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A B S T R A C T

Background: In many low and middle-income countries (LMICs), timely access to emergency healthcare services
is limited. In urban settings, traffic can have a significant impact on travel time, leading to life-threatening delays
for time-sensitive injuries and medical emergencies. In this study, we examined travel times to hospitals in
Nairobi, Kenya, one of the largest and most congested cities in the developing world.
Methods: We used a network approach to estimate average minimum travel times to different types of hospitals
(e.g. ownership and level of care) in Nairobi under both congested and uncongested traffic conditions. We also
examined the correlation between travel time and socioeconomic status.
Results: We estimate the average minimum travel time during uncongested traffic conditions to any level 4
health facility (primary hospitals) or above in Nairobi to be 4.5 min (IQR 2.5–6.1). Traffic added an average of
9.0 min (a 200% increase). In uncongested conditions, we estimate an average travel time of 7.9 min (IQR
5.1–10.4) to level 5 facilities (secondary hospitals) and 11.6 min (IQR 8.5–14.2) to Kenyatta National Hospital,
the only level 6 facility (tertiary hospital) in the country. Traffic congestion added an average of 13.1 and
16.0 min (166% and 138% increase) to travel times to level 5 and level 6 facilities, respectively. For individuals
living below the poverty line, we estimate that preferential use of public or faith-based facilities could increase
travel time by as much as 65%.
Conclusion: Average travel times to health facilities capable of providing emergency care in Nairobi are quite
low, but traffic congestion double or triple estimated travel times. Furthermore, we estimate significant dis-
parities in timely access to care for those individuals living under the poverty line who preferentially seek care in
public or faith-based facilities.

African relevance

• Heavy traffic congestion is an important issues in many African ci-
ties.
• Poverty is an important predictor of access to care and health out-
comes.
• There is an increasing burden of stroke and myocardial infarction on
the African continent.
• Traumatic injury, and particularly motor vehicle collisions, is asso-
ciated with a high case fatality in Africa

Introduction

Access to timely emergency healthcare services is critical for time-
sensitive conditions such trauma, sepsis, stroke, and myocardial in-
farction among others [1–4]. In low- and middle-income countries
(LMICs) the burden of emergency conditions is particularly high [5],
yet emergency medical services are often underdeveloped [6], and ac-
cess to emergency care can be challenging [7]. Understanding where
and why delays occur for time-sensitive conditions is critical as policy
makers in LMICs seek ways to improve patient outcomes using a public
health approach.

Originally developed in the context of maternal mortality, the
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“three delays” framework is one way in which to examine delays in
receiving emergency care [8]. In this framework, delay in service is
broken down into the time it takes the patient or someone they know to
decide to seek care; the time it takes to get to a facility that can provide
appropriate care; and the time it takes to receive the necessary services.
Although the second delay, the time it takes to get to a facility, is often
discussed in the context of rural areas [9,10], it can also pose a problem
in urban centers.

LMICs are at particular risk for transportation delays in urban en-
vironments due to traffic as a result of poor street design, an increasing
number of cars on the roads, and a lack of active traffic management
[11]. The extent of potential transportation delays due to traffic are
important to understand, as prior studies have demonstrated that delays
in transporting acutely ill or injured individuals from the field to a
health facility adversely impacts mortality [12].

Although delays due to traffic congestion may affect an entire city,
their impact may not be universally distributed. Research has already
demonstrated that poor individuals face more delays in accessing ur-
gent care than non-poor individuals [13]. However, relatively little is
known about the relationship between geography and poverty for ac-
cess to emergency care in LMICs. Important questions exist about the
distribution of health facilities in urban areas as they relate to poverty,
whether hospital choice (public/faith-based vs. private) could lead to
delays in accessing emergency care for impoverished populations, and
whether traffic has a compounding effect in poorer communities for
patients who require emergency medical care.

In this study, we examined travel time to health facilities capable of
providing emergency care in Nairobi, Kenya. We examined travel time
under both congested and uncongested conditions, and considered the
relationship between travel time, poverty and facility type.

Methods

Kenya is divided into 47 counties, the most populous of which is
Nairobi county, whose borders are synonymous with those of the na-
tion's capital city of Nairobi. The metro area has a rapidly-growing
population of greater than 6.5 million people. While communicable
diseases remain the most common cause of death in Kenya, non-com-
municable diseases are becoming more prominent as Kenya goes
through its epidemiologic transition. Time-sensitive conditions such as
ischemic heart disease (5.0% of deaths), stroke (4.8% of deaths), and
injury (7.7% of deaths) have seen a relative increase and are likely to
continue to grow in the future [14].

Health facilities in Kenya are a mix of public and private. Facilities
are assigned levels as per the Kenya Essential Packages for Health
(KEPH) based on capacity and services [15]. We considered levels 4 and
above as viable candidates to provide emergency care [16,17]. Level 4
facilities are primary/first level hospitals, which should provide Basic
Life Support. Level 5, or secondary/second level hospitals, should
provide emergency services, including Advanced Life Support. Finally,
level 6, or tertiary level facilities provide a full complement of tertiary
care services. However, the actual level of care provided may vary [18].
Nairobi contains a large number of hospitals, including one public level
6 hospital, Kenyatta, and four level 5 facilities, only one of which is
public [19].

Facility data were downloaded from the Kenyan Ministry of Health
website [19]. We selected KEPH level 4, 5, and 6 facilities that were in
Nairobi, or the surrounding counties of Kiambu, Machakos, or Kajiado.
We included facilities from surrounding counties in the event that those
were the closest facilities for individuals living on the edge of Nairobi.
We excluded specialty facilities, e.g., maternal, eye, mental, or those
that were only dispensaries or only saw outpatients. This left us with 70
facilities (Fig. 1) to consider as part of the analysis.

Street network data was obtained from Open Street Map, an open-
source database of street maps maintained by a global community
(https://www.openstreetmap.org/). Population data in 100 m by

100 m squares in 2015 and percent of the population below the poverty
line at the 1 km by 1 km square level in 2008 were obtained from the
Afripop database (http://www.afripop.org/). The poverty dataset used
the Alkire Foster method, where someone was defined as living in
poverty if they were deprived in at least one third of ten indices en-
compassing health, education, and standard of living. Road network
data were stored in a PostgresSQL database and converted to a query-

Fig. 1. Kenyan health facilities, levels 4–6, in Nairobi and surrounding coun-
ties.
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Fig. 2. Rasters of Nairobi population density and poverty.

Table 1
Average minimum travel time (in minutes) to health facilities in Nairobi.

Travel to any facility Travel to public/faith-based
facilities ONLY

Level 4
and
above

Level 5
and
above

Level 6 Level 4
and
above

Level 5
and
above

Level 6

Uncongested 4.5 7.9 11.6 7.7 10.4 13.0
Congested 9.2 14.7 22.7 15.2 19.5 25.7
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able geographic database using PostGIS and pgrouting, extensions to
PostgresSQL that allow databases to store geographic data and use al-
gorithms to do different types of routing.

The shapefile for Nairobi was downloaded from the Kenyan
Elections portal via the Humanitarian Data Exchange (https://data.
humdata.org/dataset/kenya-elections).

Our analysis utilized a method similar to that used by Lee et al. to
estimate driving time to eye care services in the United States [20].
Using the network data from Open Street Maps, we created a query-able
geographic database, consisting of vertices and edges that correspond to
intersections and streets. Because Open Street Maps lacked speed limit
information for most streets, we assigned speeds for both uncongested
and congested traffic using the speeds suggested by Avner and Lall [21].
Speed limits that were available in the data set were used unless they
exceeded the maximum of motorway speed of 110 km/h. For congested
speeds in roads not covered by Avner and Lall, we used 2/3 of the
uncongested speed.

We created a grid of 0.5 × 0.5 km squares to use as samples, re-
sulting in 2903 sample points throughout the city of Nairobi. This size
was selected because it could both show variation over small areas and
was computationally manageable. For each grid square centroid, we
found the nearest node in the traffic network and the nodes nearest to
each of the 70 facilities. The minimum time between each centroid
node and each facility node was calculated using Dijkstra's algorithm,
where cost was the time it took to travel down each edge [22].

Due to inconsistencies in traffic network data, such as disconnected
nodes or closed street loops, our approach yielded a small number
(0.4%) of missing values, which were interpolated using simple kriging.
This resulted in a raster for each facility that contained travel times to
that facility. We then found the minimum value for each pixel in the
raster to the closest level 4, 5 or 6 health facility.

To examine the percentage of the population within a certain travel
time of a facility, we aggregated the Afripop population dataset to be
the same size squares as our sample grid. Then we resampled to align
the grids and scaled to maintain the same overall population total. We
followed a similar process for the percent of the population below the
poverty line (see Fig. 2 for the resulting rasters). Combined, these two
rasters allowed us to estimate the number of people living in each
section of the grid, and the number of them living below the poverty
line.

All database queries, data analyses, and data visualizations were
performed using R version 3.3.1 (R Foundation for Statistical
Computing, Vienna, Austria. URL http://www.R-project.org).

Results

Table 1 presents a summary of average minimum travel times to the
nearest level 4, 5 or 6 health facility across Nairobi. These results are
presented graphically in Fig. 3. Estimated mean minimum travel time
for the population within Nairobi to any facility level 4 and above was
4.5 min (IQR 2.5–6.1) under uncongested conditions and 9.2 min (IQR
4.8–12.4) under congested conditions. Mean travel time to any level 5
and above facilities was 7.9 min (IQR 5.1–10.4) and 14.7 min (IQR
9.7–19.6) under uncongested and congested conditions respectively.
For the single level 6 facility, Kenyatta National Hospital, mean travel
time was 11.6 min (IQR 8.5–14.2) in uncongested conditions and
22.7 min (IQR 17.0–27.6) when congested. Across all grid points in the
city, congestion contributed an additional average travel time of 9 min
(IQR 3.4–10.2) to level 4 and above facilities, 13.1 min (IQR 6.6–15.7)
for level 5 and above, and 16 min (IQR 10.0–18.6) for transportation to
Kenyatta National Hospital (Fig. 4).

Nearly the entire population of Nairobi (99%) was estimated to be
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Fig. 3. Travel time to the nearest facility under congested and uncongested conditions. Dots represent health facilities.
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within a half hour drive of a level 4 and above facility in uncongested
conditions, with an estimated maximum drive time of 33.9 min for the
entire population. Estimated maximum drive time to level 5 and above
facilities was 41.9 min. Under congested conditions, the estimated
maximum drive times within the city were 72.3, 88.0, and 88.5 min to
levels 4, 5 and 6 facilities, respectively, although only a small percen-
tage of the population live in such inaccessible areas.

We estimate that individuals living below the poverty line would
need to travel slightly longer than the general population to reach care
(0.9, 1.4, and 1.4 additional minutes in uncongested conditions for le-
vels 4, 5, and 6 facilities). However, the combined effect of poverty and
facility type (public/faith-based vs. private) resulted in more notable
effects on travel time (Fig. 5). For people living below the poverty line
who had to travel to level 4 or above public or faith-based facilities to
receive care, average travel time was estimated to increase to 15.2 min
under congested conditions. This represents a 65% increase in travel
time compared to the average travel time under the same traffic con-
ditions (9.2 min) if individuals could receive care at any facility, public
or private. For travel to level 5 and above facilities, travel time in-
creased by 33% in congested conditions (19.5 vs. 14.7 min). Finally, we
found a smaller 11% increase in travel time under congested travel
conditions to Kenyatta National Hospital for individuals living in areas
of high poverty (25.3 vs. 22.7 min).

Discussion

In this study, we created a novel raster of minimum travel times in
uncongested and congested conditions to various levels of health fa-
cilities across Nairobi, one of the largest and busiest urban hubs in sub-

Saharan Africa. Compared to transport times from high-income settings
[23], we found reasonable average travel times to all levels of health
facilities in uncongested conditions. However, we noted a marked in-
crease in travel time under heavy traffic conditions, wide variations in
travel times across the county, and important differences in equitable
access to timely emergency care.

Our underlying assumption is that longer travel times contribute to
delays to definitive care that may lead to poorer outcomes. Data on this
topic is somewhat limited, as many studies have focused on the impact
of sending patients directly to facilities with specialized services for
trauma, stroke or ST-elevation myocardial infarction. However, one
study examining 30-day mortality rates on days of major marathon
events in the United States found a 13.3% increase in mortality com-
pared to non-marathon days, despite controlling for multiple covariates
and performing numerous sensitivity analyses [24]. The author also
noted a statistically significant increase in average scene to hospital
transport time of 4.4 min. These findings likely provide a best-case
scenario when compared to low-resource settings where few if any in-
terventions are available in the pre-hospital setting [6,25].

Acknowledging the importance of time-sensitive conditions, trans-
port time has been studied in numerous contexts, including Nairobi. A
recent study by Shaw et al. estimated transport time from the site of
road traffic collisions (RTCs) to level 4 and above facilities vs. Kenyatta
National Hospital for nearly 1000 RTCs in 2015 [26]. They found a
median travel time of 7 min vs. 18 min. These findings are consistent
with what we report using a different methodology. However, the au-
thors did not examine the impact of traffic nor the relationship between
poverty and transport time, which we note can have important re-
percussions on estimated duration of travel.

Our findings regarding increased average travel time to public/
faith-based institutions vs. all facilities is important for several reasons.
First, prior research suggests that Kenyans are more likely to seek care
at public facilities [27]. Despite the fact that emergency capacity is
often less adequate in the public sector and wait times are often longer,
the cost of care is a major issue for many Kenyans. Second, Kenyans
living below the poverty line often face a double burden of living fur-
ther away from facilities, and not being able to afford facilities that may
be nearby. This means that they may have to travel 50–60% longer, on
average, than an individual with more economic resources who could
reasonably seek care at any facility. Our finding adds quantitative
evidence to prior, mostly qualitative work in sub-Saharan Africa, that
suggests that those living below the poverty line often have more lim-
ited access to services [28].

Future interventions will require a multifaceted approach to im-
prove transport times for time-sensitive conditions. Urban planning
interventions, including pull-out lanes, could improve transport time if
they are not used by other vehicles. Stricter enforcement of the laws
requiring drivers to pull over for emergency vehicles could significantly
reduce transport times during high traffic congestion. The government
has already made changes to improve access to emergency care through
the Health Act of 2017, which states “any medical institution [public or
private] that fails to provide emergency medical treatment while
having ability to do so commits an offence and is liable upon conviction
to a fine.” [29]. Furthermore, the law states that the national govern-
ment shall “establish an emergency medical treatment fund.” Future
analyses using updated datasets could help establish the impact of this
law as it relates to access to emergency care and transport time by
widening the potential number of facilities available to the most vul-
nerable and socioeconomically disadvantaged populations.

Finally, when considering interventions aimed at improving time to
emergency care, it is critical to go back to the concept of the “three
delays” framework. Transport time from the scene is only one step in
this process. There must also be a focus on improving demand-side
components through early recognition and increasing utilization of pre-
hospital emergency medical services [27]. At the same time, supply-
side constraints regarding the availability of ambulances, access to low
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cost or free pre-hospital services, and having pre-hospital personnel
with capacity (i.e. supplies and training) to provide early life-saving
treatments will need to be addressed as Nairobi and other cities con-
sider how best to develop comprehensive pre-hospital care systems.

This study is subject to several limitations in terms of data avail-
ability, data quality and methodology. Most important was the lack of
data on traffic speeds on individual roads. Without such data, our es-
timates are based on an assumed distribution of speeds during un-
congested and congested periods, which is not detailed enough to re-
flect all real traffic patterns. For example, certain locations, such as the
Pushorttam Place, Barclays Plaza, and other locations often act as
common choke-points, but our model did not give special consideration
to these edges and nodes. However, it should be noted that our results
are quite consistent with those obtained through the use of time data
used by Shaw and colleagues [26].

Poor data quality regarding directionality of one-way streets also
caused challenges. Specifically, when one-way streets are taken into
account, poor data quality in local streets meant that many routes had
no solution, causing the algorithm to get “trapped” in a circle of one-
way streets. Due to this limitation in the data quality, we chose to use
an undirected graph, where all streets could be traveled in either di-
rection. This most likely led to an underestimate in travel time because
our algorithm could always use the most convenient streets, even if they
were one-way. We also did not take into account time taken at stop-
lights or slowing down to turn. As such, the estimates in this paper
should be considered to be minimum travel times.

Finally, limitations exist around the population and poverty data we
use in this analysis. The population raster data came from 2008, and
well known slums do not appear as prominent on the poverty map as
one may expect. Despite these limitations, this paper demonstrates the
potential for inequity associated with travel time to a healthcare fa-
cility, and raises concerns about treatment for time-sensitive emergent
conditions.

Conclusion

This study estimated travel time to facilities in Nairobi using a
network approach. We found that simulated traffic congestion resulted
in notable transport time delays, with maximum travel times reaching
more than half an hour under uncongested conditions and more than an
hour under congested conditions. Lower-level hospitals were much
more accessible than high-level facilities, with a lower mean travel time
across the population. In addition, individuals living below the poverty
line were slightly further away from facilities than the overall popula-
tion, but significant delays were notable when facility choice was re-
stricted to public or faith-based facilities. Future studies should attempt
to use actual transport time data, and interventions will need to look
across supply and demand-side barriers in addition to transportation
specific options in order to improve outcomes from time-sensitive in-
juries and medical conditions.
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