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Background
Understanding the functionality of biological systems requires knowledge of the com-
plex associations across multiple levels of biological organisation [1]. Complex associa-
tions such as molecular events could be responsible for drug reactions or development 
of certain diseases [2]. Until recently, efforts in Information Extraction were primarily 
focused on recognising mentions of relevant entities such as genes and proteins [3] or 
on the extraction of pairwise relations such as drug-disease relations, drug-drug [4] 
and protein-protein interactions [5]. Since these binary relations are too restrictive and 
cannot capture the complexity of associations between biological elements [6], there 
has been increasing interest in Information Extraction approaches for the extraction of 
structured representations, capable of capturing associations between an arbitrary num-
ber of elements [7]. Event extraction provides a way to represent structured information 
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from unstructured text. More specifically, in the biomedical domain, an event refers to 
the change of state of one or more biomolecules (eg. genes and proteins) or interactions 
between them, and is represented by a trigger, usually a verb or its nominalised form, 
and a set of unordered arguments, usually entities, with their corresponding roles (i.e. 
relations) to the trigger [8] . Such representations can be useful in information retrieval 
and question answering systems, for creating biological networks or for inferring new 
associations [9].

For this purpose, several evaluation tasks, such as BioNLP’09 [10], BioNLP’11 [11] and 
BioNLP’13 [12] shared tasks, have been held to allow comparisons of advanced meth-
ods for biomedical event extraction. Event structures can be divided into three catego-
ries: Flat events, that correspond to structures where all arguments are named entities. 
Nested events, that consist of at least one argument which is an event and overlapping 
events that share at least one common argument.

In this work, we focus on nested and overlapping event structures. These structures 
occur widely in biomedical text and are particularly important since they can capture 
different relations between events. In contrast to relations between named entities, rela-
tions between events have a richer structure and thus are more useful in domains, such 
as Biomedicine, where relations are typically more complex.

Figure 1 illustrates an example sentence in the biomedical domain. For this sentence, 
a relation graph is constructed using triggers and entities as nodes and binary relations 
between them as edges. The figure exhibits a Directed Acyclic Graph (DAG) structure. 
Unlike a tree structure, DAGs allow multiple paths between two nodes and as such are 
more appropriate to represent event structures [13]. The DAG-structured relation graph 

Fig. 1  Top: A DAG-structured relation graph (topmost) from the sub-sentence “We discuss the role of this 
transcription factor in influencing Bcl-2/VEGF induction of tumor angiogenesis, ...” from BioNLP’13 CG Shared 
Task  [14]. Bottom: A pair of overlapping and nested events (E2, E3) extracted from the graph with their shared 
argument event, a flat event (E1)
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(topmost) encapsulates 3 event structures in total. It contains the nested event struc-
tures [13] E2 and E3 and a flat event E1. Moreover, E2 and E3 are at the same time over-
lapping events1 (explicitly shown in the relation graph) because they share a common 
argument, E1.

Related work

Most research on biomedical event extraction was advanced by the development of 
shared tasks from the BioNLP community. The initial shared task [10] was focused on 
bio-molecular events. As an extension, BioNLP Shared Task 2011 [11] introduced five 
tasks: the GENIA task (GE), which focuses on transcription factors in human blood cells, 
Epigenetics and Post-translational Modification (EPI), Infectious Diseases (ID), Bacteria 
Biotopes (BB) and Bacteria Interactions (BI). The most recent BioNLP Shared Task 2013 
[12] proposed new tasks to handle events on cancer genetics and pathway curation.

In addition to the shared tasks, approaches for biomedical event extraction are pre-
dominantly pipeline systems [15] that decompose event extraction into a set of subtasks, 
as follows: (i) trigger/entity detection, that determines which words and phrases in a 
sentence potentially constitute participants of an event, (ii) relation detection, that finds 
pairwise relations between triggers and candidate arguments, (iii) event detection, that 
combines pairwise relations into complete event structures.

Joint learning approaches have been explored [16–19], with a focus on finding relation 
graphs and detecting events using rules. Unlike those approaches, McClosky et al. [13] 
modelled events into tree-structures using dependency parsing, thus ignoring overlap-
ping events. Most recently, Trieu et al. [20] proposed an end-to-end nested event extrac-
tion model based on large language models. Zhu and Zheng [21] also developed a joint 
end-to-end event extraction model that uses a penalty based strategy to reconstruct 
nested events. Instead of a joint learning approach, we focus on the pipeline setting to 
gain a better understanding of the contribution of each component to the extraction of 
nested events.

Neural methods for event extraction were also explored in the newswire domain [22, 
23]. They were mainly applied on the ACE 2005 dataset which does not contain nested 
events [24], and as a result cannot detect nested and overlapping events.

Objectives

We compare two neural models for nested and overlapping event detection: (i) a novel 
EXhaustive Neural Network (EXNN) model, where all the possible event structures are 
generated from predicted relations and detected as an event or not, and (ii) a Search-
based Neural Network (SBNN) model [25] that detects overlapping and nested events 
with beam search. For both models, we describe in detail the candidate events construc-
tion process, which is performed on binary relations to create DAG structures. On these 
structures we detect nested and overlapping events in a bottom-up manner. We com-
pare our models against the event detection component of the state-of-the-art pipeline 
event extraction system Turku Event Extraction System (TEES) [15] and evaluate them 

1  More details can be found in the shared task website: http://​2013.​bionlp-​st.​org/​tasks/​cancer-​genet​ics.

http://2013.bionlp-st.org/tasks/cancer-genetics.
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on more datasets in BioNLP Shared Task 2013 than previous work [25]. Finally, we con-
duct in-depth analysis to determine the strengths and weaknesses of each model.

Methods
Neural models

Search‑based model

We evaluate the existing SBNN model [25] on more event datasets than already 
reported. Moreover, we investigate the upper- and lower-bound performances of the 
model in a pipeline setting trained on multiple scenarios. In detail, SBNN constructs 
events from a relation graph by structured prediction. It resembles an incremental tran-
sition-based parser [26] that considers the search order, actions and representations 
composed in DAG structures. Transition-based methods have been investigated only 
for flat structures so far [27, 28], therefore, to address the overlapping and nested struc-
tures, our model performs beam search on relation graphs to select actions for event 
construction. We define three actions applied at each time step to each event argument: 
add the argument (ADD), ignore the argument (IGNORE) and add the argument and 
construct an event candidate (CONSTRUCT). We use all the beams instead of the the 
best path only [26] to enable prediction of overlapping and nested events. Figure 2 shows 
a snapshot of the search procedure within one time step as applied to a relation graph to 
detect event E2 (see Fig. 1). SBNN is parameterized by a value k that controls the width 
of beam search. A high value of k allows multiple paths to be expanded, but increases the 
computational complexity of the model.

Candidate event structures are generated using search and then the predicted events 
are constructed for each trigger of the relation graph in a bottom-up manner. The model 
predicts flat events first and then the representations of the flat events become the 
arguments of the nested events. The search process terminates when no flat events are 
detected (see Additional file 1: Schematic architecture).

Fig. 2  An example of the search procedure of the Search-based neural network (SBNN). After one ADD and 
one CONSTRUCT actions the model is able to detect E2. The Buffer contains the arguments of the previous 
level. Only one beam (k = 1) is expanded in this example for brevity
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Exhaustive model

In contrast to SBNN, the exhaustive approach generates all the possible candidate 
event structures from a given set of relations instead of performing a search over 
them. In detail, we develop a tree-LSTM based model, which differentiates it from 
the exhaustive approach in [20]. Our model input consists of the candidate structures 
associated with each trigger. For each sentence, we prepare contextualised word rep-
resentations using a Bidirectional Long-Short Term Memory (BiLSTM) network [29] 
which is shared among all event structures. Similar to the SBNN model, we represent 
each relation by concatenating the representation of the trigger, the role and the argu-
ment for each event structure. We use the relation representation without actions as 
its input. Each relation representation is also concatenated with IN or OUT embed-
dings, which are trainable parameters, to indicate if the relation is part (IN) or not 
part (OUT) of the event structure. We concatenate the multiple relation representa-
tions of an event structure (i.e., candidate event layer in Fig. 3).

Since the EXNN does not consider actions and search orders, including the order 
of arguments, we employ a Child-Sum Tree-LSTM [30] on the concatenated rela-
tion representations. The Child-Sum Tree-LSTM allows the network to selectively 
incorporate information from each child, i.e., each relation of each candidate event 
structure. We then create an event representation from the output of the Tree-LSTM. 
This representation is passed through a multi-layer perceptron with a non-linear acti-
vation to produce a reduced representation of 2 values, representing the number of 
classes (event or no event). Finally, using a softmax activation function the structures 
are classified as forming an event or not.

Fig. 3  A schematic of the exhaustive neural networks (EXNN) architecture during the bottom-up detection 
of events E1 and E2 of Fig. 1
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Candidate events construction

As shown in Fig. 4, we construct candidate events based on pairwise relations in four 
steps. For our models, we assume that pairwise relations between triggers and argu-
ments are given for each sentence.

The first step involves the preparation of the input relations. To construct these 
relations we break apart each event structure into all possible pairwise relations. A 
pairwise relation can be seen as a triple (trigger, role, trigger/entity). In Step 1 of Fig. 4, 
we show the IDs of triggers (starting with TR) and entities (starting with T), respec-
tively. For instance, the first relation triple contains: TR1 which represents Positive 
Regulation (PR) as the trigger, Cause as the role, and T1 which represents Gene-or-
Gene-Product (GGP) as the argument. In the second relation triple, the argument 
TR2 which represents Blood Vessel Development (BVD) is a trigger itself and as such 
this is an example of a nested event structure.

The second step involves the creation of an adjacency list for each trigger. In detail, 
we create a list for each trigger and add all the arguments that are associated with it. 
For example, the list associated with the TR1 trigger has three arguments, while the 
list for TR2 contains only one argument.

The third step is the construction of the DAG structure. Triggers or entities represent 
nodes, while pairwise relations correspond to directed edges between two nodes, either 
between two triggers or a trigger and an entity. Following [31, 32], we create a topological 
sorting of the given trigger-argument relations. A topological sort or topological order-
ing of a directed graph is a linear ordering of its vertices such that for every directed 
edge uv from vertex u to vertex v, u comes before v in the ordering. In the resulting DAG 
structure shown in Step 3, some arguments are triggers such as TR2.

The last step involves the template extraction and matching process. We build 
event structure patterns from the training data and use them as templates of valid 

Fig. 4  An illustration of the candidate events construction process given pairwise relations extracted from 
the relation graph in Fig. 1 involving events E1, E2 and E3. Nodes in green correspond to triggers and nodes 
in blue correspond to entities
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event structures. The uniqueness of event structures is based on a multiset represen-
tation, since an event argument (Role, Argument Type) can appear multiple times 
in an event structure. For example, for events E1, E2 and E3 in Fig. 1, we create the 
respective multiset representation under PR and BVD as shown in Step 4. We extract 
templates for each event type t ∈ T  resulting in a set of templates Ft . To perform tem-
plate matching, we create a multiset (m) representation A(m)

t  for each candidate event 
structure A of type t. Then, we compare the multiset representation A(m)

t  to each Ft 
representation in the templates of type t. If A(m)

t  does not correspond to any of the Ft 
structures, then it is discarded, otherwise, it is considered a valid event structure.

Bottom‑up event structure classification

In this section, we describe the event detection process. We detect events from the 
bottom level of the DAG structure going up. This way, the representations of events in 
the lower level are used as arguments in the events of the upper levels.

Algorithm 1 describes the procedure for bottom-up event structure classification. 
We apply the algorithm to the output of the candidate generation process described. 
We start event prediction at the bottom of the DAG structure, with no groups ( g = 0 ) 
in Line 1. Since this is a DAG structure, each group g can contain many trigger-struc-
ture pairs TS. In turn, each TS pair can contain many event structures A. This is the 
case where many events are associated with the same trigger and we refer to those as 
overlapping events.
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Then for each event structure A, we check if any of its arguments are events. If there is 
an event argument which is a trigger, essentially representing another event, then we check 
how many events have been predicted previously for this trigger. We then generate as many 
new structures equivalent to the number of event predictions for that trigger or event argu-
ment, as stated in Lines 5–7. In effect, the event structures at the higher levels of the DAG 
structure use the event representations of the predicted event structures at the lower levels. 
For example, in Fig. 1, if we are currently predicting events under the trigger influencing, we 
check if any of its n arguments are events. If at a particular point in our algorithm, we con-
sider both triggers (represented by induction and angiogenesis) as arguments, we check how 
many events have been predicted for each of these triggers. Since in this case there is only 
one event associated with angiogenesis, which is E1, only one structure is generated for the 
angiogenesis event argument, as shown in Fig. 5. On the contrary, if the trigger induction 
has N event predictions, then influencing has to be replicated N times since each sub-event 
prediction is unique. In Line 7 of the algorithm, we do this for each event argument of a 
prospective event structure A.

For each generated structure Sm , we score it using a neural network (Line 9) (see Addi-
tional file 2). This part is slightly different in the search-based model, since what will be 
scored by the neural network is the partially-built event structure. If the prediction score 
for the current event structure is below a specified threshold, the prediction process stops, 
otherwise, the process continues to the last group g of the event structures in the sentence 
(Lines 14–16).

Fig. 5  An example of the Algorithm 1 applied to the events of Fig. 4. At g = 0 we see the detection of E1

Table 1  An overview of the three BioNLP 2013 ST datasets

Dataset Documents Entity types Event types

CG 2013 600 Abstracts 18 40

PC 2013 525 Abstracts 4 23

GE 2013 34 Full papers 2 13
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Results
Evaluation corpora

We follow Björne and Salakoski [15] and evaluate our models on the following tasks: 
Cancer Genetics (CG), Pathway Curation (PC) and GENIA Event Extraction for NFkB 
knowledge base (GE) [12].

Tables  1 and  2 illustrate the overview and detailed statistics of the BioNLP 2013 
Shared Task datasets. The total percentage of the breakdown of events does not equal 
to 100% because nested and overlapping events may have an intersection, meaning, a 
nested event can be an overlapping event and vice versa. The CG dataset contains the 
largest number of entity and event types, annotated events, documents and sentences. 
We can observe that while the CG and PC datasets have a relatively low number of 
inter-sentence events, the GE dataset includes a higher number of inter-sentence 
events. Furthermore, the GE dataset was constructed using full papers while the other 
two datasets include only abstracts which contain very condensed and summarised 
information. This results in the relatively higher ratio of unknown (UNK) words (i.e., 
words not seen in the training set) in the GE dataset compared to the PC and CG 
datasets. Note that the percentage of unknown words in the dev/test set is computed 
with respect to the vocabulary of the training set in each dataset (i.e. the percentage 
of unknown words in the training set is zero).

Table 2  Details of the three BioNLP 2013 ST datasets

Dataset Item Train Dev. Test

CG 2013 Documents 300 100 200

Sentences 2640 850 1610

Pct unknown words 0% 10.63% 10.68%

 Events 9422 3217 5530

 Flat events 45.31% 44.07% NA

 Nested events 34.95% 36.46% NA

 Overlapping events 41.05% 43.05% NA

 Inter-sentence events 4.08% 3.11% NA

PC 2013 Documents 260 90 175

Sentences 1900 660 1254

 Pct unknown words 0% 11.66% 11.50%

Events 6,657 2320 4004

 Flat events 33.28% 34.74% NA

 Nested events 38.90% 38.87% NA

 Overlapping events 54.88% 52.80% NA

 Inter-sentence events 4.70% 2.41% NA

GE 2013 Documents 10 10 14

Sentences 1051 1104 1188

 Pct unknown words 0 % 16.84% 17.07%

Events 2882 3259 3301

 Flat events 53.57% 42.25% NA

 Nested events 31.15% 38.96% NA

 Overlapping events 26.57% 35.80% NA

 Inter-sentence events 10.55% 22.55% NA
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In this work, we focus only on sentence-level events. The information of flat, nested 
and overlapping events is not available for the test sets since the annotations for the 
test sets are not provided and instead the evaluation is performed by uploading the 
predictions to the task organizers servers [15].

We use the official evaluation script [12] to measure the performance of the model 
on nested, overlapping and flat events, which uses approximate span and recursive 
event matching. We first separate the nested, overlapping and flat events, respectively. 
Then we compute Precision (P) and Recall (R) for each category and in particular for 
nested events, we compute them as follows:

The evaluation script detects nested events by comparing the whole tree structure down 
to its sub-events until it reaches the flat events. Hence, the performance scores of the 
nested events inevitably include the performance on flat events.

Evaluation settings

We evaluate the two event detection models (EXNN and SBNN) in two ways, (i) 
Against the event detection component of a state-of-the-art event extraction model 
(TEES), namely, Event Detection Comparison, (ii) As an event detection component 
within a pipeline model, with state-of-the-art Named Entity and Relation Detection 
components, namely, End-to-end Event Extraction. For SBNN, we choose k=8 for the 
experiments, as it achieves the best performance [25].

Event detection comparison

TEES [15] models event extraction as a series of classification tasks with the depend-
ence on syntactic and dependency path features, which they acquire with the use of 
external tools. In contrast, we use neither syntactic nor any other external features, 
relying only on the data provided by the task. For our experiments we compare with 
TEES single models in contrast to the ensemble methods, as this enables us to make 
a direct comparison with TEES in a minimal setting. We evaluated the TEES pub-
lished trained models on the tasks while keeping the same train/dev/test splits for 
our models. Our models were trained using the predicted relations from TEES pre-
vious components merged with the pairwise relations decomposed from the gold 
events. During inference, we predict event structures using only the predicted rela-
tions from TEES. We exclude feature- or rule-based models in our comparison, since 
they reported lower performance in our initial experiments (specifically the Event-
Mine system  [33]) when compared to the neural-based model TEES. We evaluate 
both models, EXNN and SBNN against TEES on the three BioNLP Shared Task 2013 
datasets: Cancer Genetics (CG), Pathway Curation (PC) and GENIA Event Extraction 
for NFkB knowledge base (GE).

Precision =

#Correctly predicted nested events

#All predicted nested events
,

Recall =
#Correctly predicted gold nested events

#All gold nested events
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End‑to‑end event extraction

To evaluate the upper-bound and lower-bound performance of our proposed models, 
we performed experiments using neural-based state-of-the-art components for named 
entity and relation detection into a pipeline approach. In the pipeline approach as pro-
posed in [15, 24], the output of each component serves as the input for the next com-
ponent. For example, the event structure detection component takes as input both 
the output of the relation extraction component and the entity and trigger detection 
components.

We set up three different pipeline training scenarios to evaluate the event detection 
model. Each scenario uses different inputs to train the event detection model and pre-
dict events. In scenario 1 (upper-bound), we use gold relations and entities to train the 
event detection model and predict event structures. This will set the upper-bound recall 
of our proposed models. In scenario 2 (pipeline), we train each component using gold 
relations and entities but predict events using predicted relations and entities. Following 
TEES, correctly predicted relations along with false positives are included into the train-
ing data to enable the model to handle noise during inference. This scenario will meas-
ure the performance of our event detection model against the state-of-the-art, which we 
described in the previous section. In scenario 3 (lower-bound), we train each component 
using the predictions from the previous models in the pipeline. More specifically, the 
relation extraction component uses the predictions of named entity and trigger detec-
tion module, and the event detection model uses predicted entities, triggers and rela-
tions during training. As expected, this will result in lowest performance for the event 
model thus setting its lower-bound.

We used the models of Ju et al. [3] for named entity and trigger detection and Chris-
topoulou et al. [34] for relation extraction, respectively. In the following paragraphs we 
describe how we incorporate each of these components into the event detection pipe-
line. To extract nested named entities and triggers, we applied the layered BiLSTM-CRF 
model [3]. In addition to the nestedness between either entities or triggers spans, entities 
can be also nested within triggers spans. Based on the observation that triggers depend 
on entities, we force the model to detect entities first, which are further used to encour-
age the detection of triggers. These predictions will be fed into the second component 
for relation extraction. We modified the CRF layer in the module following Minkov 
et al. [35] to increase the recall of entities and triggers and alleviate error propagation to 
the next component. Specifically, we first tuned the layered BiLSTM-CRF using Bayes-
ian Optimisation [36] on the development set to get the best model. Then, we applied 
extractor tweaking  [35] to the CRF layer, producing higher recall without significantly 
hurting the recall-precision trade-off.

Regarding the extraction of relations for event detection, we modified the relation 
extraction model proposed by Christopoulou et al. [34]. The first step involved breaking 
down all events into binary interactions, using the argument roles as semantic relations 
between trigger-argument pairs. In particular, we enable Trigger-Entity and Trigger-
Trigger associations, forcing Entity-Trigger pairs to share the “no relation” category. In 
case the models were trained using gold annotated data (scenario 1), we augmented the 
training dataset with additional pairs, using equivalent entities that exist in the train-
ing set (marked with ∗Equiv in the original annotation files). In case an argument role 
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contained enumeration (e.g. Theme1), this was removed and the role without enumera-
tion was used instead (e.g. Theme). In case where models were trained using predicted 
training data (scenario 2), we merged the predictions of the Named Entity Recognition 
module with the gold annotations by keeping only the correctly identified (True Posi-
tives) as well as the incorrectly identified (False Positives) entities and triggers. We ena-
bled the usage of different embedding spaces to embed relative position embeddings to 
the first and the second argument of each pair, respectively. Finally, we allowed relations 
between nested named entities and triggers.

We perform our experiments of the pipeline models on the two bigger datasets, the 
BioNLP 2013 Cancer Genetics (CG) and the Pathway Curation (PC) dataset.

Quantitative results

Event detection results

Table 3 shows the event detection performance of the proposed models on all events of 
the BioNLP 2013 shared tasks test sets compared to the TEES system [15].

Both the EXNN and SBNN models yield higher precision in two datasets (CG and GE, 
respectively). This can be attributed to the bottom-up prediction mechanism which only 
predicts nested events once flat events are predicted. This leads to less noise and more 
precision, which in turn also affects recall. In the CG dataset, which is the biggest data-
set in terms of event instances and proportion of nested and overlapping events, SBNN 
outperforms all the other models. Using the Approximate Randomisation test [37], we 
validated that there is no significant statistical difference between SBNN and TEES 

Table 3  Event detection performance on the BioNLP 2013 shared tasks test sets

Bold indicates best performing Precision (P), Recall (R) and F1 measure for the respective scenarios and models

Dataset Model P R F1

CG 2013 TEES 0.6142 0.5293 0.5686

EXNN 0.6555 0.4810 0.5549

SBNN 0.6367 0.5143 0.5690
PC 2013 TEES 0.5885 0.4790 0.5281

EXNN 0.6151 0.4088 0.4912

SBNN 0.5531 0.4855 0.5171

GE 2013 TEES 0.5895 0.4029 0.4787
EXNN 0.5925 0.3881 0.4690

SBNN 0.6155 0.3859 0.4744

Table 4  Performance comparison between for three pipeline scenarios on the CG 2013 
development set

Bold indicates best performing Precision (P), Recall (R) and F1 measure for the respective scenarios and models

Scenario Model P R F1

Upper-bound EXNN 0.9762 0.8745 0.9225

SBNN 0.9700 0.8979 0.9326
Pipeline EXNN 0.5690 0.5331 0.5505

SBNN 0.5926 0.5384 0.5642
Lower-bound EXNN 0.5621 0.3332 0.4184

SBNN 0.5656 0.3403 0.4249
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F1-score performance (significance at p < 0.05 ). Thus, we conclude, that the SBNN 
model achieves performance comparable to the TEES event detection module without 
using syntactic features or external tools. This finding suggests that the SBNN model can 
be applied to other domains with no need for feature engineering.

End‑to‑end event extraction results

Tables 4 and 5 show the performance of the event detection models for the three sce-
narios: upper-bound, pipeline, lower-bound on the development sets of BioNLP 2013 
CG and PC respectively.

For the pipeline scenario, where the models are trained on gold relations and evalu-
ated on predicted relations, the SBNN model outperforms EXNN on both sets. These 
predicted relations were extracted using the relation extraction system of Christopoulou 
[34] trained on gold entities. We can see that the scores are lower than in upper-bound 
scenario where event detection models rely on gold relations.

The lower-bound scenario shows the performance of the event detection models when 
the pipeline components are trained on the predictions of previous components. This 
scenario results in the lowest scores, setting the lower-bound performance on the event 
detection component as expected. Between the models, the search-based model yields a 
higher F1-score.

In the three pipeline scenarios, the results show that the SBNN model performs con-
sistently better than the EXNN model and thus corroborates the reported performance 
against the state-of-the-art in the previous section.

Discussion
In this section, we discuss the different aspects of the SBNN model and perform error 
analysis. We focus our analysis on BioNLP CG 2013 development dataset.

Model analysis

The performance of our model on the test sets (Table  3) showed that we can achieve 
comparable performance with the state-of-the-art TEES model but without the syntactic 
features or the external tools that the latter leverages. This suggests that our model is 
easier to apply to other domains. Another observation from the results is the relatively 
low F1-scores on the GE dataset for both TEES and our model. This can be attributed to 

Table 5  Performance comparison between for three pipeline scenarios on the PC 2013 
development set

Bold indicates best performing Precision (P), Recall (R) and F1 measure for the respective scenarios and models

Scenario Model P R F1

Upper-bound EXNN 0.9528 0.8029 0.8715

SBNN 0.9431 0.8366 0.8867
Pipeline EXNN 0.5167 0.4598 0.4866

SBNN 0.5322 0.4796 0.5045
Lower-bound EXNN 0.4678 0.2435 0.3203

SBNN 0.4748 0.2642 0.3395
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GE’s high number of inter-sentence events ( 22.55% vs 2.41% vs 3.11% ) and percentage 
of unknown words ( 16.84% vs 11.66% vs 10.63% ), shown in Table 2, compared to PC and 
CG datasets respectively. These inter-sentence events cannot be filtered since we do not 
have access to the test sets as stated previously.

Table  6 shows the performance of the models on nested and overlapping events in 
terms of F1 score, on the CG task 2013 development set. The results were obtained by 
taking into account the whole DAG structure of the predicted and gold events. Results 
show that both SBNN and EXNN outperformed TEES, confirming that our neural-
based models can efficiently capture nested and overlapping event structures better. The 
EXNN model performs slightly better than SBNN as expected since it is an exhaustive 
method at the cost of more computation and with a lower performance in comparison 
with SBNN.

We also observe that the performance of our pipeline model which uses predicted 
entities (Table  4) is better than TEES which uses gold entities (Table  6), with 0.5505 
(EXNN) and 0.5642 (SBNN) vs 0.5216 (TEES) F1-score, on the CG 2013 development 
set. Furthermore, our pipeline model (either using EXNN or SBNN) performs better 
than the pipeline model of DeepEventMine [20] (Table 3 in their paper) with F1-score 
of 0.5020 using predicted entities, despite the usage of BERT embeddings in their input 
representation. This finding would make our pipeline model the state-of-the-art model 
among pipeline systems. However, we leave further comparisons as part of future work.

Error analysis

We perform error analysis of SBNN model on the BioNLP CG 2013 development set (see 
Additional file 3). Particularly, we focus our analysis on those event types with F1-scores 
lower than 50% , which attribute to 17 out of 40 event types. Out of these, seven (7) have 
F1-scores equal to zero, which are due to the data sparsity in the training and devel-
opment sets ( < 5 and < 15 instances in train and development sets respectively, except 
DNA methylation), hence their low performance.

Since our model is trained to predict events in a bottom-up manner, we also observed 
a reasonable difficulty in predicting deeply nested events. Concretely, the results showed 
that out of the 17 event types with F1-scores less than 50% , four (4) event types have 
the largest number of training instances (at least 200). These include: Regulation, Posi-
tive Regulation, Negative Regulation and Planned Process. In our analysis, we found that 
these event types are the most frequent having at least two (2) arguments, indicating 
their complexity given the search-based prediction process. This is relative to most of 
the other event types which only have one argument. Another finding is that the three 

Table 6  Performance comparison on nested and overlapping event detection on the CG task 2013 
development set

Bold indicates best performing Precision (P), Recall (R) and F1 measure for the respective scenarios and models

Model Nested Overlap Flat

TEES 0.4270 0.3449 0.5681

EXNN 0.4714 0.3785 0.6190
SBNN 0.4524 0.3692 0.6050
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regulation-related events have the largest depth of nested structures. Although our 
model outperforms the TEES model in predicting nested and overlapping events, we can 
use this finding to further investigate how to improve the performance.

While SBNN has higher precision, TEES has higher recall. This is expected since the 
latter generates all possible candidate events from predicted relations [15] and classifies 
them. The higher precision of our model, especially in the nested and overlapping struc-
tures such as Regulation (39.49 vs 32.47), Negative Regulation (54.34 vs 51.27), Positive 
Regulation (52.25 vs 45.40) and Planned Process (54.85 vs 51.83), can be attributed to the 
bottom-up search prediction procedure.

We also plot the distribution of event types with a particular number of arguments 
since our search-based model applies actions to each argument at every time step. The 
more arguments there are, the more time steps the search-based model would need to 
learn an event structure.

Figure 6 shows a heatmap indicating the number of event type instances in the gold 
training set with a particular number of arguments. Darker shades mean that it has a 
relatively high number of instances which is indicated by the number. For example, Fig. 6 
shows that Positive Regulation event type has 1,047 instances which can be broken down 
into the following: zero (0) instances with zero (0) argument, 526 instances having one 
argument and 521 instances having 2 arguments. We can observe that most of the event 
types have at least one argument. Furthermore, there are specific event types that have 
both one and two arguments such Positive Regulation, Negative Regulation, Regula-
tion. Some event types mostly appear as one-argument events such as Gene Expression, 

Fig. 6  Distribution of event structures according to number of arguments in the BioNLP CG 2013 gold 
training set (gold relations)
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Growth, Cell Proliferation, Cell Transformation, etc. Figure 6 also shows an outlier event 
structure of type Gene Expression which has one occurrence with 5 arguments.

Figure 7 shows the distribution of event structure instances on the development set 
using the gold relations. We can observe the training (Fig.  6) and development set 

Fig. 7  Distribution of event structures according to number of arguments in the BioNLP CG 2013 gold 
development set (gold relations)

Fig. 8  Distribution of event structures according to number of arguments in the BioNLP CG 2013 predicted 
development set (predicted relations)
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(Fig.  7) have a relatively similar distribution of event types and the occurrences of 
event structures with a particular number of arguments. However, we can clearly see 
that the event type distribution is imbalanced in both data partitions.

Figure  8 shows the distribution of event structures using the predicted relations 
on the development set. We can observe that compared to the event structures from 

Fig. 9  Distribution of event structures according to the number of nested, overlapping and flat events in the 
BioNLP CG 2013 gold training set (gold relations)

Fig. 10  Distribution of event structures according to the number of nested, overlapping and flat events in 
the BioNLP CG 2013 gold development set (gold relations)
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the gold relations in Fig. 7 the event structures distribution in Fig. 8 follows the same 
pattern in terms of the distribution of event types occurrences but in a slightly more 
diffuse manner, that is, over many argument counts. For example, while in Fig. 7 the 
event structure instances of Positive Regulation appear only as having one or two 
arguments, in Fig. 8 Positive Regulation has instances with zero (0) to six (6) argu-
ments though most of them are still in the 1-2 arguments, which is expected. The 
reason for this deviation from the gold relations is that the predictions contain false 
positive relations.

Figure  9 shows the distribution of the event structures according to the number 
of nested, overlapping and flat events in the BioNLP CG 2013 gold training set. Fig-
ures  10 and  11 show the distribution on the development set using gold relations 
and predicted relations respectively. We can observe that visually our predictions 
match closely the distribution across event types of the training and development 
gold sets, indicating that our model learned to capture the nested and overlapping 
events. More specifically, we notice that the event types in descending order of 
counts for nested events in both the training and development sets are the follow-
ing: Positive regulation, Negative regulation and Regulation. This same sequence is 
true for the predictions of our model. Our model also predicts the most overlapping 
events in the Positive regulation and the most flat in Gene expression which corre-
spond to the types that have the most occurrences in each category for the training 
and development set.

The uneven distribution of event categories across event types showed visually via 
the heatmaps highlights the challenge that models need to capture. For example, in 

Fig. 11  Distribution of event structures according to the number of nested, overlapping and flat events in 
the BioNLP CG 2013 predicted development set (predicted relations)
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both the training and development set we have occurrences for Amino acid catabo-
lism but this is never predicted by our models and this can be attributed to the very 
low number of occurrences in the said dataset partitions. However, in some event 
types such as Ubiquitination, our model is able to predict correctly despite the low 
number of occurrences. In this case, it may be that the surrounding semantic con-
text provides enough information to disambiguate such cases.

Computation efficiency

To compare the computational efficiency, we counted the number of classifications 
(or action scoring functions calls) performed by each model on Cancer Genetics 
2013 development set. We choose the number of classifications as a computational 
efficiency metric since it is independent of the computer architecture. The computa-
tional efficiency of SBNN depends on the parameter k that defines the beam search 
width, and for the comparison we choose the best performing value based on the 
event detection performance ( k = 8).

Table 7 shows the number of classifications performed by the different models on 
the CG 2013 development set. SBNN requires about two-thirds the computational 
cost than TEES and 6 times less than EXNN. SBNN performs fewer classifications 
because of its threshold and beam width k parameters, which filter and effectively 
limit the event structures that will be passed to the neural network for classification. 
Therefore, SBNN is more computationally efficient than TEES and EXNN.

Conclusion
In this work, we compared two neural models for nested and overlapping event detec-
tion: a novel EXhaustive Neural Network model and a Search-Based neural Network 
model. The SBNN model outperforms the EXNN model and achieves comparable 
performance with the state-of-the-art TEES event detection model without using 
syntactic features or external tools. Experimental analyses revealed some desirable 
characteristics of the SBNN model, such as its flexibility and computational effi-
ciency, while EXNN was found to be better in capturing nested and overlapping event 
structures.

As future work, we aim to apply the models to other DAG structures such as 
nested/discontinuous entities  [38]. Furthermore, we will investigate contextualised 
input representations (e.g. BERT embeddings  [39]) to improve the event detection 
especially for sparse event types and deeply nested structures. Finally, a more detailed 

Table 7  Computation efficiency on the CG 2013 development set

Bold indicates best performing Precision (P), Recall (R) and F1 measure for the respective scenarios and models

Model Number of 
Classifications

TEES 6141

EXNN 25,766

SBNN 4093
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comparison between our models and DeepEventMine  [20] in the pipeline setting is 
needed to confirm our previous observations.

Abbreviations
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Bidirectional long short term memory; CRF:: Conditional random field.
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