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Abstract

Early identification of contaminated food products is crucial in reducing health burdens of food-borne disease outbreaks.

Analytic case-control studies are primarily used in this identification stage by comparing exposures in cases and controls

using logistic regression. Standard epidemiological analysis practice is not formally defined and the combination of

currently applied methods is subject to issues such as response misclassification, missing values, multiple testing

problems and small sample estimation problems resulting in biased and possibly misleading results. In this paper, we

develop a formal Bayesian variable selection method to account for misclassified responses and missing covariates, which

are common complications in food-borne outbreak investigations. We illustrate the implementation and performance of

our method on a Salmonella Thompson outbreak in the Netherlands in 2012. Our method is shown to perform better

than the standard logistic regression approach with respect to earlier identification of contaminated food products.

It also allows relatively easy implementation of otherwise complex methodological issues.
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1 Introduction

With food chains becoming increasingly complex and food products being transported across the globe with
increasing ease, contaminated food products can rapidly cause food-borne disease outbreaks.1 Such outbreaks
constitute a large health burden on society.2 Examples include the Salmonella Thompson 2012 outbreak in the
Netherlands with 1149 laboratory-confirmed cases (including 4 deaths)3 and the Escherichia coli O104:H4 2011
outbreak in Germany with 3816 reported cases (including 54 deaths).4 Early detection of such outbreaks and the
subsequent identification of the contaminated food products is crucial in reducing the disease burden of such
outbreaks. The aim of this paper is to develop a methodologically sound procedure to assist epidemiologists in
identifying contaminated food products.

In current practice, the identification of the contaminated food product is a long and cumbersome process.
The process involves several steps which are not clear cut, much like a criminal investigation. Information is
incomplete, delayed, uncertain and continuously updated.5 Outbreak investigations are, therefore, not fixed
designs, but constantly evolving studies. Often they also involve many different authorities, e.g. veterinary and
food-safety agencies responsible for knowing the distributional networks and health departments responsible for
the registration of the human cases affected by the outbreak.6 This paper focuses on the efforts conducted by such
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health agencies which use the identified outbreak cases and the likely pathogen of the outbreak in order to infer
about the food product responsible for the outbreak using epidemiological methods.

Analytic case-control studies are the primary epidemiological tool in this process of identification used by
epidemiologists. The basic concept of case-control outbreak investigations is the comparison of exposures in
cases and controls.5 Once an outbreak has been detected, cases which are known to belong to the outbreak are
usually already available, e.g., because of specific symptoms, laboratory confirmation, etc. Based on this, a formal
case definition is usually drafted. To start a case-control study, controls need to be selected in such a way that they
are comparable to the cases and without symptoms. Wacholder et al.7 provide some guidelines on minimizing the
bias in control selection. One such source of bias may be confounding. Variables such as age, gender and
geographical region may be important confounders when comparing cases and controls and various methods
are available to deal with such confounding.8

In the first stage of data collection, extensive questionnaires, known as trawling or shotgun questionnaires, are
used to obtain information on a wide range of exposures. Cases and controls fill out the questionnaire on what
products they consumed in a specified period: the start and length of this period are determined by when the cases
became ill and by the incubation period of the disease (ranging from a few hours for norovirus up to a week for
most Salmonella serovars). During the outbreak, as new insights and information become available, the
questionnaire is updated and subsequently becomes more focused as food products are excluded or more
detailed questions are added. This questionnaire dynamic is one of the complications of case-control outbreak
investigations. In addition, one can very well imagine the practical difficulties that subjects have trying to recall
their dietary consumption in the given time period, resulting in many data being missing or being reported
erroneously. There may be recall bias in that cases and controls remember their food consumption differently:
cases may ‘‘over-remember’’ a positive exposure, while controls may have forgotten exposures.5 Finally, despite
that controls are questioned on their symptoms, it is impossible to confirm whether they are indeed true controls
(i.e. not infected) or rather asymptomatic infections (i.e. infected but not ill). This may then result in
misclassification of the response.

The statistical analysis of the questionnaires typically involves classical (conditional) logistic regression to
investigate exposure effects while correcting for confounders. Due to the large number of different food
products that people may have consumed, one often has a variable selection problem, where one attempts to
identify relevant exposures. Moreover, in the beginning of an outbreak, the number of covariates (i.e. food
products) may be greater than the number of observations. Classical variable selection procedures, i.e. a
combination of univariable analysis and stepwise, forward or backward selection based on p-values,9 are most
employed, thereby ignoring small sample bias and problems of multiple testing. When searching for the causative
agent of a food-borne disease outbreak, we, therefore, need a far more sophisticated variable selection procedure.

We argue that the Bayesian approach offers powerful tools to deal with variable selection problems complicated
by some of the above-mentioned issues of outbreak investigations. Bayesian methods allow us to use external
information (in the form of prior distributions) to aid the modelling when data are scarce. This is crucial in the
analysis of our case-control data especially in the light of early identification when very few questionnaires have yet
been returned. In addition, such methods provide us with the flexibility to account for the problems of missing
covariates and misclassified responses in a unified framework which is hard to solve in a formal frequentist setting.
Moreover, the methods are not afflicted with the typical frequentist problems associated with multiple testing, such
as unreliable p-values and biased estimation results.10 In this paper, we, therefore, develop a formal Bayesian
variable selection method, based on the stochastic search variable selection (SSVS) procedure,11 which accounts
for misclassified responses and deals with the problem of missing covariates. We illustrate our method on the
Dutch Salmonella Thompson outbreak data.

The paper is structured in the following way. In Section 2, we present the outbreak data motivating the work.
In Section 3, we present the Bayesian variable selection method and its implementation. In Section 4, we present
the data analysis results of the implemented method on the Salmonella Thompson case study data, compare the
Bayesian analysis with the standard and Lasso logistic regression approaches and present the results of the
sensitivity analysis. In Section 5, we discuss the method and results. In Section 6, we summarize the paper and
discuss the impact of our methodology on epidemiological practice.

2 Data

We motivate our methodological developments by data obtained from a series of case-control studies performed
by the Dutch National Institute for Public Health and the Environment (RIVM) as part of the outbreak
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investigation of a large nationwide Salmonella Thompson outbreak.3 The case-control studies ran from 16 August
2012 to 28 September 2012, when smoked salmon was identified as the source. During the study, various potential
sources were identified by the investigation, namely minced meat, ready-to-eat raw vegetables, ice cream and
finally smoked fish.

During the outbreak investigation, the food-consumption questionnaire was updated. The first version of the
questionnaire was a very broad trawling questionnaire containing 178 items. In the second version, ambiguous
products and those with a very low consumption frequency were removed from the questionnaire. In further
updates of the questionnaire, respondents were asked to give more details about specific food products. All the
food products which were removed from the first version of the questionnaire, were also removed from the dataset.
Only food products that were available for all versions of the questionnaire have been included in the dataset. This
results in 108 covariates, which include age, gender, 95 food products and 11 supermarket covariates. Age is a
continuous covariate and standardized in the analysis. All the other covariates are binary-valued.

The 95 food product covariates indicate whether a person did (1) or did not (0) eat that product. The 11
supermarket covariates indicate whether a person does (1) or does not (0) buy most of their groceries at that shop.
Food covariates that were not filled in are assumed to be zero. This is a reasonable assumption because it is often
the case that respondents only mark the food products that they have consumed. Respondents also had the
opportunity to respond with ‘‘maybe’’. In the analysis in 2012, these products were assumed to be consumed
for persons with a ‘‘maybe’’ answer and set to 1, thereby possibly over-estimating food consumption. In our
dataset, we instead deal with these covariates as being missing. Following this definition of missing values, the
percentage of missing covariates per respondent is up to 40% for the cases and 67% for the controls.

The case-control study was designed as an individually matched case-control study. Because of expected non-
response among the controls and to ensure at least one control per case, four controls per case were sampled from
the general Dutch population from the same or neighbouring municipality with similar age and same gender.3

Both cases and controls got their questionnaire sent by mail. The final dataset has 302 observations of which 109
are cases and 193 are controls. Age has a bimodal distribution with the highest frequencies in the age groups 10–19
and 60–69. Non-response in the controls was higher among males than among females. Female controls in the 60–
69 age group had the highest response rate, almost 100%. For the other age groups and for the males, the response
rate of the controls was close to 25%.

3 Methods

3.1 Logistic regression model with misclassification

Misclassified responses in a case-control study result when one cannot confirm whether cases and controls truly
reflect the underlying true disease status. Let Yi be, a possibly misclassified, observed disease status, and Ti a true
disease status for person i ¼ 1, 2, . . . , n. Then the misclassification model is given by

PðYijTi,XiÞ ¼ PðYijTiÞ

PðYi ¼ 1jTi ¼ 1Þ ¼ Se

PðYi ¼ 0jTi ¼ 0Þ ¼ Sp

ð1Þ

The first line in equation (1) indicates that we assume nondifferential misclassification, i.e. the misclassification
does not depend on the covariates Xi. The last two equations define the sensitivity (Se) and specificity (Sp). We can
then write the logistic regression model, corrected for misclassification, as

Yi � Bernoulli ð�iÞ

�i ¼ ðSeÞ�i þ ð1� SpÞð1� �iÞ

logitð�iÞ ¼ �0 þ x
0

ib

ð2Þ

where x0i 2 R
1�p denotes the ith row of the design matrix X 2 R

n�p, b 2 R
p�1 denotes the vector of unknown

regression coefficients and �i ¼ PðTi ¼ 1jXiÞ denotes the probability of having a true case. Note that the model in
equation (2) simplifies to the classical logistic regression model for Se ¼ Sp ¼ 1 which corresponds to the situation
of no misclassification, i.e. Ti � Yi for i ¼ 1, 2, . . . , n. Equation (2) is widely used when one needs to correct for
misclassification in the response in a logistic regression.12–17It can also be seen as a generalization of the logistic
regression model. Rousseeuw and Christmann18 illustrate this model as in Figure 1 and refer to it as the hidden
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logistic regression model because the true response Ti is hidden by the misclassification model in the top part of
Figure 1.

A simplification of the model in equation (2) is obtained when either one or both of the misclassification errors
do not occur, i.e. when either Se ¼ 1 or Sp ¼ 1 or both. For our data, we have Sp ¼ 1. A case only entered the
dataset if it was twice laboratory-confirmed. We can, therefore, safely assume that no non-infected person
incorrectly entered the dataset as a case, implying that the specificity is one. On the other hand, it is well
known that food-related pathogen infections, such as Salmonella and Campylobacter, are often
asymptomatic.5,19–21 An infected person, therefore, may not have become ill, incorrectly entering the dataset as
a control, implying PðYi ¼ 0jTi ¼ 1Þ4 0 which leads to a sensitivity of less than one.

The model in equation (2) simplifies to �i ¼ ðSeÞ�i. This model, however, is still unidentifiable without extra
information. This extra information can come from a validation dataset. In a Bayesian setting, one may, in
addition, also use historical information to provide a prior distribution, Betaða1, b1Þ, on the sensitivity.

Although we are dealing with a matched case control study, we have not yet taken account of this data structure
in our model. Moreover, we only consider a main effects model with linear terms.

3.2 Bayesian variable selection

To incorporate Bayesian variable selection in the model, we apply the SSVS procedure11 in which a mixture prior
on the parameters, �j, consisting of one spike and one slab Gaussian component, is constructed (see Figure 2). The
variance of the spike component is given by �2 4 0 and the variance of the slab component is given by c2�2 4 0.
The mathematical formulation of the SSVS prior for j ¼ 1, 2, . . . , , p is given by

�j j�
2, c2 � �jNð0, �

2c2Þ þ ð1� �j ÞNð0, �
2Þ ð3Þ

�j j!j � Bernoulli ð!j Þ ð4Þ

!j � Beta ðaj,0, bj,0Þ ð5Þ

where � j is the indicator variable for inclusion of �j into the model with !j the inclusion probability of the jth
covariate.

The choice of the parameters � and c can be guided by noting that the spike and slab components intersect at
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðcÞc2=ðc2 � 1Þ

p
. The point e can be seen as a threshold for ‘‘practical significance’’ in that all coefficients

�j 2 ½��, �� can be interpreted as zero.22 For a fixed c, the standard deviation � can be selected to reflect our chosen
value of practical significance. The posterior choice of covariates can then be based on the posterior probability of
obtaining a significantly large �j, i.e. the posterior inclusion probability Pð�j =2 ½��, ��jDataÞ. In the context of food-
borne disease outbreaks, due to the encoding of the exposure, we are only interested in positive regression
coefficients and consequently in the one-sided posterior inclusion probability, Pð�j 4 �jDataÞ.

Figure 1. Generalization of logistic regression as illustrated by Rousseeuw and Christmann.18
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The parameters aj,0 and bj,0 in equation (5) are chosen to reflect prior knowledge about the probability that a
covariate should be in the model. As this may be a somewhat abstract exercise, we illustrate the mathematical
relationship between the choice of aj,0 and bj,0 and the prior inclusion probability Pð�j 4 �Þ. From equations (3) to
(5), it is possible to derive the prior marginal distribution of �j, namely �j � a

j,0
=ðaj,0 þ bj,0ÞNð0, �

2c2Þþ
bj,0=ðaj,0 þ bj,0ÞNð0, �

2Þ. Large bj,0 and small aj,0 values result in prior inclusion probabilities close to zero and
small bj,0 values and large aj,0 values result in prior inclusion probabilities close to 0.5. For similar aj,0 and bj,0
values, the one-sided prior inclusion probability is around 0.25 with increasing values of aj,0 and bj,0 resulting in more
informative priors. In this paper, aj,0 and bj,0 are currently taken equal for all j covariates.

Alternatively, one can specify !j ¼ 0:5 which substantially reduces computational time and often provides
sensible results.23 In this context, !j denotes the prior fraction of covariates in the model with low values
favouring parsimonious models.

3.3 Missing covariates

In a standard Bayesian setting with complete data, we are interested in the posterior distribution pðhYjXj yi, xiÞ,
where hYjX is the vector of parameters associated with the likelihood of the response model (for example ðSe,�0,b

0

Þ
0

in equation (2)). In a missing data setting, however, X consists of two parts, the completely observed variables,
Xobs 2 R

n�q, and the incompletely observed variables, Xmis 2 R
n�r. The relevant posterior distribution then

becomes pðhYjX, hX, xi,misj yi, xi,obsÞ with xi,mis ¼ ðxi,mis1 ,xi,mis2 , . . . , , xi,misr Þ
0

, xi,obs ¼ ðxi,obs1 , xi,obs2 , . . . , , xi,obsqÞ
0

and
where hX denotes the parameters associated with the likelihood of the incompletely observed variables, Xmis. This
posterior can be written as

pðhYjX, hX, xi,misj yi, xi,obsÞ / pð yijxi,mis, xi,obs, hYjXÞ pðxi,misjxi,obs, hXÞ�ðhYjXÞ�ðhXÞ

where �ðhYjXÞ and �ðhXÞ denote prior distributions.24 The joint likelihood of the missing covariates can
conveniently be written as the product of conditional distributions

pðxi,misjxi,obs, hXÞ ¼ pðxi,mis1 jxi,obs, hX1
Þ
Yr

j¼2

pðxi,misj jxi,mis1 , . . . , , xi,misð j�1Þ , xi,obs, hXj
Þ ð6Þ

with hX ¼ ðhX1
, hX2

, . . . , , hXr
).24,25 We assume a model-based approach here in which each of the probability

distribution functions in equation (6) is chosen from the exponential family according to the type of the

Figure 2. Spike (black curve) and slab (grey curve) prior distribution as used in the stochastic search variable selection procedure. e

indicates the threshold for practical significance.
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respective covariate with the dependence on previous variables modelled by a generalized linear model with
regression coefficients hXj

¼ ð�0,j,�1,j,�2,j . . .�j�1,jÞ
0. In our application, because all covariates are binary, we

assume a Bernoulli response with a logistic regression model.
Some words on the ordering of the imputation models in equation (6) are in order here. It is not obvious what

the order of the imputation models should be26 and this may influence the results. In the case of continuous and
categorical missing covariates, Chen and Ibrahim27 suggest to condition the categorical imputation models on the
continuous covariates first. Erler et al.24 ordered the imputation models according to the number of missing values,
starting with the covariate with the least missing values, suggesting a possible gain in computational time. It has
been shown, however, that the sequential specification as in equation (6) is quite robust against changes in the
ordering.27,28 In our analysis, we used the covariates in the order as they appeared in the dataset.

In the case of many covariates, as in our data, it is reasonable to assume that some of the parameters
ð�0,j,�1,j,�2,j . . .�j�1,jÞ

0 are zero due to sparse relationships among the covariates. Similar to the variable
selection of the response model (equation (3)), we perform variable selection in each of the conditional
regression models of the covariate probability model in equation (6). This variable selection is implemented by
providing not only the regression parameters of the response model ð�1,�2, . . . , ,�j Þ

0 with the spike and slab prior
distribution (equations (3) to (5)), but also those of the covariate models ð�0,j,�1,j,�2,j . . .�j�1,jÞ

0. The resulting two-
level variable selection model was developed by Mitra and Dunson.29

3.4 Prior specification

The variance parameters of the spike and slab prior distribution need to be specified. On the basis of expert
knowledge, large �’s are very unlikely in practice. Moreover, in our experience, allowing large values of � a priori
may hamper the convergence of the MCMC algorithm. With this in mind and choosing a practical significance
level of � ¼ 0:05, and c¼ 100, we obtain � ¼ 0:0165 which results in a slab distribution of Nð0, 1:652Þ. This slab
distribution results in a prior median odds ratio of one with 2:5th and 97:5th percentile given by 0.04 and 25.25,
respectively.

In order to make the model identifiable, an informative prior for the sensitivity is required. Based on some
preliminary expert knowledge about the sensitivity, we used a Se � Betað33, 4Þ prior which assumes a median
sensitivity of 90% and 5th percentile of 80%.

The prior distribution for the !j’s (equation (5)) was set to !j � Betað1, 2Þ. This results in a one-sided prior
inclusion probability of Pð�j 4 �Þ ¼ 0:16. The Betað1, 2Þ distribution is a positively skewed distribution giving
more weight to small probabilities. The distribution, therefore, favours more parsimonious models among those
covariates available from the questionnaires. The !j’s for the variable selection of the covariate models were also
given a Betað1, 2Þ distribution.

The remaining parameters, i.e. intercept terms for response and covariates models as well as the regression
coefficients for age and gender, were given a diffuse normal prior distribution, Nð0, 1000Þ.

3.5 Implementation

Our final model combines the two-level SSVS procedure with the likelihood of the logistic regression model from
Section 3.1. Our model is easily implemented in the R Software30 using JAGS31 for implementing the MCMC
sampling. The model statement for the likelihood and the SSVS priors is given in Supplemental Material.

We ran five chains with a burn-in of 1000 iterations and then a further 4000 iterations per chain, resulting in a
posterior sample of size 20000. Trace plots of the inclusion probabilities, !j’s, and the sensitivity, Se, were used to
assess mixing. Visual inspection of trace plots indicated good mixing.

3.6 Model performance

We study the performance of our model in two ways: (i) how our model performs during the outbreak (Figure 3)
and (ii) how the different parts of the model compare to standard logistic regression and Lasso logistic regression
(Figure 4).

i. During the actual outbreak in 2012, the cases and controls entered the dataset as the questionnaires were
returned. To mimic this dynamic, we sorted our dataset according to the return date of the questionnaires.
This return date was constructed from two existing variables, namely questionnaire fill-in date and
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questionnaire return date. For those observations with a missing return date, the date was taken to be three
working days after the fill-in date which was the average duration of questionnaire return for the
questionnaires for which we had a return date and fill-in date. If the fill-in date was also missing,
the return date was taken to be two weeks after the questionnaire was sent out, which was determined in
consultation with the epidemiologist who worked the Salmonella outbreak case in 2012. We fit our model to
various subsets of the data which mimic the available data at a certain date during the outbreak. The
posterior distributions of the regression coefficients of the top ten covariates, sorted according to their
posterior median, are plotted (Figure 3). The distributions are visualized by plotting various percentiles

Figure 3. Posterior percentiles of regression coefficients and corresponding one-sided posterior inclusion probabilities,

Pð�j 4 0:05jDataÞ, in the analysis of subsets of the Salmonella Thompson data mimicking the available data at different time points

during the outbreak.
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of the distribution. The posterior distributions indicate our updated believe about the value of the regression
coefficient and consequently the amount of association with the response: the further the distribution is
removed from zero, the larger the association. We also include the posterior inclusion probabilities
Pð�j 4 �jDataÞ ¼ Pð�j 4 0:05jDataÞ for each covariate. The posterior inclusion probability expresses how
often a covariate appears in the model and is a transparent way of expressing the uncertainty surrounding
the effect of a covariate on the outcome.32 This probability reflects our updated belief that a particular food
culprit might be a relevant culprit as compared with the prior probability of Pð�j 4 �Þ ¼ 0:16. One can
categorize these posterior probabilities as: � 0:50, � 0:75, � 0:95 and � 0:99, corresponding to weak,
positive, strong and very strong evidence for an association with the response.32,33

ii. Our model consists of three distinct parts, namely Bayesian variable selection, misclassification correction and
missing value imputation. Each of these parts contributes to the overall performance of our model. We study
this contribution by analysing our data using three different analyses: (i) Bayesian variable selection, missing
data imputation and misclassification correction, (ii) Bayesian variable selection, missing data imputation and

Figure 4. Odds ratios plotted over time comparing three Bayesian methods with standard and Lasso logistic regression for four

potential sources of the Dutch Salmonella Thompson 2012 outbreak.
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(iii) Bayesian variable selection only. The last analysis is run on the exact same data as the standard and Lasso
logistic regression analyses, with the products filled in as ‘‘maybe’’ set to ‘‘consumed’’.

For the standard logistic regression analysis, we used the classical variable selection procedures as mentioned in
Section 1. First we fitted a univariable logistic model for each covariate from which we selected the covariates with
a p-value less than 0.2. This selection of covariates was then entered into a multivariable logistic model on which
we performed backward variable selection based on the AIC.

For the Lasso approach, we fitted a Lasso logistic regression using the glmnet package34 in R. With the Lasso
approach, the likelihood function is penalized for the size of the regression coefficients, thereby shrinking the
regression coefficients towards zero, i.e. the odds ratios towards one. This penalization allows us to obtain
maximum likelihood estimates, even in small samples when standard logistic regression fails. The penalization
parameter 	 is estimated by cross-validation, choosing the value of 	 which minimizes the mean cross-validated
error.

The three Bayesian methods and the standard and Lasso logistic regression approach are compared by plotting
the odds ratios of the five models over time (Figure 4). For the Bayesian methods, we plot the posterior median
odds ratio, for the standard logistic regression method, we plot the odds ratios obtained from the final
multivariable model and for the Lasso approach, we plot the odds ratios obtained from the model with the
optimal cross-validated 	 as described above.

4 Results

4.1 Data analysis

In this section, we analyse the Dutch Salmonella Thompson data using our proposed model. We analysed five
subsets of the data with our model to retrospectively determine when our model would have identified the smoked
fish as a probable source. The five subsets contained data up to 10 September, 12 September, 17 September, 18
September and 24 September. The posterior distributions of the regression coefficients and the posterior inclusion
probabilities for the five subsets and the complete dataset (9 October) are illustrated in Figure 3.

We see that on 10 September, although ground meat has a slightly elevated posterior median value, there is
very little evidence in the data for any of the covariates to be included in the model. The posterior inclusion
probabilities are all less than 50%, except for ground meat (53%) for which there is only very weak evidence for
an association with the response. This may partly be due to the still very limited number of controls present in
the data at this point (41 cases and 20 controls). Between 10 and 12 September, the dataset increases to
115 observations with 42 cases and 73 controls. Note the sudden increase in the number of controls.
And now the data contain enough information for the variable selection procedure to provide some evidence for
including covariates. The posterior inclusion probability for ice-cream is 0.95, providing strong evidence for an
association with the response, making it a possible source. During the actual outbreak, ice-cream was investigated,
but it did not turn out to be the source. Also, smoked fish has a relatively large posterior median compared to the
other covariates, but its posterior inclusion probability (0.59) still only provides weak evidence.

Moving on in time to 17 and 18 September, more covariates start to have a positive posterior median. Ice-cream
is still a likely suspect on 18 September with a posterior distribution detached from zero and a posterior inclusion
probability (0.96) providing strong evidence. Arriving now at 24 September, we see a change in the variable
selection. By now we have 74 cases and 174 controls. Smoked fish has now moved to the top with a high
posterior median and a posterior inclusion probability (0.99) indicating very strong evidence for an association
with the response. As mentioned in Section 2, smoked fish, more specifically smoked salmon, was indeed found to
be the source of the outbreak after laboratory confirmation.

In Figure 4, we compare the results of the three Bayesian analyses (variable selection, misclassification
correction and missing value imputation) with one another and with the standard and Lasso logistic regression
analyses. We plot the odds ratios for the four food products that came up as likely suspects during the outbreak
analysis in 2012, namely minced meat, read-made raw vegetables, ice-cream and smoked fish.3

For the standard logistic regression approach of 10 September, the number of covariates was, even after the
univariable preselection, still too large to be able to fit a multivariable model. Thus, no odds ratios are available for
this date. Also, for the 12 September analysis, we could not fit a multivariable model. Although the estimation
algorithm did converge, some of the odds ratios were unrealistically large (�1000). This may be due to a specific
problem such as partial or complete separation.35,36 In general, it is a sign that our data contain too little
information to give reliable maximum likelihood estimates of the regression coefficients.
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For the Bayesian analysis, we first consider the analysis which is most comparable to the standard logistic
regression analysis, namely the model in which we only have the Bayesian variable selection part (dotted line in
Figure 4). We see that for the food products that were not contaminated, the Bayesian odds ratios were
consistently smaller than those of the frequentist analysis. Because these food products were not the
contaminated food products, we want their odds ratios to be as close to one as possible. For the smoked fish,
the Bayesian model performs similarly to the frequentist analysis, resulting in similar odds ratios.

In the next comparison, we add the missing data imputation (dashed line in Figure 4). For ice-cream, this model
performs similarly to the previous Bayesian model. For minced meat and ready-made vegetables, it performs
better in that the odds ratios are even lower. Also for the smoked fish, the Bayesian variable selection with missing
data imputation performs better than both the frequentist and the Bayesian variable selection only model,
resulting in higher odds ratios.

Finally, we arrive at the complete Bayesian variable selection model (solid line in Figure 4) in which we, in
addition to the missing data imputation, also include the misclassification correction. Here we clearly see a large
gain in performance for smoked fish: our complete Bayesian model has an odds ratio of up to three times as large
as the frequentist odds ratio. Comparing the graphs for ice-cream and smoked fish, we also note that on 24
September, the Bayesian models and especially the complete model return a higher odds ratio for smoked fish than
for ice-cream. Although this is also the case for the frequentist analysis in Figure 4, in the complete multivariable
model (not shown), there were still covariates with higher odds ratios than smoked fish. Only after 29 September,
did the frequentist multivariable model estimate smoked fish to have the highest odds ratio. Our Bayesian model,
therefore, identifies smoked fish as a likely suspect earlier in the outbreak than the standard frequentist method.

For the Lasso approach, we clearly see the shrinkage effect for all four food products and all time points. Adding
shrinkage to the logistic regression ensures that we get estimates even with little data. This is an advantage over
the standard logistic regression for which we could not fit a multivariable model in the beginning. Compared to the
Bayesian analysis, however, the Lasso approach does not perform as well. First, due to the shrinkage, the odds ratios
for the various food products are very similar, making it difficult to identify the most probable suspects as none of
them stand out. Second, the Lasso approach shrinks both the weak and the large effects. This is seen by considering
the slope of the smoked fish odds ratios. As the evidence in the data increased for smoked fish, the full Bayesianmodel
shows a steep increase in odds ratio reflecting this evidence. For the Lasso approach, however, there is only a slight
increase as the odds ratios are kept small due to the shrinkage. In conclusion, although the shrinkage of the Lasso
approach is an advantage compared to the standard logistic regression analysis, it has the unwanted side effect of also
shrinking the large effects, making easy identification of likely suspects more difficult than in the Bayesian case.

We, therefore, see that in comparing our Bayesian variable selection model with the standard logistic backward
variable selection model, our model is able to come up with the correct food product earlier in the outbreak, i.e.
based on less data.

4.2 Sensitivity analysis

In order to investigate the effect of our informed prior distributions, we performed a small sensitivity analysis. The
values of the spike and slab parameters, e, � and c, have been found to influence the model results in Bayesian
variable selection. The performance of the variable selection (in terms of the number of correctly and falsely
selected variables) increases with decreasing slab variance.37 This is due to the fact that for lower slab variance,
smaller effects are penalized less than larger effects.37 The marginal posterior summary statistics, such as the
posterior median or mean, of the regression coefficients, however, tend to remain stable across different values
of the parameters.22

We found that smaller values of e have a larger shrinkage effect resulting in the posterior distributions of the
regression coefficients to be narrower and shrunk towards zero. We also considered the effect of the prior
distribution of the inclusion probabilities on the results. Using a uniform prior distribution allows more
variables into the model by resulting in higher posterior medians for more of the regression coefficients. On the
other hand, a strong positively skewed distribution such as a Betað1, 10Þ prior distribution forced a very
parsimonious model with only one regression coefficient, namely smoked fish, having a positive posterior
median. Finally, we considered the prior distribution for the sensitivity parameter. We allowed a slighter wider
distribution, but with the same median of 0.9, namely Betað16, 2Þ. This prior distribution resulted in very wide
posterior distributions with longer negative tails than for the case of SE � Betað33, 4Þ. In all of the above
scenario’s, the regression coefficient of smoked fish still had the highest posterior median. There was some
variation in which variables ended up in the top ten of highest regression coefficient values.

Jacobs et al. 1135



5 Discussion

This paper is an attempt at improving the current analytical methods for source identification in the
epidemiological investigation of food-borne disease outbreaks. Identifying the contaminated food product
among the many food products from a trawling questionnaire is very much like a criminal investigation. One
needs to keep an open mind so as not to exclude any possible suspects, but simultaneously one needs enough focus
and detail to find the culprit as quickly as possible.

This balance between open mindedness and focus is especially apparent when specifying the prior distributions
for the inclusions probabilities, !j’s, of our model. In our analysis of the data, all !j’s were given the same prior
distribution, namely Betað1, 2Þ. This is a relatively uninformative distribution giving slightly more weight to smaller
inclusion probabilities thereby enforcing a preference for a more parsimonious model. Applying a non-informative
prior to all the covariates is very much an open-mind approach. It will, however, not contribute much to finding a
likely suspect early in the outbreak. For this we need to focus on likely suspects by providing the prior distributions
with external information about such likely suspects. The Bayesian variable selection model lends itself especially
well to include information on individual or groups of inclusion probabilities. Literature, historical outbreak data
and expert knowledge are rich information sources that can be used to inform the prior distributions for the
inclusion probabilities. Given the pathogen, which during a food-borne disease outbreak is usually known,
certain food products or groups of food products are more likely suspects than others. This higher likelihood
can be quantified by a distribution and is used together with the data to guide the variable selection process. As a
word of caution, however, when informing prior distributions, one should keep in mind that we are dealing with an
outbreak which usually occurs due to some unusual circumstance, where some unexpected food product is
contaminated.3 The Salmonella Thompson 2012 outbreak is such an example. Salmonella is known to occur to a
large extent in poultry, eggs, pigs and bovine and not in fish.38,39 Also, very few Salmonella outbreaks associated
with fish have been reported in literature.40 Indeed, during the 2012 outbreak, the Salmonella was on the fish due to
reusable dishes used in the processing line and not in the fish. If the prior information of low Salmonella occurance
in fish had been incorporated in the analysis, it would possibly have taken even longer to identify the smoked fish as
the culprit. More data are then needed to counteract the ‘‘wrong’’ information in the prior distribution.

Although it is well-known that Salmonella infections are often asymptomatic, literature on estimating the
incidence of asymptomatic infections is very sparse. Jertborn et al.41 studied asymptomatic infections among a
group of Swedish travelers. In this group, the sensitivity was Se ¼ PðY ¼ 1jT ¼ 1Þ ¼ 0:41. This may suggest that
our sensitivity of 0.9 is way too large. This study, however, is hardly comparable to our situation. There have also
been attempts to calculate so-called ‘‘multipliers’’ which estimate the Salmonella infections in the population from
known culture-confirmed cases.19,42–44 It is, however, not easy to isolate the asymptomatic infections from these
calculations. Constructing a scientifically substantiated informative prior distribution for the sensitivity requires
an even bigger literature review combined with expert elicitation and is outside the scope of this paper.

The missing data imputation method described in Section 3.3 may look similar to the chained equations approach
as used in multiple imputation by chained equations (MICE), also known as regression switching.45,46 MICE,
however, does not explicitly specify a joint distribution for the covariates. It considers each variable separately,
imputing it using all the other variables as predictors. This may give convergence problems if the individual models
are not compatible with each other or with a multivariate distribution.29,47 In addition, MICE is not embedded in a
Bayesian setting, making it incompatible within a full Bayesian variable selection procedure.

As mentioned in the Introduction, the current methodology in analysing case-control studies for source
identification in food-borne disease outbreaks includes a combination of univariable and multivariable logistic
regression together with backward and forward selection. This is an ill-defined and to some extent ad hoc way in
searching for contaminated food products. Some of the problems associated with this method include well known
model selection problems with determining strength of effects based on p-values, number of variables close to or
even exceeding the number of observations and no standard or well-defined way of dealing with the large
percentage of missing values.

In a study comparing stepwise and backward variable selection methods with Bayesian model averaging in case-
control studies, Viallefont et al.32 found that p-values are no longer reliable in determining risk factors after stepwise
or backward variable selection has been applied. In a simulation study, the authors showed that of those variables
whose regression coefficient had a p-value between 0.01 and 0.05 (typically assumed to be significant in
epidemiological analyses) after stepwise variable selection, only 49% were actual risk factors by design. This was
57% when backward variable selection was applied. These proportions are well below one minus the nominal
significance level. This concern about stepwise variable selection and p-values is also discussed by Harrell.10 With
Bayesian variable selection, we do not have these problems because there is no reliance on p-values.
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Fitting a multivariable model using standard logistic regression is problematic early in an outbreak. At this
point, data are still scarce resulting in more covariates than observations (p> n). In this case, it is not possible to
obtain maximum likelihood estimators for the regression coefficients as was seen in Section 4.1. Both the Lasso
logistic regression and the Bayesian analyses do not have this problem, because they introduce some form of
constraint on the size of the regression coefficients.

Furthermore, using a Bayesian model allows automation of the analyses as new data enters the case-control
study. Currently, when new case-control data enter the study, the analyses have to be rerun over the cumulative
dataset at that point. In a Bayesian setting, however, the model can be transformed into a state-of-the-art learning
algorithm whereby the posterior output of an earlier analysis is used as prior input for the analysis with the new
data. These ‘‘new’’ priors can also be combined with other new insights obtained during the outbreak
investigation, thereby reflecting the dynamics of the investigation. Such a learning algorithm has the potential
to greatly improve the efficiency of the identification process. Further research is required to obtain full advantage
of such dynamic modelling.

In the context of model choice, we have not yet made full use of all the modelling options. First, we have not
extensively examined all analysis options for matched data. In this context, one could analyse the data using a
conditional logistic regression model. Alternatively, one might use a random effects model, inserting a random
effect for the groups of matched case-controls. In the extreme case, where one has 1-to-1 matching, one should use
conditional logistic regression, as using unconditional logistic regression is biased and produces inflated odds ratio
estimates.48 This, however, is not the case in our case study. In fact, using an unconditional analysis on matched
data may even increase the precision of the estimates. This is due to the fact that, in an unconditional analysis,
cases with identical values for their matched variables and cases without corresponding controls can still be
included in the analysis.48 It is, however, still necessary to control for the matched variables, as we do, by
including age and gender into our model. If we were to have used conditional logistic regression, we would
expect less precision in the estimation, resulting in more difficult detection of significant variables. Second, the
choice of model terms can still be optimized. One might want to include interaction terms and possibly non-linear
terms for, e.g., age. Finally, we have not yet dealt with the misclassification in the covariates. Such misclassification
can be dealt with by a misclassification model.49 Dealing properly with the matched design of the data, the choice
of model terms and misclassification in the covariates may lead to substantial improvements of the model. This is a
topic for future research.

SSVS is a standard Bayesian variable selection method and is over 20 years old. It has many advantages over
other Bayesian variable selection methods. The most obvious alternatives are model selection procedures in which
a model choice criteria is calculated, such as the deviance information criterion (DIC).50 These, however, are only
feasible to use when the number of possible models is limited.51 With over 100 possible variables in our case study,
there are just too many possibilities. Moreover, for model selection procedures, the possible models are usually
chosen from some theoretical basis to limit the choice of models. In our case, we do not have that. All
combinations of variables are possible and the SSVS method can handle that especially well. Reversible Jump
algorithms,52 another method for model selection, are difficult to implement in practice, partially due to the fact
that the dimension of the model in each run changes as different number of variables may be selected in each run.
SSVS, in contrast to the other methods, allows for simple and complex models which gives a lot of flexibility.
Computational challenges are minimized because the dimension of the model stays the same during the whole
analysis and the actual variable selection is only performed during the interpretation of the results after the
algorithm has converged. This also provides flexibility in the selection process by allowing the researcher to
decide on the best selection criteria relevant to the application.

The main limitation of our model is the computation time. The large computational burden comes from the
MCMC sampling of the two-level variable selection process. In our application, the MCMC sampling took
approximately 7 h with parallel computing on five cores. Although this is a long time to wait when one is
developing and studying the methodology and performing sensitivity analyses, it is less of a problem in
practice. During an outbreak, new data may enter the study on a daily basis and the model can be run
overnight to have the new results ready each morning.

6 Summary and impact on epidemiological practice

In this paper, we developed a method that deals with the problems of variable selection, missing covariates and
misclassified responses in the context of source identification in the investigation of food-borne disease outbreaks.
We have shown how a Bayesian analysis allows a relatively easy implementation of these concepts in the
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re-analysis of the Dutch Salmonella Thompson 2012 outbreak data. Moreover, the Bayesian analysis performed
better than both the standard and Lasso logistic regression models in identifying the responsible food source.

The method presented in this paper constitutes a first attempt at formalizing the methodology necessary for the
analytic part of food-borne disease outbreak investigations. Current procedures are very much ad hoc in nature. In
the interest of public health and for the task of lowering the disease burden of food-borne disease outbreaks,
outbreak investigations are desperately in need of sound statistical methodology – methodology which can not
only deal with the many challenges in case-control studies, but also exploit the structures in the data and the
dynamics of the outbreak in order to identify the contaminated food product as quickly as possible. The Bayesian
variable selection method presented in this paper is an example of such methodology which can provide
epidemiologists with a streamlined statistical tool to aid the outbreak investigations. It only seems natural that
such more formal decision support tools become part of standard epidemiological practice.
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