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Abstract 

The secondary use of electronic health records (EHR) represents unprecedented opportunities for biomedical 

discovery. Central to this goal is, EHR-phenotyping, also known as cohort identification, which remains a significant 

challenge. Complex phenotypes often require multivariate and multi-scale analyses, ultimately leading to manually 

created phenotype definitions. We present Ontology-driven Reports-based Phenotyping from Unique Signatures 

(ORPheUS), an automated approach to EHR-phenotyping. To do this we identify unique signatures of abnormal 

clinical pathology reports that correspond to pre-defined medical terms from biomedical ontologies. By using only 

the clinical pathology, or “lab”, reports we are able to mitigate clinical biases enabling researchers to explore other 

dimensions of the EHR. We used ORPheUS to generate signatures for 858 diseases and validated against reference 

cohorts for Type 2 Diabetes Mellitus (T2DM) and Atrial Fibrillation (AF). Our results suggest that our approach, 

using solely clinical pathology reports, is an effective as a primary screening tool for automated clinical 

phenotyping. 

 

Introduction & Background 

Electronic health records (EHR) capture an increasing variety and amount of clinical data leading to initiatives that 

are leveraging this potential for knowledge discovery. From adverse event and medical error detection for patient 

safety
1,2 

to case-control studies
3
, those new tools often rely on the researchers’ ability to isolate accurate cohorts of 

patients with a given phenotype. In this context, the term phenotyping has been used to describe automated and 

manual methods for identifying these patient cohorts in the EHR
4
.Advancement of automated phenotyping 

algorithms is a major roadblock in the field
4
. Several nationwide efforts, such as eMERGE

5 
and SHARPn

6
,
 
have 

developed selection algorithms for high-throughput phenotype extractions. Those algorithms often comprise of a 

series of arithmetic and logical operations that are applied to the clinical data. The data types used in these 

algorithms are heterogeneous and may vary between institutions necessitating continual re-evaluation
7
. There is an 

opportunity in phenotyping to apply statistical learning methods, like Association Rule Mining (ARM), for modeling 

selection algorithms
8
 or the use of tensor factorization of medications and diagnoses to identify patients

9
. Other 

approaches have focused on certain types of clinical data like the diagnoses codes, which often are ICD-9-CM codes. 

Machine learning techniques trained on these data have been able to classify patients even when data are missing by 

using inductive logical programming
10

. The exclusive use of a particular clinical data type (e.g., medications or 

clinical pathology reports) is advantageous because it allows the exploration other the other data types in the selected 

cohort while minimizing bias to the extent possible. In particular, ICD-9-CM codes have been widely used for 

phenotyping and, in some cases, enhanced by additional information, such patient-reported data
11

. However, ICD-9-

CM are primarily used for billing purposes and not for differential diagnosis, introducing complicated biases
12

. 

Clinical pathology is the medical subfield that deals with the analysis of bodily fluids for diagnosis and prognosis 

and clinical pathology reports, commonly called “lab reports,” may be more reliable than ICD-9 codes for EHR 

phenotyping, while maintaining the same level of standardization. 

We present Ontology-driven Reports-based Phenotyping with Unique Signatures (ORPheUS), a knowledge-

based phenotyping method that generates a unique clinical pathology signature for each term of a given ontology (i.e. 

each disease phenotype). Each “phenotype signature” is comprised of a set of abnormal laboratory tests (ATs). Our 

approach relies on only one type of clinical data -- the clinical pathology reports -- to minimize biases and increase 

interoperability. In total we generated clinical pathology signatures for 858 distinct diseases. We validated three of 

these signatures against reference patient cohorts using definitions from PheKB.org. We evaluated for precision and 

recall as well as the recovery of known co-morbidities. In each case we found that ORPheUS significantly 

outperforms the null model, with the T2DM signature recovering 17.2% of diabetics at 81.4% precision (F1 

score=0.28). 
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Methods 

Clinical Data Sources 

The New York Presbyterian/Columbia University Medical Center (NYP/CUMC) clinical data warehouse contains 

about 470 million laboratory values from clinical pathology reports from more than 1.3 million patients over the last 

decade. We selected 177 of the most commonly ordered tests performed from blood, urine, plasma, and 

cerebrospinal fluid. We restricted our cohort of study to patients over 18 years old at order time with specified sex 

and at least one of these 177 laboratory tests. It narrowed our study to 767,389 patients with 172,518,869 values 

total. We preprocessed these data to assert if those reports were normal, abnormal, high, or low accounting for the 

patients’ age and sex, and according to our normal ranges database (Yahi, et al, in preparation). 

 

Annotating abnormal laboratory tests with ontology terms 

ORPheUS uses abnormal laboratory tests (ATs). We associated each AT to the medical terms from a given ontology 

through statistical enrichment analysis. We created the initial set of annotations by defining a search term by 

concatenating the name of the laboratory test with its non-normal status (i.e., “blood glucose low”, “blood glucose 

high”, etc.). Then we searched for each of these terms in the medical search engine UpToDate (www.uptodate.com) 

and gathered the titles of the first three pages of results. Once regrouped in a text file, these titles were annotated with 

the Annotator API by the NCBO (www.bioontology.org)
13

 and counted the number of times an ontology term would 

appear. We attributed 10 points for an exact match and 8 points for a synonym match. . This is a one-time process 

associate ATs to clinical ontology terms and it is not repeated for the following steps of the phenotyping. We looped 

through all the terms of the ontology to associate each medical term with the ATs associated with its semantic 

descendants. We performed a Fisher’s exact test and a permutation analysis on these annotations sets to identify the 

ATs significantly associated to each ontology term, assessing significance using a FDR <= 0.05. Therefore, each 

ontology term (e.g., “Diabetes mellitus”), we have a set of significant ATs. We call this set of ATs the phenotype 

signature. 

 

Selecting cohorts of patients for reference standard 

We applied phenotype selection algorithms available on PheKB (www.phekb.org) to construct a reference standard. 

We therefore identified case cohorts for Atrial Fibrillation (AF)14 and Type 2 Diabetes Mellitus (T2DM)
15,16

. The 

data required by these algorithms consists of ICD-9 codes, CPT-4 codes, drug prescriptions, and clinical notes. We 

tested the performance of ORPheUS on these reference groups of patients. 

 

Phenotyping with ORPheUS 

We identified the presence of the phenotype signatures, complete (i.e., all the ATs of the signature are found in the 

patient’s clinical history) or partial (i.e. a subset of the ATs in the signature), in a patient’s clinical pathology records.  

For each patient, we look for the presence of any of the ATs belonging to the signature in his medical record to 

consider this patient as a potential candidate. We referenced laboratory tests with a universal code system named 

Logical Observation Identifiers Names and Codes (LOINC)
17

 and we used these codes to match ATs. We sorted 

those candidates by the number of distinct ATs of the target signature they had without any constraint in time. We 

designated by true positive (TP) the patients at the intersection of each of these prediction sets and its reference 

cohort of patients. To assess statistical significance, we compared the precision of the predictions from the signatures 

to a randomly selected cohort of the same size. For each group of candidates with N distinct ATs, we compared the 

precision of the prediction against the precision of a randomly selected cohort of the same size relative to all the 

patients with at least N distinct clinical pathology reports. We performed this random selection 20 times for each 

category. To compute the recall, we proceeded the same way except that the predictions were evaluated against the 

complete cohort of reference patients. 

Results 

Signatures 

We annotated 351 abnormal laboratory test (ATs) with terms from the Human Disease Ontology (DOID)
18

. We then 

identified those ATs that were specific to each term to generate 858 signatures. The average signature contained 10.8 

± 14 ATs. The minimum number of ATs in a signature was 1 (for 95 signatures), and the maximum 50 (DOID:1579 

Respiratory system disease). We did not construct a signature for parent term, “Disease,” in the ontology. Diabetes 

Mellitus with 14 distinct ATs is a little above the average of signatures (Table 1 – Signature for Diabetes Mellitus). 

Congenital heart disease presents 16 ATs and Mycoardial infarction 14 (Table 2 and 3). 
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Diabetes Mellitus (DOID:9351) 

Clinical Pathology Report Status 

Glucose in Serum or Plasma High/Low 

Fasting glucose in Serum or Plasma High/Low 

Glucose in Blood High/Low 

Glucose in Serum or Plasma post challenge High/Low 

Hemoglobin A1c/Hemoglobin.total in 

Blood by HPLC 
High/Low 

Glucose in Blood (Meter) High/Low 

Hemoglobin A1c/Hemoglobin.total in 

Blood 
Low 

Hemoglobin in Blood High 

myocardial infarction (DOID:5844) 

Clinical Pathology Report Status Clinical Pathology Report Status 

Basophils [#/volume] in Blood High Platelet mean volume in Blood High 

Eosinophil [#/volume] in Blood High INR in Platelet poor plasma by Coagulation assay High 

Eosinophils [#/volume] in Blood by Manual count High Carbon dioxide [Partial pressure] in Arterial blood High 

Fibrinogen in Platelet poor plasma by Coagulation assay High Platelets in Blood High 

Hematocrit of Blood by Automated count High Potassium in Arterial blood High 

Hematocrit of Blood Low Sirolimus in Blood High 

International Normalized Ratio POC High Thrombin time in Platelet poor plasma by Coagulation assay High 

congenital heart disease (DOID:1682) 

Clinical Pathology Report Status 

Carbon dioxide, total in Arterial blood High/Low 

Carbon dioxide, total in Serum or Plasma High 

Estradiol (E2) in Serum or Plasma High 

Thyroxine (T4) free in Serum or Plasma High 

Calcium.ionized in Arterial blood High 

Erythrocyte mean corpuscular volume by 

Automated count 
Low 

Oxygen saturation in Arterial blood High/Low 

Oxygen saturation Calculated from oxygen 

partial pressure in Blood 
High 

Oxygen saturation in Venous blood High/Low 

Oxygen [Partial pressure] in Arterial blood High/Low 

Oxygen [Partial pressure] in Venous blood Low 

Thyroxine (T4) in Serum or Plasma High 

Table 1 – Signature of Diabetes Mellitus (DOID:9351)!

Table 2 – Signature Congenital heart disease (DOID:1682)!

Table 3 – Signature of myocardial infarction (DOID:5844)!
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Phenotyping performances 

We computed the precision and recall curves for the Diabetes Mellitus in 83,246 patients with T2DM as determined 

by the reference standard. We observed that of the 14 T2DM specific ATs in the signature, we only found up to 10 

simultaneously in a single patient’s record. The precision is significantly better than by chance and increases above 

80% with when at least 4 ATs are matched. At 6 or more distinct ATs the recall falls to below 5% (Figure 1). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also explored the cohorts of 80,163 patients with Atrial Fibrillation and evaluated the signatures of two of AF’s 

known comorbidities: myocardial infarction
19

, and congenital heart disease
20

. We observed an interesting precision 

for Congenital Heart Disease (Figure 2.a.) reaching a plateau around 80% from 10 distinct ATs. Myocardial 

Infarction (Figure 2.b.) presented a better precision, needing only 6 distinct ATs to reach 80%. However, despite a 

better initial recall, we witnessed a faster drop in sensitivity for the myocardial infarction signature than the 

congenital heart disease one. Finally, we observed that for 10 distinct ATs the predicted set of patients was so small 

that the precision fell to zero. 

 

Discussions 

In this paper we present a novel automated EHR phenotyping algorithm by defining signatures of abnormal 

laboratory tests and scanning for matches in a patient’s longitudinal medical record. These signatures are knowledge-

driven and rely on only one type of clinical data helping to minimize biases and improve interoperability. Since the 

signatures are knowledge-based they are not directly exposed to any clinical data before they are used for 

phenotyping. In total we generated 858 disease signatures. We validated two (atrial fibrillation and type 2 diabetes 

mellitus) of these signatures against a reference cohort of patients identified using eMERGE algorithms available at 

PheKB.org. We did not revalidate the PheKB algorithms in the CUMC database, however, previous implementations 

showed a 98% Positive Predictive Value for AF, and between 98 and 100% for T2DM.  

In future studies, we would like to consider co-occurrences of those signatures across time. We might 

consider restricting the time windows from 1 to 12 months in patients’ records and look for the phenotype signatures, 

keeping only the maximum number of distinct simultaneous ATs in these windows. It might improve the precision of 

our predictions since some patients present sparse clinical pathology reports. Dynamical phenotyping using those 

reports has shown promising opportunities
21

. We would also like to investigate the potential of combining different 

phenotypes signatures. We also envision a possible approach for robustness assessment, which would consist of 

Figure 2. (a) Congenital heart disease and (b) Myocardial infarction signatures in Atrial Fibrillation patients!
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mapping ontological terms, in this example a DOID term, to ICD-9-CM diagnoses codes. This would allow us to 

evaluate performance of our all or most of our generated phenotype signatures systematically. 

The EHR systems are in constant evolution, and many efforts are focused on designed new models learning 

from data and mitigate complex, inaccurate and frequently missing clinical values
4
. Indeed, the need for 

normalization in the information models that are use and the use of standardized vocabularies would ensure a better 

end-to-end connectivity over platforms allowing more reliable high-throughput phenotyping
6
. Meanwhile, as clinical 

notes still remain a critical source of information for phenotypic characteristics, phenotyping techniques using 

natural language processing (NLP) has been widely used and are gaining popularity
22

. The term of “Verotype” as a 

matching of genotype, phenotype and disease subtype has also been described
23

 to make a step forward to 

personalized medicine. The systematic inclusion of genotype and phenotype data in future EHR would be critical for 

this purpose
24

. 

 

Conclusion 

We presented Ontology-driven Reports-based Phenotyping with Unique Signatures (ORPheUS), a knowledge-based 

automated method for EHR-phenotyping, using only clinical pathology reports. We evaluated the performances of 

our phenotype signatures for T2DM and AF and demonstrated the potential use of this method for phenotyping. Our 

ontology-driven approach could allow us in future work to use other medical semantic fields and study for example 

adverse events signatures. 
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