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Anabolic Resistance: An Uncomfortable Truth for Clinical Trials
in Preventing Intensive Care–acquired Weakness and Physical
Functional Impairment

Acute muscle wasting occurs rapidly in critically ill patients and
results in long-lasting physical functional impairment, at substantial
physical, emotional, and economic cost to patients, families, and
society. After critical illness, patients struggle to regain muscle mass,
and rehabilitation strategies have yet to be demonstrated to be
successful, emphasizing the need for primary prevention to minimize
muscle loss during the acute phase. Loss of muscle mass is the result
of altered protein homeostasis, which is in turn underpinned by
intramuscular inflammation and bioenergetic failure from altered
substrate use (1, 2). Given the scale of the clinical problem, and the
lack of therapeutic options, maintaining muscle mass and associated
physical function is of increasing interest to clinical trialists and
funding bodies (3). One frequently discussed possibility is to increase
protein intake to prevent the loss of muscle protein, but trials have in
general not been successful. Designing appropriate interventional
studies requires additional physiological and mechanistic
knowledge, such as the ability of skeletal muscle to both receive and
respond to such interventions. The recent study by Chapple and
colleagues (pp. 740–749) in this issue of the Journal supplies
exactly this (4).

Dynamic measurements of physiological processes are
challenging to both observe and quantify. Molecular medicine
remains an imperfect window, with multiple competing and
interacting intracellular pathways to account for, in addition to the
entropic requirements of these processes. Stable isotope tracer
methodology has existed for almost eight decades and has over time
become increasingly sophisticated as a summative measure of

physiological processes (5). This technology, which uses stable
isotope–labeledmetabolites, is the only method available to quantify
the flux or rate of metabolic and physiological pathways in vivo in
humans, without any risk for the subjects because of the use of
nonradioactive isotopes that are already naturally occurring. Challenges
with this technology are the relatively high costs for material and
analyses and the required expertise in mass spectrometry and kinetic
modeling. Chapple and colleagues (4) have used this technology by
combining different stable isotope tracers of amino acid and protein
metabolism in an innovative way, quantifying several components of
protein metabolism at the same time.

Chapple and colleagues (4) offer a unique physiological
observational study filling two important gaps in knowledge of
relevance to current trials of nutritional protein supplementation in
critically ill patients. First, is amino acid absorption impaired as
measured by gut lumen to central circulation flux? Second, is the
dynamic capacity of skeletal muscle to respond to nutritional
amino acids impaired? Stable isotope infusions into two compartments
(luminal and central circulation) were performed, and incorporation of
amino acids into a third compartment (skeletal muscle) was measured,
encompassing the entirety of the nutritional amino acid
supplementation pathway and its potential downstream impact.

Three distinct but related observations were made. First,
duodenum-administered protein absorption into the central
circulation was not impaired in critically ill patients compared with
healthy control subjects over 6 hours. Second, the response of the
whole-body protein balance to an enteral protein feed was similar in
patients and control subjects, despite overall higher whole-body protein
turnover (protein breakdown and synthesis) in the patients. Last,
although fasting muscle protein synthesis rates did not differ between
groups, a blunted response inmuscle protein synthesis was seen in
critically ill patients after intraduodenal protein administration. This
resulted in 60% less nutritional protein being incorporated into skeletal
muscle in critically ill patients compared with healthy control subjects,
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in keeping with the presence of anabolic resistance. The convergence of
data from different isotopes offers confidence in the observation of this
phenomenon, unwelcome as it might be.

The impact of these data on routine clinical practice is likely to
be minimal, though one might reasonably hypothesize that if
anabolic resistance occurs in bolus feeding, then it is likely to occur
in continuous feeding or even be more marked (6). This challenges
current practice guidelines in addition to challenging current
recommendations of increasing protein delivery to prevent muscle
wasting, as this is likely to result in diminishing returns. However, a
normal effect on whole-body protein balance has been observed in
this and other studies, which could have beneficial effects for
patients (7).

The impact of these data on the design of current and future
clinical trials is, however, quite significant and potentially
disheartening. Three multicenter randomized trials of increased
protein delivery are currently ongoing: the EFFORT (Effect of Higher
Protein Dosing in Critically Ill Patients) trial, the PRECISe (Protein
Provision in Critical Illness) trial, and TARGET-PROTEIN
(Augmented versus Routine Approach to Giving Energy-PROTEIN)
trial. These data suggest that the idea that we may maintain muscle
mass in critically ill patients by stimulating muscle protein synthesis
with nutritional protein should be reconsidered. The scale of anabolic
resistance seen suggests that the effect size of the intervention would
be quite small (8). Possibly, higher protein doses will overcome this
problem, but this is not guaranteed, and higher doses may even be
harmful. Anabolic resistance in elderly patients can be overcome
by increasing protein intake or by combining it with resistance
exercise (9), but whether this will work in acutely critically ill patients
needs to be studied. Age-related anabolic resistance may compound
this further, as the average age in Chapple and colleagues’ study was
50 years, a decade or so younger than the average critically ill patient.
Worryingly, these data suggest that the synergistic interaction
between exercise and nutrition may also be blunted in the
acute phase.

These data do offer a clear steer in the field of intervention
development for the prevention and treatment of muscle wasting in
critically ill patients. Undifferentiated hydrolyzed protein formulae
are likely to offer little benefit in terms of amino acid absorption.
In devising strategies, researchers should perhaps consider focusing
on underpinning abnormal physiology andmetabolism of altered
protein homeostasis: that of intramuscular inflammation and
altered substrate use leading to bioenergetic failure (10).
Immunomodulation, substrate switching, and altering peripheral
insulin sensitivity are some of the more promising mechanisms
to target, which may then reduce anabolic resistance and allow
muscle mass maintenance from nutritional protein delivery and/or
exercise. Muscle protein breakdown is the other side of the protein
homeostasis equation that is significantly affected in critically ill
patients (1, 11–13) and perhaps needs to be examined as a therapeutic
target in critically ill patients. This has not been an approach taken in
the field of muscle wasting generally, as muscle protein synthesis is
the dominant or facilitative process in humans (14). Nevertheless, in
the face of compelling evidence for anabolic resistance, altering
muscle protein breakdownmay be an alternative therapeutic option.
These alternative approaches to maintaining muscle mass are ones
that the field is less comfortable with, but data remain data regardless
of our comfort zones.�
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