as

1 � EujjData
ðZijjujÞ. The UNEECON-G score is defined as the average UNEECON score of all the

missense mutations in a gene.

Distributions of UNEECON scores across gene categories and protein

regions

We investigated the distributions of UNEECON scores across different gene categories and

protein regions. We obtained lists of haploinsufficient genes [37] (n = 294), autosomal domi-

nant disease genes [35, 36] (n = 709), autosomal recessive disease genes [35, 36] (n = 1, 183),

and olfactory receptor genes [45] (n = 371) from the GitHub repository for the MacArthur Lab

at the Broad Institute (https://github.com/macarthur-lab/gene_lists). We obtained annotations

of α-helices, β-strands, hydrogen-bonded turns, enzyme active sites, and binding sites from

UniProt [47]. We obtained annotated disordered protein regions from MobiDB 3.0 [48]. We

plotted the distributions of UNEECON scores using R [75].

Comparison with other methods in the prediction of ClinVar pathogenic

variants

We evaluated the performance of UNEECON, compared with eight previously published

methods, in the setting of predicting pathogenic missense variants in the ClinVar database

downloaded on Feb 25, 2019 [30]. We obtained MPC [25], PrimateAI [11], Eigen [50], CADD

[8], RVIS [16], and pLI [17] scores from dbNSFP (version 4.0b2a) [79]. We obtained LASSIE

scores [12] from the LASSIE GitHub repository (https://github.com/CshlSiepelLab/LASSIE)

and CCR score (version 2) [22] from https://s3.us-east-2.amazonaws.com/ccrs/ccrs/ccrs.

autosomes.v2.20180420.bed.gz. It is worth noting that we used the version of pLI scores

trained on the gnomAD exome sequencing data [29].
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We considered autosomal missense variants with annotations of “pathogenic/likely patho-

genic” as positives and the ones with annotations of “benign/likely benign” as negative con-

trols. We further removed the variants with conflict pathogenicity annotations and the

variants present in the gnomAD exome sequencing dataset [29]. For all the comparisons, we

only included the variants scored by all methods. We plotted the receiver operating character-

istic (ROC) curves and calculated the areas under the receiver operating characteristic curves

(AUCs) using the ROCR package [80]. Because the AUC metric is sensitive to label imbalance,

we matched the numbers of positives and negatives using random sampling without replace-

ment. After all the filtering steps, we obtained 473 pathogenic and 473 benign variants in the

autosomal dominant dataset, as well as 277 pathogenic and 277 benign variants in the autoso-

mal recessive dataset.

Comparison with alternative methods in predicting de novo mutations

associated with developmental disorders

We downloaded de novo mutations identified in 4,293 individuals affected by developmental

disorders [31] and 2,278 healthy individuals from denovo-db (version v1.6.1). The healthy

controls included individuals enrolled in previous studies of autism [81–85], severe non-syn-

dromic sporadic intellectual disability [86], schizophrenia [87], and healthy populations [88–

91]. We removed redundant variants and any variants presented in the gnomAD exome

sequencing data. Then, for various percentile rank cutoffs (top 10%, 20%, 30%, and 40%), we

calculated the log2 odds ratio of the enrichment of predicted deleterious variants in affected

individuals using the fisher.test function in R [75].

Comparison with alternative methods in predicting disease genes and

essential genes

We obtained four sets of disease genes and essential genes from the GitHub repository for the

MacArthur Lab at the Broad Institute (https://github.com/macarthur-lab/gene_lists). These

gene sets included 294 haploinsufficient genes [37], 709 autosomal dominant disease genes

[35, 36], 2,454 human orthologs of mouse essential genes [33, 34], and 683 essential genes

based on CRISPR screen data from human cell lines [32]. For each set of the haploinsufficient,

autosomal dominant, and mouse essential genes, we utilized the other autosomal genes as neg-

ative controls. Because it is easier to reject the null model of neutral evolution in a longer gene,

gene constraint scores tend to be correlated with gene length [17, 29]. To control for the

impact of gene length on performance evaluation, we used MatchIt [92] to pair each disease

gene with a non-disease gene with matched gene length, resulting in a negative gene set with

matched gene number and gene length. Similarly, for the 683 human essential genes based on

CRISPR screen data, we used the 913 nonessential genes from the same study [32] as negative

controls and constructed a negative gene set with matched gene length and gene number. We

plotted the ROC curves and calculated the AUC metrics using the ROCR package [80].

Comparison of UNEECON-G and pLI scores

To evaluate the relationship between gene-level intolerance to missense mutations and that to

loss-of-function mutations, we compared the UNEECON-G scores with the pLI scores trained

on the gnomAD data [17, 79]. We identified 1,912 genes intolerant to loss-of-function muta-

tions based on a threshold of pLI score of 0.9. Then, we split the 1,912 genes into 956 genes tol-

erant to missense genes and 956 genes intolerant to missense mutations based on the median

UNEECON-G score. We used PANTHER [93] to calculate the enrichment of Reactome
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pathways and Gene Ontology categories in the set of genes intolerant to both missense and

loss-of-function mutations, compared with those tolerant to missense mutations but not to

loss-of-function mutations. We also downloaded 1,054 autism related genes from the SFARI

database on March 9, 2019 [59], and evaluated the enrichment of autism genes in the two gene

sets.
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as a gene-level approach to prioritizing exome variants. Proceedings of the National Academy of Sci-

ences. 2015; 112(44):13615–13620. https://doi.org/10.1073/pnas.1518646112

20. Gussow A, Petrovski S, Wang Q, Allen A, Goldstein D. The intolerance to functional genetic variation of

protein domains predicts the localization of pathogenic mutations within genes. Genome Biology. 2016;

17(1):9. https://doi.org/10.1186/s13059-016-0869-4
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