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Abstract

The Advanced Very High Resolution Radiometer (AVHRR) sensor provides a unique global 

remote sensing dataset that ranges from the 1980’s to the present. Over the years, several efforts 

have been made on the calibration of the different instruments to establish a consistent land 

surface reflectance time-series and to augment the AVHRR data record with data from other 

sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, we 

present a summary of all the corrections applied to the AVHRR Surface Reflectance and NDVI 

Version 4 Product, developed in the framework of the National Oceanic and Atmospheric 

Administration (NOAA) Climate Data Record (CDR) program. These corrections result from 

assessment of the geo-location, improvement of the cloud masking and calibration monitoring. 

Additionally, we evaluate the performance of the surface reflectance over the AERONET sites by a 

cross-comparison with MODIS, which is an already validated product, and evaluation of a 

downstream Leaf Area Index (LAI) product. We demonstrate the utility of this long time-series by 

estimating the winter wheat yield over the USA. The methods developed by [1] and [2] are applied 

to both the MODIS and AVHRR data. Comparison of the results from both sensors during the 

MODIS-era shows the consistency of the dataset with similar errors of 10%. When applying the 

methods to AVHRR historical data from the 1980’s, the results have errors equivalent to those 

derived from MODIS.
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1. Introduction

The surface reflectance product is a critical input for generating downstream products such 

as Vegetation Indices (VI), Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically 

Active Radiation (FAPAR), Bidirectional Reflectance Distribution Function (BRDF), 

Albedo, and Land Cover. A surface reflectance Land Climate Data Record (LCDR) needs to 

be of the highest possible quality, so that minimal uncertainties propagate in the dependent/

downstream products. The generation of such a record necessitates the use of multi-

instrument/multi-sensor science-quality data record and a strong emphasis on data 

consistency, which in this study is achieved by careful characterization and processing of the 

original data, rather than degrading and smoothing the dataset. As a consequence, the LCDR 

needs to be derived from accurately calibrated top of the atmosphere reflectance values that 

are precisely geo-located, carefully screened for clouds and cloud shadows, corrected for 

atmospheric effects using a radiative transfer model-based approach and finally corrected for 

directional effects. All these steps are necessary, as spurious trends will appear in the data 

record if the above effects are not corrected for.

The first requirement for accurate atmospheric correction is a proper absolute calibration of 

the instrument. Calibration errors propagate through the whole atmospheric correction chain, 

in particular through the aerosol inversion and impact most of the bands in the visible part of 

the spectrum and subsequent downstream products. It is very important therefore to assess 

instrument performance and independently monitor calibration. The Advanced Very High 

Resolution Radiometer (AVHRR) remains an important data source for the study of long-

term variations in land surface properties as it provides the longest time-series of global 

satellite measurements [3]. [4] presented a method for absolute calibration of the red and 

near-infrared channels of AVHRR. It was based on a combination of observations over 

remote ocean areas and over highly reflective clouds located in the tropics over the Pacific 

Ocean. Later, [5] validated these results using a stable Saharan desert site and data from 

MODIS. The agreement between MODIS and AVHRR was better than 1%. Inter-

comparison of the MODIS Aqua and AVHRR for the 2000–2014 period reported in this 

paper has further enabled refinement of the AVHRR record. Using state-of-the-art 

algorithms for geo-location, calibration, cloud screening, atmospheric and surface 

directional effect correction we have been able to achieve the most consistent data record 

possible. Such a long data record allows for the development of several applications 

involving evaluation of trends in surface properties (e.g. [6–8]). During the last several years, 

agricultural monitoring using remote sensing data has gained increasing interest among the 

science community mainly since the development in 2011 of the Group on Earth 

Observations Global Agricultural Monitoring (GEOGLAM) initiative. The main objective of 

GEOGLAM is to strengthen global agricultural monitoring by improving the use of remote 

sensing tools for crop production projections and weather forecasting. In this context we 
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demonstrate the performance of the LCDR, by applying the yield model described in [1] and 

[2] to the V4 series of the AVHRR data records.

In this paper, we present the latest improvements of the AVHRR BRDF corrected surface 

reflectance and NDVI Version 4 products by assessing the accuracy of geolocation (section 

3.1), calibration (section 3.2), cloud mask (section 3.3) and the final surface reflectance 

product using AERONET data (section 3.4) and cross-comparing it to MODIS Aqua 

(section 3.5). Additionally, we evaluate the performance of the LAI, which is derived using 

surface reflectance (section 3.6). Finally, an application of the product to estimate the winter 

wheat yield in the USA from the 1980’s is presented in section 3.7.

2. Materials

2.1. Land Climate Data Record (LCDR)

This work builds on previous efforts by [9] that created the first three versions of the 

consistent long-term land data records spanning a time period of 1981 – 2000 through 

processing and reprocessing of the AVHRR Global Area Coverage (GAC) data. The NASA 

LCDR detailed in [9] contains gridded daily surface reflectance and brightness temperatures 

derived from processing of the data acquired by the AVHRR sensors onboard four NOAA 

polar orbiting satellites: NOAA-7, −9, −11 and −14. Daily surface reflectance from the 

AVHRR channels 1 and 2 (at 640 and 860 nm) is a NOAA Climate Data Record (CDR). 

These data records are produced in a geographic projection at a spatial resolution of 0.05 

degree similar to the Climate Modelling Grid (CMG) used in processing of the daily 

MODIS Surface Reflectance CMG data MOD09CMG/MYD09CMG.

With substantial improvements, the Version 4 Land Surface CDR products were produced 

by the NASA Goddard Space Flight Center (GSFC) and the University of Maryland. The 

Version 4 series extended the time period of the records to the present day through 

processing of the AVHRR data from the NOAA-16, 17, 18 and 19 with additional 

improvements to the Version 3. Improvements include better geolocation accuracy achieved 

by using One-Line-Element (OLE) instead of Two-Line-Element (TLE) for ephemeris, use 

of center of each grid as the reference to be consistent with other heritage records such as 

from MODIS on-board the Earth Observing System (EOS) satellites, and use of a weighted 

average of available observations instead of the one best sample used in Version 3. Version 4 

was produced by reprocessing the raw GAC dataset for each instrument.

2.2. MODIS daily climate model grid (CMG) time-series

This study uses the MODIS CMG daily surface reflectance Collection 6 data 

(M{OY}D09CMG) distributed by the Land Processes Distributed Active Archive Center 

(LP DAAC, https://lpdaac.usgs.gov/products/modis_products_table), which are gridded in 

the linear latitude, longitude projection at 0.05° resolution (5600 m at the Equator). Science 

Data Sets (SDSs) provided for this product include surface reflectance values for bands 1–7, 

brightness temperatures for bands 20, 21, 31, and 32, solar and view zenith angles, relative 

azimuth angle, ozone, granule time, quality assessment, cloud mask, aerosol optical 

thickness at 550 nm and water vapor content.
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2.3. Methods

2.3.1. Geolocation—The purpose of geolocation assessment is to identify any errors by 

comparing the images to control points that can be easily traceable. Thus, in order to assess 

the accuracy of the geolocation of a given sensor, we used ‘coastal chips’ as a reference, 

which were selected manually using the MODIS CMG product. This approach has been 

proven very useful for the AVHRR dataset, where the error could be significant and the drift 

of the clock onboard the NOAA satellites leads to a desynchronization between the satellite 

clock and the tracking station clock [13].

2.3.2. Calibration monitoring—The approach relies on using the multi-year MODIS 

Terra data set to derive spectral and directional characterizations of stable desert sites that 

can be used as invariant targets. A candidate list of such targets is provided in [15]. Subsets 

of MODIS Terra data are collected and undergo a rigorous screening based on the quality 

flags (cloud, cloud shadow, adjacent cloud, high aerosol or snow). The directional 

characterization is derived using the MODIS Bidirectional Reflectance Distribution Function 

(BRDF) algorithm that relies on a kernel-driven linear BRDF model, defined as a weighted 

sum of three kernels representing basic scattering types: isotropic scattering, radiative 

transfer-type volumetric scattering based on the Ross-Thick function and geometric-optical 

surface scattering based on the Li-Sparse model [16]. Using the site directional 

characterization, we compute a surface reflectance at the needed acquisition time and 

viewing conditions. Using the data corrected for directional effect we are also able to 

spectrally characterize the sites at the MODIS central wavelengths and account for spectral 

difference between MODIS and the AVHRR given the relatively broad AVHRR bands only 

for each particular site. Atmospheric parameters (surface pressure, gaseous content, water 

vapor, aerosol optical thickness) obtained from assimilated data, MODIS data, MODIS-like 

and/or ground measurements are then used in conjunction with the 6S radiative transfer code 

[17] to determine the target sensor (MODIS-Aqua, AVHRR) Top Of Atmosphere (TOA) 

reflectance. The computed reflectance is compared to the acquired reflectance to infer 

changes in the instrument calibration.

2.3.3. Cloud mask—The CALIPSO mission and in particular the Cloud-Aerosol Lidar 

with Orthogonal Polarization (CALIOP) provides a unique and independent opportunity to 

evaluate cloud mask products. Despite its relatively narrow footprint (330m to 5km 

depending on the altitude of the layer sensed), CALIOP acquires data about 2 minutes after 

MODIS Aqua, which makes it ideal for cloud mask evaluation and the MODIS Aqua cloud 

mask can then be used itself as a reference. The current AVHRR cloud mask has been 

evaluated against MODIS Aqua and the results show that is improved as compared to the 

CLAVR algorithm [10]. This improved technique utilizes albedo thresholds derived from 

MODIS Aqua data to mask clouds.

2.3.4. Surface Reflectance accuracy assessment—Accurate estimation of 

atmospheric parameters, such as water vapor content or aerosol optical thickness, is critical 

and comprises the main source of error in the surface reflecatance estimation. With the 

purpose of assessing the performance of the AVHRR surface reflectance product, we 

compare it with the surface reflectance derived from the top of the atmosphere AVHRR data 
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corrected using field-based atmospheric data. These data were extracted for over 48 

AERONET sites distributed across the globe [9].

2.3.5. Direct intercomparison of the surface reflectance products—Inter-

comparison of the surface reflectance products from different sensors can be used to 

evaluate their performance and check their inter-consistency. The MODIS data are 

accurately calibrated and the surface reflectance product has been validated through the 

various stage (up to Stage III) defined by the MODIS land validation approach [21]. Thus, 

the MODIS surface reflectance product can be considered as a good reference to evaluate 

the AVHRR surface reflectance product. The AVHRR surface reflectance and MODIS Aqua 

data over the BELMANIP2 (BEnchmark Land Multisite ANalysis and Intercomparison of 

Products) sites were intercompared, using the directional [22] correction. BELMANIP2 is an 

updated version of BELMANIP1 [23] that aims at providing a representative set of relatively 

flat and homogenous sites sampling the variability of land surface type and state over the 

globe. The original BELMANIP2 dataset included 445 sites (Figure 7).

2.3.6. Agriculture application—As a demonstration of the utility of the LCDR, we 

apply the methods developed by [1] and [2] to test the performance of the AVHRR data to 

monitor wheat yield. These methods are based on the assumption that the yield is positively 

and linearly correlated to the seasonal maximum NDVI (adjusted for background noise) at 

the administrative unit (AU, county or oblast) level and to the purity of the wheat signal 

(percentage of wheat within the pixel). [1] developed a regression model that was calibrated 

and applied at the state level in Kansas using MODIS data and proved to be directly 

applicable at the national level in Ukraine. Looking for an improvement in the timeliness of 

the yield forecast, [2] enhanced the [1] method by including growing degree day (GDD) 

information. With this method a reliable forecast can be made between 30 days to 45 days 

prior to the peak NDVI (i.e. 60 to 75 days prior to harvest), while keeping an accuracy of 

10% in the yield forecast. Note that this method provides the same yield results than [1] 

when the yield forecast is applied during the date of the NDVI peak. In this work, we 

evaluate the yield model’s applicability to AVHRR.

3. Results

3.1. Geolocation

Geolocation is an important prerequisite to ensure consistency in the land time-series of 

observations [11]. A number of physical effects such as clouds, atmospheric contamination 

and surface anisotropy require compositing multiple daily orbits into a single data set 

[12,13]. Achieving a high-level accuracy of relative geolocation is a critical step for each 

orbit [14]. Therefore, major efforts are made in geometric correction and the assessment of 

geolocation accuracy. The accuracy of this correction was assessed by using the coastal 

chips database as a reference. When the on-board clock was reset, a discontinuity in the 

accuracy is introduced (Figure 1, red dots). The clock correction approach developed by [15] 

improves significantly the geolocation accuracy (Figure 1, green dots).
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3.2. Calibration monitoring

Accurate radiometric calibration is a prerequisite to creating a science-quality time-series of 

BRDF corrected surface reflectance and consequently, higher order downstream products. 

Calibration errors can propagate directly into the surface reflectance and create artificial 

variations that can be misinterpreted as trends, especially if these variations are due to a slow 

decay in the calibration mechanism. Vicarious calibration provides an additional source of 

calibration information, to verify and evaluate on-board calibration. As mentioned in the 

methods section, we will use the approach of [5] for cross calibration of AVHRR with 

MODIS to monitor the calibration in the visible to shortwave infrared bands and to provide 

correction terms as needed (Figure 2). To assess this approach, [5] applied it to transfer the 

MODIS Terra calibration to the MODIS Aqua instrument. When applied to a stable desert 

ground site in Niger, the results of this approach agreed to within 1% of the MODIS Aqua 

on-board solar diffuser [5]. The calibration coefficients used are available from the project 

website (http://ltdr.nascom.nasa.gov).

3.3. Cloud mask

While the validation of surface reflectance is facilitated by AERONET data, the validation 

of the cloud mask remains a significant challenge. To verify the improvement in the cloud 

mask, we have undertaken an inter-comparison between the AVHRR cloud mask with the 

MODIS Aqua cloud mask for near-coincident (in time) observations. Figure 3 shows the 

evaluation of the improved AVHRR cloud mask, where the agreement with MODIS Aqua is 

higher than 90% compared to an average 60% agreement for the CLAVR cloud mask. Figure 

4 shows the time-series evolution of the surface reflectance of channel 1 (blue) and channel 

2 (red) as well as the NDVI (green) over one BELMANIP2 site (see section 2.3.4 for a 

description of the BELMANIP2 sites) located in Madagascar, using the CLAVR cloud mask 

(Figure 4a) and the LCDR cloud mask (Figure 4b). These plots show a strong reduction of 

noise when using the LCDR cloud mask in channel 1 (from 0.05 to 0.01), channel 2 (from 

0.07 to 0.03) and the NDVI (from 0.08 to 0.05).

3.4. Surface Reflectance accuracy assessment

We have analyzed a comprehensive estimate of the performance of the AVHRR Surface 

Reflectance for 1999 over the AERONET sites [12]. The performance was evaluated along 

with Pathfinder AVHRR Land (PAL) daily products [16] over 48 sites distributed across the 

globe [9]. Atmospheric data from AERONET sunphotometers at each site [17] were used as 

input to the 6S radiative transfer model [18] to atmospherically correct the top of the 

atmosphere AVHRR data to determine surface reflectance values for channels 1 and 2. 

Figure 5a shows that the AVHHR data for channel 1 follow the one-to-one line very closely. 

Similarly, Figure 5b shows the AVHRR results for channel 2, with good correlation for 

surface reflectance values up to ~0.5, although the PAL data are further from the 1-to-l line.

3.5. Direct intercomparison of the surface reflectance products

Figure 6 shows the cross-comparison of AVHHR data with MODIS over the BELMANIP2 

sites. The monthly averaged ratios of the observed (AVHRR data) and the predicted 

reflectance (MODIS Aqua corrected reflectance at AVHRR spectral and directional 
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conditions) for AVHRR channel 1 (Figure 6-top) and channel 2 (Figure 6-bottom) are 

plotted as a function of time [5]. The plots show a consistent evolution of the ratios for the 

different sensors (NOAA16, NOAA18 and NOAA19) and for the two channels with values 

close to one. It should be noted, that at the beginning of each mission there are discrepancies 

between sensors [19] (beginning of the NOAA18 record with NOAA16 and beginning of the 

NOAA19 record with NOAA18), this is expected during the outgassing period where both 

the thermal bands are not stable and the calibration in the red and near infrared is evolving 

quickly.

3.6. Derived LAI/FAPAR products

Using AVHRR surface reflectance, a LAI/FAPAR product (AVH15C1 product) was derived 

[20]. The algorithm relies on Artificial Neural Networks (ANN) trained using MODIS LAI/

FAPAR products and AVHRR surface reflectance products, acquired over BELMANIP-2 

sites from 2001 to 2007. A full description of the algorithm and its evaluation process is 

given in [19]. Using different sites than the ones used for training (DIRECT network, [22], 

Figure 7), Figure 8 shows that the MODIS and AVHRR LAI/FAPAR are well correlated 

(r2~0.9). However, a clear saturation effect is observed with high FAPAR (>0.8) values. This 

saturation affects mainly deciduous forest, associated with a complex 3D canopy [21].

3.7. Agriculture application

With the purpose of evaluating the applicability of the yield models to AVHRR data, we 

validate the methods taking advantage of the AVHRR LTDR historical data from 1982 to 

2014.

Figure 9 shows the validation of the method using the AVHRR LCDR data from 1982 to 

2014. Note that we removed from the analysis the year 2007 that was identified as a problem 

in [1], when a late frost damaged most of the wheat crops in Kansas and Oklahoma. 

Comparing the statistics of these figures with the statistics presented in [2], where the model 

is applied using MODIS data from 2001 to 2012, adding more years to the analysis and 

using Version 4 AVHRR surface reflectance data barely affects the error, keeping it at 

around 7%. These results confirm the good performance of the method, providing good 

results during the extreme years in terms of production. The statistics also display the Nash-

Sutcliffe model efficiency coefficient (E) proposed by [23]. It is defined as one minus the 

sum of the absolute squared differences between the predicted (P) and observed (O) values, 

normalized by the variance of the observed values during the period under investigation.

E = 1 −
∑i = 1

n (Oi − Pi)
2

∑i = 1
n (Oi − Oi)

2

The range of E lies between 1.0 (perfect fit) and −∞. An efficiency of lower than zero 

indicates that the mean value of the observed time series would have been a better predictor 

than the model. Both the yield and the production show E values greater than zero.
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Figure 10 shows the error evolution of the yield and the production when applying the [2] 

method depending on the day of the forecast. Comparing this plot to the results published in 

[2] that was just based on the MODIS-era time-series, shows that the inclusion of more days 

in the analysis provides more stability in the error evolution. The plot also shows a 

horizontal line that represents the error if we assume the yield/production equal to the time 

series average. In order to study the feasibility of the model compared to assuming the 

average yield/production, Figure 10 displays the evolution of the E coefficient. The yield 

forecast shows E positive values up from DOY 120 (April 30th), while for the production 

which is corrected by the official statistics of area, the E coefficient is positive from DOY 

100 (April 10th).

We also used the AVH15C1 LAI and FAPAR products with the [1] method. Figure 11 shows 

the yield validation with the official statistics. Comparing these results with the NDVI 

(Figure 11a), they show similar errors (8.07% NDVI, 8.17% LAI and 6.98% FAPAR) and 

similar correlation coefficients (0.38 NDVI, 0.46 LAI and 0.46 FAPAR). Thus, we can 

conclude that the three different parameters (NDVI, LAI and FAPAR) provide equivalent 

results.

4. Discussion

In this work we present the improvements and assess the AVHRR BRDF corrected surface 

reflectance/NDVI Version 4 product. Besides the geolocation and cloud mask evaluations, 

the assessment is done through four different exercises: first, we compare the product with 

the surface reflectance derived using AERONET atmospheric data (section 3.4); second, we 

intercompare the AVHRR with the MODIS surface reflectance product; third, we evaluate 

the LAI and FAPAR downstream products; and fourth, we apply a method to the AVHRR 

historical surface reflectance dataset to estimate the wheat production in the U.S.

The inter-comparison of MODIS and AVHRR surface reflectance products show ratios close 

to one, which means that both time-series are consistent. However, the ratio still shows some 

noise (maximum of 2% variation). The reasons for such errors could be associated with 

errors in the water vapor correction, an error residual of the BRDF correction or even a 

systematic variation of the calibration during the year. All these possible explanations will 

be further explored in our future work.

Regarding the yield model, the method developed for MODIS data was evaluated with the 

longer AVHRR historical record, which contains greater inter-annual variability in surface 

conditions (generally winter wheat yields with lower values: see x-axis data variability of 

Figure 11a). Additionally, the method was applied satisfactorily to AVHRR using the same 

calibration coefficients as for MODIS and producing equivalent statistics, showing the 

comparability and consistency of the MODIS and AVHRR surface reflectance products for 

this application.

5. Conclusions

This paper evaluated the AVHRR BRDF corrected surface reflectance/NDVI Version 4 

product. We reviewed the various efforts developed to improve its accuracy, from the 
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geolocation correction and the cloud mask improvement to the calibration monitoring. 

Additionally, we evaluated the performance of the product, first using AERONET data and 

also by inter-comparison with the MODIS surface reflectance, an already validated and 

established product. The results presented show good performance of the AVHRR product 

and consistency with MODIS. We also demonstrate the usefulness and assess the 

performance of the product by its application to agricultural monitoring. This agricultural 

application demonstrates the utility of the LCDR to test the robustness of the yield forecast 

methods.

We are still working on the improvement of the product based on a better estimation of the 

atmospheric constituents: the aerosols and water vapor content. Future work will also 

include the development of a more systematic, robust and statistically significant evaluation 

of the product.
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Figure 1. 
Accuracy assessment of the geolocation of AVHRR products using the coastal chips 

database (in fraction of pixels). Green is with clock correction, red is without clock 

correction.
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Figure 2: 
Comparison of the NOAA16-AVHRR/MODIS Terra cross calibration over desert sites for 

band 1 (black solid line) and band 2 (black interrupted line), with the trends obtained using 

the Ocean and Clouds method [4] for band 1 (blue line and square) and band 2 (red line and 

square) (from [5]).
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Figure 3. 
Evaluation of the global performance of the current cloud mask for NOAA16-AVHRR 

versus MODIS Aqua cloud mask. Results reported as percentage. Left side is the CLAVR 

algorithm [10]. Right is the current LCDR improved cloud mask. MODIS Aqua cloud mask 

is used as truth in this comparison. Red symbols (Match) show the percentage of agreement 

between AVHRR and MODIS, Green symbols (False) show the percentage of cases where 

AVHRR erroneously detects clouds, Blue symbols (Missed) show the percentage of cases 

where AVHRR missed clouds.
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Figure 4. 
AVHRR time-series of channel 1 (blue) and channel 2 (red) surface reflectance and the 

NDVI (green) using a) CLAVR or b) LCDR cloud masks for a deciduous broadleaf site in 

Madagascar. Black symbols are clouds. The standard deviation of the unfiltered data of the 

time series (Orig.data) and of the cloud filtered time series (QA Mask for CLAVR, New2 

Mask for LCDR cloud mask) are also provided for each of the bands and the NDVI. The 

percentage of clear data is also provided for each cloud mask at the top of the figure.
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Figures 5. 
Comparison of current AVHHR Surface Reflectance (LCDR) and PAL data for channel 1 (a) 

and channel 2 (b) at 48 AERONET sites for 1999 (from [9]). The x-axis shows the surface 

reflectance values determined from the 6S code supplied with atmospheric parameters from 

an AERONET sunphotometer, while the y-axis shows the surface reflectances retrieved from 

the AVHRR data using current LCDR and PAL algorithms.
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Figures 6. 
Cross comparison between AVHRR N16, N18 and N19 and MODIS Terra ratios for the 

BELMANIP2 sites for the red band (a) and the near infrared band (b).
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Figure 7. 
BELMANIP-2 and DIRECT network sites location (http://calvalportal.ceos.org/web/olive/

site-description).
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Figure 8. 
Comparison of MODIS and AVHRR LAI (a) and FAPAR (b) during 2001 to 2007. Data 

were extracted over DIRECT sites not used during the training process.
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Figure 9. 
National winter wheat predicted yield (a) and production (b) in the U.S., applying the [1] 

‘original’ method to AVHRR data plotted against USDA reported statistics (https://

quickstats.nass.usda.gov).
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Figure 10. 
a) Percentage error evolution when forecasting the winter wheat production (black) and 

yield (red) with historical AVHRR data. The dashed line represents the error committed 

when considering a constant production (black) or yield (red) and equal to the average 

through the time series. b) Nash–Sutcliffe model efficiency coefficient evolution depending 

on the day of the year of the forecast.
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Figure 11. 
National winter wheat predicted yield in the U.S. applying [1] method to LAI (a) and 

FAPAR (b) AVHRR data.
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