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Abstract: Over the past 30 years, genomic and bioinformatic analysis of human 

adenoviruses has been achieved using a variety of DNA sequencing methods; initially with 

the use of restriction enzymes and more currently with the use of the GS FLX 

pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, 

analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire 

genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides 

and amino acids of coding sequences within the hexon genes of two human adenoviruses 

(HAdV), HAdV–C2 and HAdV–C5, were compared and analyzed. It was determined that 

there were three different zones (1-393, 394-1410, 1411-2910) within the hexon gene, of 

which HAdV–C2 and HAdV–C5 shared zones 1 and 3 with 95% and 89.5% nucleotide 

identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully 

sequenced using the Sanger method. Over the next seven years, whole genome analysis 

and characterization was completed using bioinformatic tools such as blastn, tblastx, 

ClustalV and FASTA, in order to determine key proteins in species HAdV-A through  

HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel 

species, HAdV-G, that was typed and named by the use of whole genome sequencing and 

phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to 
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advance as the latest sequencing technology enables scientists to add to and expand the 

resource databases. As a result of these advancements, how novel HAdVs are typed has 

changed. Bioinformatic analysis has become the revolutionary tool that has significantly 

accelerated the in-depth study of HAdV microevolution through comparative genomics. 

Keywords: human adenoviruses; genomics; bioinformatics 

 

1. Introduction 

Genomics and bioinformatics have provided a highly detailed understanding of organisms through 

the analysis of primary sequence data. With the rapid adoption and continuing improvement of next 

generation DNA sequencing technology and methodology, understanding the biology and pathology 

of human pathogens is tantalizingly within reach. Viruses, especially human adenoviruses, are an 

important model for defining both the biology and pathology based on the primary sequence data, due 

to their genome size and importance as human pathogens. In this review we provide a historical 

perspective of how the genomic and bioinformatic analyses of human adenoviruses (HAdVs) have 

advanced in the last 30 years. We start by describing the first few nucleotides that were sequenced 

using both the Maxam-Gilbert and the Sanger sequencing methods, then the first complete genes as 

well as the first whole adenovirus genome to be assembled and analyzed. Initially, the genomes were 

sequenced in parts from different laboratories and using different methods, and assembled as a 

complete but mosaic contribution. As noted, some of these data, including whole genomes, for 

example HAdV-D17, contain sequencing errors that hinder comparative genomic analysis. Currently, 

technologies such as the GS FLX pyrosequencing method provide definitive single laboratory-

initiated and single method high-quality genomes. The major advances in the bioinformatic analysis of 

adenoviruses will also be discussed, with highly detailed snapshots of human adenoviruses in general, 

pathology and molecular evolution of new types and emerging or re-emerging pathogens. This review 

ends with a description of the current state of adenovirus bioinformatics and developing trends. 

2. The Labor of Human Adenovirus Genomics 

In the beginning of adenoviral genomics, positions within the human adenovirus (HAdV) type 2 

genome were mapped using restriction enzyme analysis [1]. A few years later, upon the advent of 

DNA sequencing by Maxam and Gilbert [2], 139 base pairs of the mRNA leading up to the 5’ region 

of the hexon gene was determined [3]. Benefits of this work included visualization of the two-

dimensional nucleotide structure of the HAdV-C2 promoter, and a hypothetical determination of the 

secondary structure in the associated mRNA.  

First Example of Comparative Genomics in Human Adenoviruses 

As an early demonstration of comparative genomics, the hexon genes of HAdV-C2 and HAdV-C5 

were the first two human adenovirus genes to be compared to one another [4]. In that study, analysis 

of the nucleotides and amino acids of the two hexon coding sequences demonstrated that the hexon 
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gene could be divided up into three different zones (1-393, 394-1410, 1411-2910). Zones 1 and 3 in 

the hexon genes of HAdV-C2 and HAdV-C5 had 95% and 89.5% nucleotide identity, respectively  

(Figure 1A) [4]. The nucleotide identity of the two genes diverged in zone 2 (Figure 1A). Today, zone 

2 is recognized as the  determinant, which contains the type-specific epitopes of the hexon gene 

(Figure 1B). 

Figure 1. Analysis of the hexon gene. (a) A Nucleotide homology between the hexon 

coding sequences of HAdV-C2 and HAdV-C5. zPicture was used to compare the whole 

genomes for regions of homology/similarity. Along the y-axis, the baseline is set at 50% 

nucleotide identity and the top line is set at 100%; the entire gene length is displayed on 

the x-axis. (b) Schematic of the hexon protein. Variable regions V1, V2, and V3 are 

located in loops 1 and 2 and are outwardly oriented on the surface of the adenovirus 

particle. The epsilon () fragment includes regions V1, C2, V2, C3, and V3. 

 

 

3. The Birth of Human Adenovirus Genomics 

3.1. HAdV-C2: The First HAdV Sequenced 

Human adenovirus genomics was born in 1984 when Roberts and coworkers amalgamated pieces 

of the HAdV-C2 genome, sequenced in separate laboratories during different time periods, and with 

dissimilar methods, to present whole and complete genome analysis (Figure 2A) [5]. Prior to the entire 

HAdV-C2 sequence being deduced as 35,937 nucleotides, the locations of genes in adenovirus 

genomes were described using a map unit system [1]. After the HAdV-C2 genome was analyzed, a 

coordinate system was introduced where 1% of the genome equaled 365 nucleotides [5]. However, 

since adenovirus genomes differ in length, this methodology did not stand the test of time. 
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Figure 2. Transcriptional map and genome organization of HAdV-C2, HAdV-F40, and 

HAdV-D53. Genomes are represented by a central black horizontal line marked at 5-kbp 

intervals. Protein encoding regions are shown as boxes. Boxes above the black line 

represent open reading frames (ORFs) that are encoded on the forward (or upper) strand. 

Boxes underneath the black line represent ORFs that are encoded on the reverse (or lower) 

strand. (a) HAdV-C2. (b) HAdV-F40. (c) HAdV-D53. Figure 2B was adapted from Walsh 

et al., 2009 with permission [6]. 
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3.2. HAdV-C5 

Although it was a piecemeal effort, eight years later, the whole genome of HAdV-C5 was 

determined using Sanger sequencing (Table 1). This accomplishment was significant because it 

allowed for direct genomic comparison between two adenoviral genomes [7]. Comparative analysis of 

the HAdV-C2 and HAdV-C5 genomes demonstrated that the genes with the greatest amino acid 

differences were the hexon, fiber, and the 19K ORF located in the E3 gene. This has since been 

confirmed and updated by pairwise alignment of multiple HAdV genomes from all known species 

sequenced to date [8]. 

In the next seven years, three adenovirus genomes (HAdV-F40, HAdV-A12, HAdV-D17) were 

sequenced and deposited in GenBank (Table 1). Bioinformatic analysis of the HAdV-F40 genome 

revealed several features not seen previously in a human adenovirus: two fiber genes and the U protein 

(Figure 2B) [9]. The percent identities of key proteins in species HAdV-A through HAdV-F, as well 

as other animal adenoviruses, were compared. Since HAdV-A12 was the first whole genome to be 

sequenced from species HAdV-A (Table 1), Sprengel and colleagues compared it to HAdV-C2. 

Comparison of the HAdV-A12 and HAdV-C2 genomes was innovative in that it was the first instance 

where powerful bioinformatic tools such as blastn, tblastx, ClustalV, and FASTA were used on whole 

adenovirus genomes [10]. The use of ClustalV was ground-breaking in that it allowed researchers the 

opportunity to view the overall similarity of two genomes, on the nucleotide level, in one figure [10]. 

This led to the finding that the HAdV-A12 and HAdV-C5 genomes have the highest nucleotide 

identity in the 5000–8000 base pair (bp) region (DNA polymerase). The remaining members of 

species HAdV-A, HAdV-A18 and HAdV-A31, were recently sequenced and analyzed [11,12]. 

3.3. Illegitimate Recombination Offered as a Possible Mechanism for Molecular Evolution 

In 1996, Crawford-Miksa and Schnurr postulated that adenovirus molecular evolution is expedited 

by illegitimate recombination in the hexon gene of human adenoviruses due to slippage of the HAdV 

DNA polymerase in repetitive polypurine stretches [13]. This provided a plausible model as to how a 

species of viruses with a stable DNA genome has the potential to evolve over a short period of time. 

Bioinformatic analysis has revealed that the neutralization determinants are located in two loops that 

cover the surface of adenoviruses in the hexon gene (Figure 1B) [13,14] and that recombination is 

highly structured [6,15-17]. These studies were important because they helped scientists visualize how 

human adenoviruses could evolve. 

3.4. HAdV-B11 

In 2003, the HAdV-B11 genome was the first HAdV from species HAdV-B to be completely 

sequenced [18,19]. As human adenoviruses are important vectors in human gene therapy trials, other 

HAdV genomes have been sequenced and archived in GenBank. The HAdV-B11 genome studies 

marked the first time that phylogenetic analysis was used to examine the relationships between 

homologous genes from all HAdV species.  

Traditionally, HAdVs, as highly contagious respiratory pathogens, have been of immediate 

concerns to military populations, particularly basic training personnel [20,21]. In the 1970s, vaccines 
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against HAdV types 4 and 7 were produced, validated and deployed [22,23]. These vaccines were 

successful in preventing respiratory diseases, particularly acute respiratory disease outbreaks in the 

U.S. for over 20 years [22,23]. The manufacture and deployment of these vaccines were discontinued 

in the 1990s. Soon after production of vaccines against HAdV-E4 and HAdV-B7 ceased in 1997, an 

outbreak of HAdV-E4 erupted at Fort Jackson [24], causing unexpected and highly contagious acute 

respiratory disease. The re-emergence of epidemic outbreaks of febrile respiratory infections caused 

by infection with HAdV-E4 and HAdV-B7 among basic military trainees was of immediate pressing 

concern to the U.S. Department of Defense, which led to the creation of the Epidemic Outbreak 

Surveillance (EOS) Consortium, as a program funded in part and sponsored by the Office of the U.S. 

Air Force Surgeon General. As part of an effort to redevelop the HAdV-E4 and HAdV-B7 vaccines 

and to develop molecular surveillance platforms for respiratory disease pathogen detection, the EOS 

Consortium sequenced 17 genomes of HAdVs, including the vaccine strains for HAdV-E4vac and 

HAdV-B7vac [25] as well as both the HAdV-E4 [26] and HAdV-B7 reference genome [25]. To gain a 

greater understanding of HAdVs in the species HAdV-B, EOS also sequenced prototypes HAdV-C1 

[27], HAdV-B3, HAdV-B16, HAdV-B21, HAdV-B34, HAdV-B50 and HAdV-C6, more than 

doubling the number of completely sequenced genomes at the time. Additional contemporary 

circulating field strains of aforementioned HAdVs were also sequenced. 

Analysis of the HAdV-E4vac and HAdV-B7vac genomes was a turning point in bioinformatic and 

genomic investigation, because the genomes of both viruses were compared and contrasted with field 

strains within the same species as opposed to HAdV-C2 or HAdV-C5, with a fine nucleotide-level 

granularity. Additionally, the implications for all insertions/deletions (indels), larger gaps, and single 

base substitutions in HAdV-E4 and HAdV-B7 were discussed [26]. 

Table 1. Timeline of HAdV sequencing. 

HAdV Year sequenced Reference 

HAdV-C2 1984 [5] 

HAdV-C5 1992 [7] 

HAdV-F40 1993 [9] 

HAdV-A12 1994 [10] 

HAdV-D17 1999 NP 

HAdV-B11 

 

HAdV-B35 

2003 [18] 

[19] 

[28] 

[29] 

HAdV-C1 

HAdV-D9 

HAdV-B16 

HAdV-B21 

HAdV-B34 

HAdV-B50 

2004 [27] 

NP 

NP 

NP 

NP 

NP 
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Table 1. Cont. 

HAdV Year sequenced Reference 

HAdV-E4 

HAdV-B7 

HAdV-F41 

2005 [26] 

[26] 

NP 

HAdV-B3 

 

HAdV-D26 

HAdV-D46 

HAdV-D48 

HAdV-D49 

2006 [30] 

[31] 

NP 

NP 

NP 

NP 

HAdV-G52 2007 [32] 

HAdV-D37 

HAdV-D19 

2008 [8] 

[33] 

HAdV-B14 

HAdV-D8 

HAdV-D22 

HAdV-D28 

HAdV-A31 

HAdV-D53 

HAdV-D54 

2009 [34] 

NP 

[16] 

NP 

[35] 

[6] 

[36] 

HAdV-A18 

HAdV-D36 

HAdV-B55 

2010 [12] 

[37] 

[17] 

NP – not published. 

 

In 2006, five additional HAdV genomes (HAdV-F41, HAdV-D26, HAdV-D46, HAdV-D48, 

HAdV-D49) were sequenced and posted in GenBank (Table 1). However, their genomes were not 

fully analyzed in peer-reviewed articles. Nevertheless, their availability in GenBank allows their use 

for comparison to other HAdV genomes. 

4. Major Advances in the Bioinformatic Revolution of Human Adenoviruses 

4.1. HAdV-G52 

The discovery of HAdV-G52 marked the beginning of the bioinformatic revolution in 

understanding human adenoviruses from a primary sequence perspective. Not only was this event 

significant because a new species (HAdV-G) was introduced, but it was the first time a new 

adenovirus type and species were proclaimed by whole genome sequencing, as opposed to serology 

[32]. However, this was not without controversy as the announcement of the first adenovirus 

discovery in the 21st century was challenged, albeit unsuccessfully [38]. Not only has HAdV-G52 
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been accepted as the 52nd type of human adenovirus, but the new species HAdV-G has also been 

accepted by the International Congress of Virology and Taxonomy. 

4.2. Simplot Analysis of Novel Adenovirus in Species HAdV-C 

Lukashev and coworkers were the first group to use bootscan and Simplot analysis to analyze 

partially sequenced adenovirus genomes for recombination. Using these powerful tools, they found 

that recombination is frequent in adenovirus species HAdV-B, -C, and -D [15]. Interestingly, they 

found one clinical isolate (strain #16700) from species HAdV-C that had high amino acid identity to 

the fiber gene of HAdV-C6 and a hexon gene that was distinct from all viruses in species  

HAdV-C [15]. Moreover, strain #16700 could not be serotyped unambiguously in a neutralization test 

and most likely represents a novel type within species HAdV-C. Bootscan analysis of the 3’ end of the 

#16700 strain genome (nucleotides 18838–33452) demonstrated multiple recombination events. 

However, the location of the recombination breakpoints was not pinpointed. 

4.3. HAdV-D53 

In the previous decade it was cost-prohibitive to sequence entire adenoviral genomes; thus, to 

properly declare a novel adenovirus, one had to use all of the known antisera that reacted against the 

known adenoviruses [39]. When an adenovirus was neutralized by antisera dissimilar to its 

hemagglutination profile, it was erroneously named an intermediate recombinant [40]. Without the 

complete genome sequence it was impossible to know where putative recombination events occurred. 

Today, sequencing a complete adenovirus genome is much cheaper and more efficient, and is of higher 

quality than in 1984. Bioinformatic analysis of fully sequenced recombinant adenoviruses has made it 

possible to determine the exact loci of recombination. Such was the case when HAdV-D53 was 

characterized using genomics and bioinformatics [6]. HAdV-D53 was initially described as 

intermediate HAdV-D22.H8, because partial sequencing of the hexon gene revealed 100% identity to 

the HAdV-D22 hexon sequence and it was assumed that the rest of the genome would yield  

HAdV-D22 as well. The H8 was ascribed to this proposed intermediate when the fiber sequence was 

found to be identical to that of HAdV-D8 [40]. To elucidate the origin of the novel sequence, Walsh 

and colleagues sequenced the whole genome and found adenoviral sequences from known, as well as 

unknown (or as yet unsequenced), adenoviruses (Figure 2C) [6]. In the same study it was also shown 

that recombination within the hexon gene is common in species HAdV-D and that HAdV-D53, as an 

emergent, highly contagious keratoconjunctivitis-causing pathogen, was created by multiple 

recombination events. Specifically, it was shown that the recombination events in the hexon occur at 

the beginning and the end of the epsilon fragment (Figure 3).  

4.4. Recombination is Common in the Penton Gene of Species HAdV-D 

Recently the genome of HAdV-D22 was completely sequenced. Analysis of the penton gene 

confirmed that there were recombination events in two external hypervariable loops in the penton 

coding sequence, encompassing nucleotides 400-600 and 750-1350, which are located on the exposed 

area of the viral capsid [16]. These recombination events were also seen in the penton genes of  
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HAdV-D9 and HAdV-D26, demonstrating that the aforementioned areas represent recombination hot 

spots within species HAdV-D.  

Figure 3. Model of recombination for human adenoviruses. Recombination in the hexon 

gene of HAdVs is hypothesized to occur around nucleotide positions 380 and 1500. These 

positions frame the neutralization determinants (epsilon  fragment) of HAdVs. These 

positions are also demarcated by white arrows. The indicated nucleotide positions are 

based on HAdV-D53 [6]. 

 

 

4.5. Hypothetical Recognition Sites for Recombination in the Hexon Gene 

It is possible that human recombinase proteins have a propensity to bind certain sequences in 

adenovirus genomes. After analyzing aligned HAdV-D hexon sequences, we saw a motif that was 

common at the beginning and end of the epsilon fragment (Figure 4). Because we do not have 

biological data to confirm this observation, we acknowledge that further studies will be required to 

prove such a hypothesis. 

4.6. HAdV-B55 

Currently, there are 55 recognized types of HAdVs [17,41]; the term “type” is used to include 

original serotypes 1-51, determined using traditional serology, as well as the additional four 

genotypes, characterized using genomics and bioinformatics. HAdV-B55, provisionally named 

HAdV-B11.QS, was isolated in China from a patient who died of an acute respiratory disease-induced 

multiple organ failure [42]. HAdV-B55 was recognized as a new human adenovirus when Walsh et al. 

presented comprehensive nucleotide sequence evidence that the HAdV-B11.QS genome was actually 
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97.4% identical to HAdV-B14, with the remaining 2.6% derived from HAdV-B11. Further analysis 

demonstrated that the only part of the HAdV-B11.QS genome that had high homology to HAdV-B11 

was the epsilon fragment in the hexon gene (Figure 5), accounting for the initial serological-based 

characterization as HAdV-B11. 

Figure 4. Hypothetical recognition sites for recombination in the hexon gene. Rectangular 

boxes represent hypothesized recognition sites, which are recognized by hypothetical 

recombinase. Red and yellow ovals are hypothesized recombinase proteins. 

 

 

Figure 5. Fine-resolution bootscan analysis demonstrating recombination in the partial 

hexon gene of HAdV-B55. Bootscan analysis of the hexon gene shows that the proximal 

region, containing Loops 1 and 2, is derived from HAdV-B11. The distal portion is 

derived from HAdV-B14, as is the remainder of the HAdV-B55 genome. Parameters are as 

follows: 200-bp window; 20-bp step; 100 repetitions; neighbor-joining algorithm. This 

figure was adapted from Walsh et al., 2010 with permission [17]. 
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5. The Future 

Further advancements in HAdV bioinformatics are expected as sequencing technology provides us 

a large number of genomes as resources. We expect these advances to develop our understanding of 

the microevolution of HAdVs. For example, the GS-FLX is currently able to sequence 400-600 

million bases per run. With the recent publication of HAdV-D36 [37], there are only 20 remaining 

HAdV types (720 kb of viral genomic DNA) still unsequenced, all within species HAdV-D. 

Theoretically, all of the unsequenced HAdVs could be completely sequenced in one run on the GS 

FLX Titanium with 833-fold coverage of each genome, ensuring high quality data.  

Advances in sequencing technology have also led to necessary changes in HAdV nomenclature. 

All of the HAdVs that have been discovered/characterized in the 21st century have been numbered 

without utilizing exhaustive serology [6,17,32,41]. Novel HAdVs should now be named in one of two 

ways. If a new HAdV is suspected, the whole genome should be sequenced and analyzed via 

phylogenetic analysis. If the proposed HAdV consistently falls into a different lineage than all other 

HAdV species, as was the case for HAdV-G52, then identification of a new HAdV species and 

number is justified. If phylogenetics place the virus in an existing species, but it is sufficiently distinct 

from other members of that species, and/or recombinant in a way that impacts the tropism or extent of 

disease, the virus would be considered novel and deserving of a new type number. A second method is 

traditional serology: if the proposed new virus cannot be neutralized by any of the known antisera, 

then it can be considered as novel and assigned a new number. Ideally, the characterization of any 

HAdV as new should include whole genome sequencing and bioinformatics analysis. 

6. Conclusions 

Advances in sequencing technology have increased the number of human adenoviruses that are 

currently available for comparative analysis. These advances have elucidated our understanding of the 

molecular evolution of HAdVs. Our clearer comprehension of HAdV genomics has also given birth to 

changes in how we type and number novel HAdVs. Since 35 of 55 HAdV genomes have been fully 

sequenced and analyzed, we know that (a) much of the HAdV genome is conserved, (b) the  

non-conserved regions are restricted to the penton, hexon, E3, and the fiber genes, and that (c) 

recombination is a common occurrence at critical loci in the penton and hexon genes of viruses in 

species HAdV-D. We do not know which enzymes are involved in facilitating recombination, the 

specific sequences that are recognized, why recombination appears to occur at a faster rate in species 

HAdV-D than other species, or the loci of other recombination hot spots within the HAdV genome. 

The characterization and discovery of novel HAdVs, as well as the genetic analysis of the 20 HAdVs 

which remain to be sequenced (Table 2), will increase our understanding of HAdV genomics. 
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Table 2. Human adenoviruses that have not been completely sequenced. 

HAdV ATCC number 

HAdV-D10 VR-1087 

HAdV-D13 VR-14 

HAdV-D15 VR-16 

HAdV-D20 VR-255 

HAdV-D23 VR-258 

HAdV-D24 VR-259 

HAdV-D25 VR-223 

HAdV-D27 VR-1105 

HAdV-D28 VR-226 

HAdV-D29 VR-272 

HAdV-D30 VR-273 

HAdV-D32 VR-625 

HAdV-D33 VR-626 

HAdV-D38 VR-988 

HAdV-D39 VR-932 

HAdV-D42 VR-1304 

HAdV-D44 VR-1306 

HAdV-D45 VR-1307 

HAdV-D47 VR-1309 

HAdV-D51 VR-1603 
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