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Abstract
Understanding the nature of local–itinerant transition of strongly correlated electrons is one of the central problems in condensed matter 
physics. Heavy fermion systems describe the f-electron delocalization through Kondo interactions with conduction electrons. 
Tremendous efforts have been devoted to the so-called Kondo-destruction scenario, which predicts a dramatic local-to-itinerant 
quantum phase transition of f-electrons at zero temperature. On the other hand, two-fluid behaviors have been observed in many 
materials, suggesting coexistence of local and itinerant f-electrons over a broad temperature range but lacking a microscopic theoretical 
description. To elucidate this fundamental issue, here we propose an exactly solvable Kondo-Heisenberg model in which the spins are 
defined in the momentum space and the k-space Kondo interaction corresponds to a highly nonlocal spin scattering in the coordinate 
space. Its solution reveals a continuous evolution of the Fermi surfaces with Kondo interaction and two-fluid behaviors similar to those 
observed in real materials. The electron density violates the usual Luttinger’s theorem, but follows a generalized one allowing for 
partially enlarged Fermi surfaces due to partial Kondo screening in the momentum space. Our results highlight the consequence of 
nonlocal Kondo interaction relevant for strong quantum fluctuation regions and provide important insight into the microscopic 
description of two-fluid phenomenology in heavy fermion systems.
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Introduction

Underlying the rich emergent quantum phenomena of heavy fer-
mion systems (1, 2) is the local-to-itinerant transition of 
f-electrons controlled by the interplay of Kondo and Ruderman– 
Kittel–Kasuya–Yosida (RKKY) interactions (3–15). Below the so- 
called coherence temperature T∗, a large amount of experimental 
observations have pointed to the coexistence of local and itinerant 
characters of f-electrons as captured phenomenologically by the 
two-fluid model (16–22), which assumes the coexistence of an itin-
erant heavy electron fluid formed by hybridized (screened) 
f-moments and a (classical) spin liquid of residual unhybridized 

f-moments. The two-fluid behavior exists over a broad tempera-
ture range, from the normal state below the coherence tempera-
ture down to inside the quantum critical superconducting phase 
(23–25), and explains a variety of anomalous properties observed 
in heavy fermion materials (22). But a microscopic description of 
the two-fluid phenomenology is still lacking, and no consensus 
has been reached on how exactly the f-electrons become delocal-
ized (26).

Tremendous theoretical and experimental efforts in past deca-
des have been focused on the so-called Kondo-destruction scen-
ario, in which the local–itinerant transition was predicted to 
occur abruptly through a quantum critical point (QCP) at zero 
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temperature (4–6). While it seems to be supported experimentally 
by the Hall coefficient jump under magnetic field extrapolated to 
zero temperature in YbRh2Si2 (27) and the de Haas-van Alphen ex-
periment under pressure in CeRhIn5 (28), it was lately challenged 
by a number of angle-resolved photoemission spectroscopy meas-
urements showing signatures of large Fermi surfaces (29) or band 
hybridization above the magnetically ordered state (30). In theory, 
the Kondo-destruction scenario could be derived under certain 
local or mean-field approximations, such as the dynamical 
large-N approaches assuming independent electron baths 
coupled to individual impurity (9, 10, 14) and the extended dy-
namical mean-field theory by mapping the Kondo lattice to a sin-
gle impurity Bose-Fermi Kondo model (4). Since the corresponding 

spin-
1
2 

single- or two-impurity problems only allow for two stable 

fixed points in the strong-coupling limit and the decoupling limit 
(31–33), these approaches unavoidably predicted a single QCP 
associated with Kondo destruction.

However, there is no a priori reason to assume such a local im-
purity mapping to be always valid for Kondo lattice systems in 
which all spins are spatially correlated and coupled to a common 
shared bath. For example, in CePdAl (34), geometric frustration 
may promote quantum fluctuations of local spins so that the 
single QCP is replaced by an intermediate quantum critical phase 
at zero temperature (11, 12). Numerically, density-matrix renor-
malization group calculations of the one-dimensional Kondo lat-
tice have predicted an intermediate phase with neither large nor 
small Fermi surfaces (35). For two-dimensional Kondo lattice, 
both quantum Monte Carlo (QMC) simulations (36, 37) and the 
dynamical cluster approach (38) have suggested continuous exist-
ence of Kondo screening inside the magnetic phase. In particular, 
an effective nonlocal Kondo interaction has recently been pro-
posed using an improved Schwinger boson approach with full 
momentum-dependent self-energies, yielding intermediate 
ground states with partially enlarged electron Fermi surfaces 
(11, 12, 39). It is therefore necessary to go beyond the local or 
mean-field approximations and explore in a more rigorous man-
ner how f-electrons may evolve once nonlocal interaction effects 
are taken into account.

In this work, we extend the concept of Kondo interaction to an 
extreme case where the nonlocal scattering between conduction 
electrons and spins has an infinite interacting range such that it be-
comes local in the momentum space. We further include a 
Heisenberg-like term in the momentum space to mimic the 
Kondo–RKKY competition in heavy fermion materials. Similar to 
the Hatsugai–Kohmoto model with a k-space Hubbard-U inter-
action (40–45), our proposed k-space Kondo-Heisenberg model is 
exactly solvable. This allows us to overcome uncertainties in previ-
ous studies introduced by either analytical approximations or nu-
merical ambiguities and extract decisive information on potential 
physical effects of nonlocal correlations. We find many interesting 
features such as spin–charge separated excitations, coexistence of 

Kondo singlets and spin singlets, and continuous evolution of the 
Fermi surfaces. Our results yield useful insight into the microscop-
ic description of two-fluid behaviors, highlight the rich consequen-
ces of nonlocal Kondo scattering, and provide an unambiguous 
counterexample to the local Kondo-destruction scenario.

Results
The k-space Kondo-Heisenberg model
We begin by constructing the following Hamiltonian,

H =
1
2

􏽘

k

Hk,

Hk = (ϵk − μ)(nk + n−k) + JK(sk · Sk + s−k · S−k)

+ JHSk · S−k,

(1) 

where nk =
􏽐

α c†kαckα is the electron occupation number at mo-

mentum k, μ is the chemical potential, and ϵk = ϵ−k is the electron 

dispersion relation. The electron spin sk = 1
2

􏽐
αβ c†kασαβckβ and the 

local spin Sk are both defined in the momentum space. Note 
that Sk is not the Fourier transform of the spin operator in the co-
ordinate space, but should rather be viewed as that of an 
“f-electron” localized in the momentum space. In the pseudofer-

mion representation, this corresponds to Sk = 1
2

􏽐
αβ f†kασαβfkβ under 

the constraint 
􏽐

α f †kαfkα = 1. It is immediately seen that the Kondo 

interaction is highly nonlocal by Fourier transform to the coordin-

ate space, JK
2

􏽐
iji′ j′ c

†

iαc jβf †i′βf j′αδri−r j ,r j′−ri′
. A similar form of nonlocal 

Kondo interaction has been suggested to emerge in the quantum 
critical regime and play an important role in strongly frustrated 
Kondo systems (11, 12, 39).

The above model is exactly solvable, since the total Hilbert 
space can be divided into many small and independent subspaces 
by each conserved Hk. The local Hilbert space at each momentum 
point contains 8 states constructed by 4 electron states (|0〉, | ↑ 〉, 
| ↓ 〉, |2〉) and 2 spin states (| ⇑ 〉, | ⇓ 〉), so Hk has a total number 
of 64 eigenstates and can be exactly diagonalized. These states 
are further classified into different sectors by the electron num-
bers (nk, n−k). Depending on the relative magnitudes of ϵk − μ 

and ζ ≡ (JK − JH + J̃)/4, where J̃ =
������������������

J2H − 2JHJK + 4J2K

􏽱

, we may find the 

ground state of Hk among three possibilities: (1) for ϵk − μ > ζ , 
one has (nk, n−k) = (0, 0), and Sk, S−k form a spin singlet; (2) for 
|ϵk − μ| < ζ , (nk, n−k) = (1, 1), and the ground state is a superposition 
between Kondo singlets and spin singlets, as shown in Table 1 and 
Fig. 1c; (3) for ϵk − μ < −ζ , one has (nk, n−k) = (2, 2), and the two 
k-local spins form a singlet. Other sectors like (nk, n−k) = (0, 1) 
and (1, 2) only contribute to excited states (see Materials and 
Methods section). The momentum space is therefore separated 
into three different regions, Ω0, Ω1, and Ω2, corresponding to 
nk = 0, 1, 2, as illustrated in Fig. 1a and b. The ground state of H 
is simply a direct product of the above three states at different k.

Many interesting properties arise from the existence of the sin-
gly occupied region Ω1, which seems to be a general feature of 
models with k-space local interactions (40, 41, 46–48). The volume 
of Ω1, defined as VΩ1 = 1

N

􏽐
k θ(ζ − |ϵk − μ|), where N is the total 

number of k points, is shown in Fig. 1d, which maps out the phase 
diagram on the JH–JK plane. For simplicity, we have assumed 
ϵk = k2/2π − 1, μ = 0, and ϵk − μ ∈ [ − 1, 1]. The momentum average 
is then 1

N

􏽐
k ≡∫|k|<kΛ d2k/(2π)2, where kΛ = 2

��
π
√

is the momentum 
cutoff corresponding to a Brillouin zone volume (2π)2. At JK = 0, 
one has VΩ1 = 0, and the conduction electrons are completely de-
coupled from the “k-space valence bond state” formed by the local 

Table 1. The ground states of Hk.

k (nk, n−k) Ek Ground state

ϵk − μ > ζ (0,0) − 3
4 JH |00〉 ⊗ |SS〉

|ϵk − μ| < ζ (1,1) 2(ϵk − μ) − JK+J̃
2 − JH

4 a|KS〉k ⊗ |KS〉−k + b|ss〉 ⊗ |SS〉
ϵk − μ < −ζ (2,2) 4(ϵk − μ) − 3JH

4 |22〉 ⊗ |SS〉

Ek is the ground state energy. |00〉 and |22〉 denote the empty and fully occupied 
electron states at k and −k. |ss〉 (|SS〉) denotes the spin singlet formed by the two 
electrons (local spins) at k and −k, while |KS〉k denotes the Kondo singlet at k. 
The ratio between the coefficients a and b is 2JK/(JH + J̃ − 2JK).
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spins (48), hence the name decoupled metal. For JK and JH satisfy-
ing ζ ≥ 1 (below the white curve in Fig. 1d), one has VΩ1 = 1, such 
that all spins are Kondo screened by conduction electrons. This 
is the Kondo insulator (KI) phase with an insulating gap around 
the Fermi energy. In between, one has 0 < VΩ1 < 1, and the system 
is in a charge-2e metal with gapped single-particle excitations but 
gapless two-particle (Cooper pair) excitations. As one approaches 
the JH = 0 limit from inside the charge-2e metal, the single-particle 
gap vanishes, and the system becomes a non-Fermi liquid (NFL) 
metal, which we denote as M.

Excitations
The elementary excitations can be obtained exactly from the 
single-particle retarded Green’s function defined as Gc(k, t) = 
−iθ(t)〈{ckα(t), c†kα}〉. Its explicit analytical expression at zero tempera-
ture is given in Materials and Methods section. The poles of the 
Green’s function are plotted in Fig. 2a in different phases, with 
the spectral weights represented by the thickness of the curves. 
Two additional poles in the Ω1 region are not shown as they have 
very small weights and locate far away from the Fermi energy. 
For ζ < 1, the following poles are most close to the Fermi energy:

ω0,k = ϵk − μ −
JK − 2JH + 2J̃

′

4
, k ∈ Ω0

ω±
1,k = ϵk − μ ±

JK + 2J̃ − 2J̃
′

4
, k ∈ Ω1

ω2,k = ϵk − μ +
JK − 2JH + 2J̃

′

4
, k ∈ Ω2

(2) 

where J̃
′ =

���������������

J2H − JHJK + J2K

􏽱

. Physically, ω0,k corresponds to adding 

one electron at k ∈ Ω0, so that the system is excited from the state 

|00〉 ⊗ |SS〉 to one of the lowest doublets of the (nk, n−k) = (1, 0) 

sector, for example, C1|KS〉k ⊗ | ⇓ 〉−k + C2|SS〉 ⊗ | ↓ 〉k if the added 
electron has a down spin (see Fig. 2b). Interestingly, the compo-
nent |KS〉k ⊗ | ⇓ 〉−k creates a charge −e excitation (antiholon 
(46)) at k and a spin-1/2 excitation (spinon) at −k, while the com-
ponent |SS〉 ⊗ | ↓ 〉k creates an electron excitation at k. The former 
indicates spin–charge separated excitations that dominate at 

small JH/JK due to the vanishing weight |C2|
2 in the JH → 0 limit 

as shown in Fig. 2c. Similarly, the pole ω−
1,k corresponds to remov-

ing one electron at k ∈ Ω1, and the resulting excited state is a 
superposition between a hole excitation at k (with coefficient 
C1), and a holon–spinon pair located at opposite momentum 
points (with coefficient C2). The poles ω+

1,k and ω2,k have similar 

physical meanings, but with the empty states in Fig. 2b replaced 
by the double-occupied states.

In the charge-2e metal, as shown in Fig. 2a, the poles ω0,k 

and ω−
1,k are separated by a direct energy gap at the Ω0–Ω1 boundary, 

and the same for ω+
1,k and ω2,k at the Ω1–Ω2 boundary. 

We find the gap follows a scaling function 
Δ/JK = 1

2 [z + (z2 − 2z + 4)1/2 − 2(z2 − z + 1)1/2], with z = JH/JK. It van-
ishes in the limit JH → 0, leading to two “Fermi surfaces” in the M 
phase, as denoted by FS1 and FS2 in Fig. 2a. However, these are 
not usual electron Fermi surfaces, in the sense that moving an elec-
tron from one side of the Fermi surface to the other causes spin– 
charge separation. Therefore, the M phase at JH = 0 is actually an 
NFL metal. We will see that even for JH > 0, the physics should be 
qualitatively identical to the M phase at temperatures higher than 
the single-particle gap of the charge-2e metal ground state.

Inside the KI phase, both Ω0 and Ω2 disappear, and the single- 
particle gap becomes an indirect gap between ω+

1,k and ω−
1,k. This 

gap remains open in the JH → 0 limit, and has a different nature 
from that of the charge-2e metal. Their difference becomes 
more clear when we consider the two-particle Green’s function, 
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Singlet
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Fig. 1. The ground state of k-space Kondo-Heisenberg model. a) The momentum space contains three regions with different electron occupation number 
shown in (b). c) Ground states of Hk in each momentum region. The thick arrows and small balls with a thin arrow denote the local spins and conduction 
electrons, respectively. The ellipses represent the entangled Kondo singlet or spin singlet. d) The ground state phase diagram at μ = 0, showing different 
phases. The intensity represents the volume of the singly occupied region Ω1.
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Gb(k, t) = −iθ(t)〈[bk(t), b†k]〉, where b†k = 1��
2
√ (c†k↑c

†

−k↓ − c†k↓c
†

−k↑) creates 
a singlet pair of electrons (a Cooper pair) (47). As shown in 
Fig. 2d, Gb(k, ω) is gapped in the KI phase but gapless in the 
charge-2e metal. This means, inside the charge-2e metal, adding 
or removing a singlet pair of electrons at k and −k costs no energy 
if k locates exactly at the Ω0–Ω1 or Ω1–Ω2 boundaries, indicating 
Cooper pairs rather then electrons being its elementary charge 
carriers. However, because our simple model does not contain 
scatterings between Cooper pairs, this state can only be viewed 
as a completely quantum disordered superconductor without 
long-range phase coherence (48, 49).

Two-fluid behavior
The fact that the ground state involves a superposition of the 
Kondo singlets and local spin singlets in the momentum space 

is reminiscent of the two-fluid model of heavy fermion materi-
als, in which an “order parameter” f (T) = min {1, f0(1 − T/T∗)3/2} 
was found to characterize the fraction of hybridized 
f-moments over a broad temperature range, with f0 reflecting 
the strength of collective hybridization (or collective Kondo 
entanglement) (18, 20). f0 ≥ 1 indicates full screening below 
some characteristic temperature where f (T) reaches unity, 
while 0 < f0 < 1 implies that a fraction of f-electrons may re-
main unhybridized even down to zero temperature if the scal-
ing is not interrupted by other orders. The two-fluid model 
captures a large amount of experimental properties of heavy 
fermion metals (22), but its microscopic theory remains to be 
explored (26).

To see how two-fluid behavior may emerge in our exactly solv-
able model, we introduce the projector Pk = |K〉〈K| with 
|K〉 = 1

2 (| ↑⇓ 〉 − | ↓⇑ 〉)k(| ↑⇓ 〉 − | ↓⇑ 〉)−k, and its momentum 
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average P = 1
N

􏽐
k Pk. This gives a two-fluid “order parameter,”

f (T) =
Tr[e−H/TP]
Tr[e−H/T]

=
1
N

􏽘

k

Tr[e−Hk/TPk]
Tr[e−Hk/T]

, (3) 

which reflects the fraction of Kondo singlet formation in the mo-
mentum space. With this definition, it is easy to show that a phys-
ical observable can in principle also be divided into a two-fluid 
form 〈O〉 = f〈O〉P + (1 − f )〈O〉1−P.

Fig. 3a and c shows the contour plots of the calculated f (T) at 
JH = 0 and 0.5, respectively. In general, we see f (T) increases with 
decreasing temperature and saturates to a finite zero temperature 
value f (0). For JH = 0, f (0) increases linearly from 0 to 1 with in-
creasing JK, and stays at unity for JK > 4/3 (inside the KI phase). 
For JK < 4/3 (inside the M phase), f (T) follows a universal scaling 
function f (T)/f (0) = F(T/T∗), as shown in Fig. 3b. Quite remarkably, 
the low temperature part of F(T/T∗) can be well approximated by 
the function (1 − T/T∗)3/2. At high temperatures, its smooth evolu-
tion reflects a crossover rather than a phase transition of the de-
localization with temperature. For JK > 4/3, f (T) grows to unity 
already at a finite temperature, in good agreement with the ex-
pectation of the two-fluid picture (20). The results for JH = 0.5 are 
slightly different. We find for small JH, f (T) already stays constant 
below certain temperature before it reaches unity. This is due to 

the energy gap of the charge-2e metal that interrupts the two-fluid 
scaling. Above the gap, f (T) follows the same two-fluid scaling be-
havior over a broad intermediate temperature range, as shown in 
Fig. 3d. The similar two-fluid behavior clearly indicates that the 
intermediate temperature physics above the charge-2e metal is 
controlled by the NFL M phase with partial Kondo screening rather 
than the charge-2e metal. This may have important implications 
for real materials, where the scaling is often interrupted or even 
suppressed (f-electron relocalization) by magnetic, superconduct-
ing, or other long-range orders. A second observation is that f (0) as 
a function of JK is nearly identical to the volume of single-occupied 
region, as shown by the red line in the inset of Fig. 3b and d. This 
confirms the previous speculation of an intimate relation between 
the two-fluid “order parameter” and the partial Kondo screening 
at zero temperature (20). The quantum state superposition re-
vealed in the exactly solvable model may also be the microscopic 
origin of the two-fluid phenomenology widely observed in real 
heavy fermion materials.

The nature of the itinerant heavy electron fluid is further re-
vealed by the Wilson ratio between its contribution to the magnetic 
susceptibility and the specific heat coefficient, which can be calcu-
lated by restricting the momentum sum within the Ω1 region inside 
the M phase at JH = 0, such that the contribution from the other 

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1 3

1 2

2 3

1

4 3

5 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1 3

1 2

2 3

1

4 3

3 2

1.57

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

f(0)

T*

0 0.5 1 1.5
0

0.5

1

f(0)

T*

0 0.5 1 1.5
0

0.5

1

f(
T)

/f(
0)

T/T*

JK

JK

JK

JK

f(T) = 0.1

0.2

0.9

0.9

f(T) = 0.1

0.2

0.3

0.3

JK

JK

T
T

BA

DC

JH = 0

JH = 0.5

T/T*

(1-T/T*)3/2

1.18(1-T/T*)3/2

≥ 0.99

VΩ1

f(
T)

/f(
0)

≥ 0.99

VΩ1

Fig. 3. The two-fluid “order parameter”. a) A contour plot of the two-fluid “order parameter” f (T) for JH = 0. b) f (T)/f (0) as a function of T/T∗ for JH = 0 and 
different JK. The dashed curve shows the phenomenological scaling function (1 − T/T∗)3/2 for comparison. The inset shows f (0), T∗, and VΩ1 as functions of 
JK. c, d) The same as (a, b), but with JH = 0.5. The dashed curve in (d) corresponds to 1.18(1 − T/T∗)3/2.



6 | PNAS Nexus, 2023, Vol. 2, No. 6

fluid is completely excluded (see Materials and Methods section). 
The resulting Wilson ratio has a universal value RW ≈ 1.2578, indi-
cating a nontrivial interacting electron fluid different from both the 
free electrons (RW = 1) and the local Fermi liquid in the single im-
purity Kondo model (RW = 2) (50).

Luttinger’s theorem
The Luttinger’s theorem provides an important criterion for 
Landau’s Fermi liquid description of interacting electron systems 
(51–53). It states that the volume enclosed by the Fermi surface 
should be equal to the number of conduction electrons per unit 
cell. Mathematically, it is often quoted as (41, 54–56)

VLC ≡
2
N

􏽘

k

θ(ReGc(k, 0)) = nc, (4) 

where the factor 2 arises from the up and down spins, and 

nc = 1
N

􏽐
k 〈nk〉 is the electron density. For a Fermi liquid metal, 

ReGc(k, 0) changes its sign only at the Fermi surface by passing 
through infinity, and hence Eq. 4 reduces to the simple Fermi 
volume statement. It was later suggested that Eq. 4 can also be 
applied to systems without quasiparticle poles (54, 57), such as 
the Mott insulator. In that case, ReGc(k, 0) changes sign by pass-
ing through its zeros, which form a Luttinger surface (54). 
However, the Luttinger surface of a Mott insulator was found 
to depend on the arbitrary choice of μ, such that Eq. 4 only holds 
with the presence of particle-hole symmetry (55, 58). This 
suggests a failure of Eq. 4 and possibly nonexistence of the 
Luttinger–Ward functional in these strongly correlated systems 
(55, 56, 59).

Here, we demonstrate based on our model that the naive Fermi 
volume counting is in fact better than the Luttinger count VLC on 
representing the electron density. As shown in Fig. 4a, the real 
part of the Green’s function ReGc(k, 0) at JH = 0 reveals a 

Table 2. The eigenstates of Hk with the lowest energy Enk ,n−k in each subspace labeled by (nk, n−k).

(nk, n−k) Enk ,n−k Eigenstate

(0,0) − 3
4 JH |00 ⇑⇓ 〉 − |00 ⇓⇑ 〉

(0,2) 2(ϵk − μ) − 3
4 JH |02 ⇑⇓ 〉 − |02 ⇓⇑ 〉

(2,2) 4(ϵk − μ) − 3
4 JH |22 ⇑⇓ 〉 − |22 ⇓⇑ 〉

(1,0) ϵk − μ − JH+JK+2J̃
′

4 (JK + J̃
′ − JH)(| ↑ 0 ⇓⇓ 〉 − | ↓ 0 ⇑⇓ 〉) − JH(| ↓ 0 ⇑⇓ 〉 − | ↓ 0 ⇓⇑ 〉)

(JH + J̃
′ − JK)(| ↑ 0 ⇑⇓ 〉 − | ↑ 0 ⇓⇑ 〉) − JK(| ↑ 0 ⇓⇑ 〉 − | ↓ 0 ⇑⇑ 〉)

(1,2) 3(ϵk − μ) − JH+JK+2J̃
′

4 (JK + J̃
′ − JH)(| ↑ 2 ⇓⇓ 〉 − | ↓ 2 ⇑⇓ 〉) − JH(| ↓ 2 ⇑⇓ 〉 − | ↓ 2 ⇓⇑ 〉)

(JH + J̃
′ − JK)(| ↑ 2 ⇑⇓ 〉 − | ↑ 2 ⇓⇑ 〉) − JK(| ↑ 2 ⇓⇑ 〉 − | ↓ 2 ⇑⇑ 〉)

(1,1) 2(ϵk − μ) − JK+J̃
2 − JH

4 2JK(| ↑⇓ 〉 − | ↓⇑ 〉)k(| ↑⇓ 〉 − | ↓⇑ 〉)−k + (JH + J̃ − 2JK)(| ↑↓ 〉 − | ↓↑ 〉)(| ⇑⇓ 〉 − | ⇓⇑ 〉)

For simplicity, the states are not normalized. The eigenstates for the (2, 0), (0, 1), (2, 1) subspaces can be obtained from those of (0, 2), (1, 0), (1, 2) by a symmetry 

transformation k↔ −k. We have defined J̃ =
�������������������

J2H − 2JHJK + 4J2K
􏽱

and J̃
′ =

����������������

J2H − JHJK + J2K
􏽱

.

Luttinger Surface FS2

ReGc(k, ω = 0)

JK

- 3 - 2 - 1 1 2 3
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Fig. 4. The Fermi volume evolution and the Luttinger’s theorem. a) Real part of the Green’s function Gc(k, 0) at μ = 0, JH = 0, JK = 0.8, showing both the 
Luttinger surface and the Fermi surfaces (FS1 and FS2). b) The electron density as a function of μ and JK at JH = 0. M, M1, and M2 denote different metallic 
phases, and KI is the Kondo insulator phase. (c, d) Evolution of VFS, VLC, and nc with increasing JK at μ = 0 and −0.3.



Wang and Yang | 7

Luttinger surface inside Ω1 and two Fermi surfaces at the bound-
aries of Ω1 and Ω2. Therefore, we can define the Fermi volume as 
VFS ≡ 2(VΩ1 + VΩ2 ), and study its relation to the electron density. 
To do this, we first calculate nc as a function of JK and μ at JH = 0. 
The result is shown in Fig. 4b. For nonzero μ, there exist another 
two metallic phases, M1 and M2, where one of the two Fermi sur-
faces disappears due to the absence of Ω2 or Ω0 region. Both M1 
and M2 will open a single-particle gap by turning on a finite JH, 
and become another two charge-2e metals. These phases have 
qualitatively the same physical properties with their counter-
parts at μ = 0, and hence will not be discussed in detail.

In Fig. 4c and d, we compare VLC and VFS with the electron 
density nc as functions of JK at μ = 0 and μ = −0.3, respectively. At 
μ = 0, we found VLC = nc = 1 for both the M and KI phases. On the 
other hand, VFS evolves continuously from nc at JK = 0 to nc + 1 in 
the KI phase. The deviation VFS − nc is exactly equal to the volume 
of Ω1. In fact, the identity

VFS ≡ 2(VΩ1 + VΩ2 ) = nc + VΩ1 (5) 

holds for arbitrary μ and JK, since the electron density can always 
be written as nc = VΩ1 + 2VΩ2 . Eq. 5 correctly accounts for the 
Fermi surface enlargement due to the Kondo screening effect, 
an important feature of the Kondo lattice (53). By contrast, the 
deviation VLC − nc depends explicitly on the chemical potential 

in the M1, M2, and KI phases, as shown in Fig. 4(d) for μ = −0.3. 
The parabolic free electron dispersion leads to VLC = nc in the 

M phase for all μ, which is generally not true for other forms of 
ϵk. In fact, one can derive analytically (see Materials and 
Methods section)

VLC = nc +
1
N

􏽘

k∈Ω1

sgn(ϵk − μ), (6) 

which points to a general violation of Eq. 4 when Ω1 is present. 
However, this equation does not reflect the Fermi surface en-
largement due to the Kondo screening effect, and is not as useful 
as Eq. 5 due to its explicit dependence on ϵk and μ.

It should be noted that Eq. 5 has the same form as the general-
ized Luttinger sum rule derived in the Schwinger boson formalism 
of the Kondo lattice, where VΩ1 corresponds to the volume of an 
emergent holon Fermi surface (11, 12, 60). In both cases, an inter-
mediate phase with 0 < VΩ1 < 1 is allowed, featured with partial 
(nonlocal) Kondo screening of local spins and gapless spinon 
and holon excitations, which is completely different from the 
Kondo-destruction scenario where VFS jumps from nc to nc + 1 
through a local QCP. This partial screening in the momentum 
space should be distinguished from those studied in the coordin-
ate space (61), which is always accompanied by broken transla-
tional symmetry.

Discussion
We briefly discuss to what extent our toy model reflects the true 
physics of correlated f-electron systems. First, the momentum 
space local spins can be originated from an infinitely large 
Hatsugai–Kohmoto (HK) interaction between f-electrons, 
U
􏽐

k nf
k↑n

f
k↓. Although being a simplification of the Hubbard mod-

el, the HK model has recently been shown to capture the essential 
physics of Mottness and some important high-Tc features upon 
doping (41–43). As suggested in Refs. (42, 43), this is possibly be-
cause the HK model represents a stable quartic fixed point that 
the usual Hubbard model will flow to in the vicinity of half-filling. 
In fact, a perfect single-occupancy constraint on every lattice site 

(nf
i = 1) must also imply the single-occupancy at each momentum 

point (nf
k = 1). Therefore, we believe our model does capture the 

essential physics of strongly correlated f-electrons. Second, the 
Kondo term of our model contains a particular form of nonlocal 
Kondo interaction proposed in recent Schwinger boson theories 
of Kondo lattices with strong quantum fluctuation or geometric 
frustration (11, 12), JK(|ri − rj|)c

†

iαc jβf†jβfiα. It is related to the term 
c†iασαβc jβ · Si × Sj that emerges naturally upon renormalization 
group from a Kondo lattice, and may become important in the 
quantum critical region (39).

In summary, we have constructed an exactly solvable 
Kondo-Heisenberg model in momentum space. This model dis-
plays many interesting properties: (1) it realizes a charge-2e 
metal phase with gapped single-particle excitations but gapless 
Cooper pair excitations; (2) as the Heisenberg interaction van-
ishes, the charge-2e metal becomes an NFL metal featured 
with a partially enlarged Fermi volume; (3) both the charge-2e 
metal and the NFL metal show universal two-fluid behaviors 
at finite temperatures, reflecting partial Kondo screening of lo-
cal spins. All these interesting properties arise from the highly 
nonlocal Kondo interaction in real space, which might play an 
important role in heavy fermion systems. Our results may 
help to understand the experimentally observed NFL quantum 
critical phase in CePdAl (34). For other materials like YbRh2Si2, 
such nonlocal physics might become important in the quantum 
critical region, causing the smooth evolution of the Fermi 
surface.

Materials and methods
Exact diagonalization
The 64-dimensional Hilbert space of Hk can be divided into 9 
subspaces according to the electron number nk and n−k,

(nk, n−k) = (0, 0), (2, 0), (0, 2), (2, 2) d = 4

(nk, n−k) = (1, 0), (0, 1), (1, 2), (2, 1) d = 8

(nk, n−k) = (1, 1) d = 16

(7) 

where d is the dimension of each subspace. To diagonalize the 
subspaces, we use the basis |ϕkϕ−kSz

kSz
−k〉 to compute the matrix el-

ements, where ϕk = 0, ↑ , ↓ , 2 denotes the four electron states 
and Sz

k= ⇑ , ⇓ denotes the local spin states. The lowest eigenstates 

within each subspace are listed in Table 2. By comparing the low-
est eigenenergy Enk,n−k of different subspaces, one obtains the 
ground states of Hk listed in Table 1.

Green’s function
The retarded single-electron Green’s function can be directly 
calculated from its definition, leading to

Gc(k, ω) =
􏽘

n

|〈n|c†k,α|0〉|2

ω − En + E0
+
􏽘

n

|〈n|ck,α|0〉|2

ω + En − E0
, (8) 

where ω represents ω + i0+, and |n〉 is the nth eigenstate of Hk with 
energy En. The explicit analytical results are

Gc(k ∈ Ω0, ω) =
(2J̃
′ + 2JH − JK)/4J̃

′

ω − ϵk + μ +
JK − 2JH + 2J̃

′

4

+
(2J̃
′ − 2JH + JK)/4J̃

′

ω − ϵk + μ +
JK − 2JH − 2J̃

′

4

,

(9) 
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Gc(k ∈ Ω2, ω) =
(2J̃
′ + 2JH − JK)/4J̃

′

ω − ϵk + μ −
JK − 2JH + 2J̃

′

4

+
(2J̃
′ − 2JH + JK)/4J̃

′

ω − ϵk + μ −
JK − 2JH − 2J̃

′

4

,

(10) 

Gc(k ∈ Ω1, ω) =
[(J̃ + J̃

′
)2 − J2K]/8J̃J̃

′

ω − ϵk + μ −
JK + 2J̃ − 2J̃

′

4

+
[(J̃ + J̃

′
)2 − J2K]/8J̃J̃

′

ω − ϵk + μ +
JK + 2J̃ − 2J̃

′

4

+
[J2K − (J̃ − J̃

′
)2]/8J̃J̃

′

ω − ϵk + μ −
JK + 2J̃ + 2J̃

′

4

+
[J2K − (J̃ − J̃

′
)2]/8J̃J̃

′

ω − ϵk + μ +
JK + 2J̃ + 2J̃

′

4

.

(11) 

For the two-particle Green’s function, we have

Gb(k, ω) =
􏽘

n

|〈n|b†k|0〉|2

ω − En + E0
−
􏽘

n

|〈n|bk|0〉|2

ω + En − E0
, (12) 

where b†k = 1��
2
√ (c†k↑c

†

−k↓ − c†k↓c
†

−k↑) is the Cooper pair creation oper-

ator. The analytical results are

Gb(k ∈ Ω0, ω) =
(J̃ + JH − JK)/2J̃

ω − 2(ϵk − μ) +
JK − JH + J̃

2

+
(J̃ − JH + JK)/2J̃

ω − 2(ϵk − μ) +
JK − JH − J̃

2

,

(13) 

Gb(k ∈ Ω2, ω) = −
(J̃ + JH − JK)/2J̃

ω − 2(ϵk − μ) −
JK − JH + J̃

2

−
(J̃ − JH + JK)/2J̃

ω − 2(ϵk − μ) −
JK − JH − J̃

2

,

(14) 

Gb(k ∈ Ω1, ω) =
(J̃ + JH − JK)/2J̃

ω − 2(ϵk − μ) −
JK − JH + J̃

2

−
(J̃ + JH − JK)/2J̃

ω − 2(ϵk − μ) +
JK − JH + J̃

2

.

(15) 

Luttinger’s theorem
In the limit JH = 0, the Green’s functions (9)–(11) reduce to

Gc(k, ω)−1 =

ω − ϵk + μ − 3J2K/16
ω−(ϵk−μ−JK/2) , k ∈ Ω0

ω − ϵk + μ − 3J2K/16
ω−(ϵk−μ+JK/2) , k ∈ Ω2

ω − ϵk + μ − 9J2K/16
ω−(ϵk−μ) , k ∈ Ω1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= ω − ϵk + μ − Σc(k, ω).

(16) 

The electron density is related to the time-ordered Green’s func-
tion via

nc =
2
N

􏽘

k

∫∞−∞
dω
2π

Gc(k, iω)eiω0+
(17) 

where we have performed a wick rotation ω + i0+ → iω from Eq. 16
to obtain the time-ordered Green’s function. In proving the 
Luttinger’s theorem, one uses the following identity,

Gc(k, iω) =
∂

∂iω
ln Gc(k, iω)−1 + Gc(k, iω)

∂
∂iω

Σc(k, iω), (18) 

which directly follows from the Dyson’s equation (16). Substituting 
the first term of the right-hand side of Eq. 18 into Eq. 17 gives exact-
ly the Luttinger’s theorem (Eq. 4). Therefore, Eq. 4 is satisfied if and 
only if the following integral,

I2 ≡
2
N

􏽘

k

∫∞−∞
dω
2π

Gc(k, iω)
∂

∂iω
Σc(k, iω)

= nc − VLC,

(19) 

vanishes, which was proved by Luttinger and Ward to be true to all 
orders of perturbation theory (51). However, in our case, from 
Eq. 16 and the following identity,

∫∞−∞
dω
2π

1
iω − A

1

(iω − B)2 =
sgn(B) − sgn(A)

2(A − B)2 , (20) 

one can derive I2 = − 1
N

􏽐
k∈Ω1

sgn(ϵk − μ), which is generally non-

zero. This may originate from the nonexistence of the Luttinger– 
Ward functional for our system, similar to the cases studied in 
Refs. (55, 56).

In fact, for any strictly monotonically increasing function 
ϵk = ϵ(k) within the range k ∈ [0, 2

��
π
√

], one has

I2 =
1
2π

∫μmax[ϵ(0),μ−3JK
4 ]

ϵ−1(x)
ϵ′(ϵ−1(x))

dx

−
1
2π

∫min[ϵ(2
�
π
√

),μ+3JK
4 ]

μ
ϵ−1(x)

ϵ′(ϵ−1(x))
dx,

(21) 

where ϵ′(x) and ϵ−1(x) are the derivative and inverse of the function 

ϵ(x), respectively. For a parabolic dispersion function ϵ(x) = ax2 + b, 

one has ϵ−1(x) =
�����������
(x − b)/a

􏽰
and ϵ′(x) = 2ax, so that

I2 =

1
2π

∫μμ−3JK
4

− ∫μ+3JK
4

μ

􏼒 􏼓
1
2a

dx = 0, M

1
2π

∫μb − ∫4πa+b
μ

􏼐 􏼑 1
2a

dx =
μ − b
2πa

− 1, KI

⎧
⎪⎪⎨

⎪⎪⎩

(22) 

consistent with our numerical results for a = 1/(2π) and b = −1.

Wilson ratio
The Wilson ratio is a dimensionless ratio between the zero tem-
perature magnetic susceptibility χ and the specific heat coefficient 
γ = Cv/T:

RW =
4k2

Bπ2χ
3g2μ2

Bγ
, (23) 

where g is the g-factor of electrons, μB is the Bohr magneton, and 
3/4 = J(J + 1) comes from the electron’s angular momentum 
J = 1/2. We take the Boltzmann constant kB = 1 throughout the pa-
per. The Wilson ratio of free electrons is exactly 1, while that of the 
Kondo impurity model is 2, indicating a strongly renormalized lo-
cal Fermi liquid (50). In our model, the only nontrivial gapless 
phase is the NFL M phase at JH = 0, where both χ and γ acquire non-
zero values at zero temperature. However, since the k-local spins 
within the Ω0 and Ω2 regions contribute a 1/T Curie’s law at JH = 0, 
they must be excluded in order to obtain a finite Wilson ratio. 
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Therefore, we restrict the momentum sum within the Ω1 region, 
so that

χ =
(gμB)2

TN

􏽘

k∈Ω1

1
Zk

Tr[(sz
k + Sz

k)2e−Hk/T], (24) 

γ =
∂2

∂T2

T
N

􏽘

k∈Ω1

ln Zk

􏼨 􏼩

, Zk = Tr e−Hk/T (25) 

represent the contribution from the itinerant heavy electron fluid. 
Remarkably, the Wilson ratio calculated this way has a universal 
value RW ≈ 1.2578 inside the M phase, indicating a nontrivial inter-
acting electron fluid different from both the free electrons and the 
local Fermi liquid in the single impurity Kondo model. Moreover, 
RW remains unchanged as one varies the chemical potential, 
even when the system enters into the M1 or M2 phase, where 
only one of the two “Fermi surfaces” (FS1 and FS2) is present. 
This indicates that RW ≈ 1.2578 is an intrinsic property of FS1 
and FS2 different from the usual Landau’s Fermi liquid, which 
may be a characteristic feature of the k-space models.
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