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Abstract: Prostate cancer can be detected early by testing the presence of prostate-specific antigen
(PSA) in the blood. Lateral flow immunoassay (LFIA) has been used because it is cost effective and
easy to use and also has a rapid sample-to-answer process. Quantum dots (QDs) with very bright
fluorescence have been previously used to improve the detection sensitivity of LFIAs. In the current
study, a highly sensitive LFIA kit was devised using QD-embedded silica nanoparticles. In the
present study, only a smartphone and a computer software program, ImageJ, were used, because the
developed system had high sensitivity by using very bright nanoprobes. The limit of PSA detection of
the developed LFIA system was 0.138 ng/mL. The area under the curve of this system was calculated
as 0.852. The system did not show any false-negative result when 47 human serum samples were
analyzed; it only detected PSA and did not detect alpha-fetoprotein and newborn calf serum in the
samples. Additionally, fluorescence was maintained on the strip for 10 d after the test. With its high
sensitivity and convenience, the devised LFIA kit can be used for the diagnosis of prostate cancer.

Keywords: prostate-specific antigen; prostate cancer; lateral flow immunoassay; quantum dot;
quantum-dot-embedded silica nanoparticles

1. Introduction

Globally, cancer is still one of the most life-threatening diseases, with high incidence
and mortality rates [1]. Among the numerous types of cancers, prostate cancer has the
highest incidence rate (26%) and second-highest mortality rate (22%) among men world-
wide [1]. Therefore, diagnosing prostate cancer is crucial for ensuring proper healthcare
for men. Many studies on the diagnosis of prostate cancer have been conducted [2,3].
Early diagnosis of prostate cancer is considered essential because it can lower the mortality
rate through early treatment [4]. For the early diagnosis of prostate cancer, the expression
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of prostate-specific antigen (PSA), which is a protein released from the prostate of the
cancer patient, has been used as a biomarker to predict the progression of this cancer [5,6].
Generally, a level <2.5 ng/mL PSA is considered normal (safe group), 2.6–4.0 ng/mL PSA
requires consultation with a doctor (safe for the most group), 4–10 ng/mL PSA indicates a
25% chance of having prostate cancer (suspect group), and patients with >10 ng/mL PSA
in their blood must undergo further clinical tests because they have a 50% probability of
having this disease [7]. When the level of PSA in the blood is 2.5 ng/mL or less, the patient
is considered to belong to the safe group; thus, it is important to measure the PSA level
with a threshold value of 2.5 ng/mL through a simple test with high accuracy because
additional tests are not required for this group. If the PSA level is less than 2.5 ng/mL,
screening every two years is sufficient [8].

To analyze PSA levels in the blood for the diagnosis of prostate cancer, the enzyme-
linked immunosorbent assay (ELISA) method is widely used [9–11]. Protein detection
through ELISA has many advantages, such as a low limit of detection (LOD; ~10 pg/mL) [12],
quantifiability, and high accuracy, selectivity, and reproducibility [13]. The disadvantages
of ELISA include a long reaction duration (4–6 h) and the need for a laboratory with trained
technicians [14]. To overcome the shortcomings of ELISA, lateral flow immunoassay
(LFIA) based on a test strip has been recently proposed as an alternative [15–17]. LFIA
is used as a point-of-care test with the advantages of fast turnaround time, low cost, and
feasibility [18–20]. Various types of nanomaterials have been used as detection probes for
LFIAs depending on the application [21–23]. Metal nanoparticles (NPs), such as those
composed of gold (Au), silver (Ag), and alloy metals, have been used for colorimetric
detection with the naked eye [21,22,24,25]. Well-designed fluorescent NPs have been used
for more sensitive and accurate analysis than colorimetric detection [26,27]. Quantum
dots (QDs) are markedly brighter than other fluorescent NPs and have no photobleaching
characteristics [28]; thus, QDs have been used for fabricating sensitive LFIA systems [23,29].
Nanostructures with a large number of QDs have stronger fluorescence intensity than
those using a single QD. Li et al. encapsulated QDs to prepare QD nanobeads and applied
them to LFIA systems for PSA detection (LOD = 0.33 ng/mL) [30]. However, additional
equipment is usually required for quantitative analysis in most LFIAs [30–32]. Therefore,
for devising a simple, at-home diagnostic test, a simple device, such as a smartphone,
without any additional equipment, is required [33,34].

In a previous study, we developed QD-embedded silica NPs (SiO2@QD@SiO2; QD2) [35].
QD2 have a silica shell, which makes surface modification easy, and 200-fold stronger
fluorescence intensity than a single QD. QD2 that exhibit high detection sensitivity have
been used to develop a highly sensitive LFIA system [36]. In our previous studies, the
LFIA system, which uses QD2, detected the HFF exosome 11-fold more sensitively than
the conventional method, and thus, we deduced that QD2s were sensitive nanoprobes that
could be used for LFIA. Additionally, QD2 with very bright fluorescence could ignore the
fluorescence noise from the test strip. To date, QD2-based LFIA has neither been used for
PSA detection nor combined with a smartphone. In this study, we developed a complete
LFIA kit for detecting PSA with QD2. After the sample was loaded and developed onto an
assembled LFIA strip, fluorescence intensity analysis was performed on an image acquired
by a smartphone (iPhone 12, Apple Inc., Cupertino, CA, USA). Selectivity and stability tests
were conducted to evaluate the new LFIA system. The proposed PSA LFIA kit is expected to
be used by potential prostate cancer patients to analyze their PSA levels, without requiring
complex analytical tools, and screen for the disease.

2. Materials and Methods
2.1. Materials

Tetraethyl orthosilicate (TEOS), (3-mercaptopropyl)trimethoxysilane (MPTS),
(3-aminopropyl)triethoxysilane (APTS), succinic anhydride, N,N-diisopropylethylamine
(DIEA), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC hydrochlo-
ride), N-hydroxysulfosuccinimide (sulfo-NHS), 2-(N-morpholino)ethanesulfonic hydrate
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(MES), ethanolamine, Tween® 20, polyvinylpyrrolidone (PVP, MW ≈ 10,000 Da), bovine
serum albumin (BSA), sucrose, and alpha-fetoprotein (AFP) were purchased from Sigma
Aldrich (St. Louis, MO, USA). Absolute ethanol (EtOH; 99.9%), aqueous ammonium
hydroxide (NH4OH), and N-methyl-2-pyrrolidone (NMP) were purchased from Dae-
jung (Sihung, Korea). Dichloromethane (DCM) was purchased from Samchun (Pyeong-
taek, Korea). Polyethylene glycol (PEG, MW ≈ 400 Da) was purchased from Alfa Aesar
(Haverhill, MA, USA). Amino polyethylene glycol acid (NH2-PEG-COOH, MW ≈ 600 Da)
was purchased from Nanocs (New York, NY, USA). Anti-PSA (14801) antibody (Ab), anti-
PSA (14803) Ab, goat anti-mouse IgG Ab, backing card, nitrocellulose (NC) membrane,
absorbent pad, and cassette were purchased from Bore Da Biotech Co. Ltd. (Seongnam,
Korea). Phosphate-buffered saline (PBS; pH 7.4) and tris-buffered saline (pH 8.0) were
purchased from DYNE BIO (Seongnam, Korea). Deionized water (DW) was produced by
using a Millipore water purification system of Vivagen (Seongnam, Korea). CdSe@ZnS QDs
were purchased from Zeus (Osan, Korea). PSA for the standard experiment was purchased
from Fitzgerald (Acton, MA, USA).

2.2. Synthesis of QD2

QD2s were synthesized by using a modified method presented in our previous
study [35]. First, SiO2 NPs, which serve as the template of QD2, were prepared by using
a modified Stöber method [37]. Briefly, 40 mL of EtOH, 1.6 mL of TEOS, and 3 mL of
NH4OH were poured into a 100 mL round-bottom flask and stirred for 20 h at 25 ◦C.
Then, SiO2 NPs were obtained after washing the solution several times with EtOH via
centrifugation (8885 RCF, 15 min). Next, 8 mL of SiO2 NPs in EtOH solution (25 mg/mL,
200 mg), 200 µL of MPTS, and 40 µL of NH4OH were mixed and stirred vigorously for 12 h
at 25 ◦C, to introduce the thiol group onto the surface of SiO2 NPs. Thiol-functionalized
SiO2 NPs (SiO2-SH) were obtained after washing the solution several times with EtOH
via centrifugation (8885 RCF, 15 min). To introduce CdSe@ZnS QDs onto the surface of
SiO2-SH NPs, 4 mL of DCM, 800 µL of EtOH, 50 µL of DW, and 70 µL of QDs in toluene
(100 mg/mL, 7 mg) were mixed in a 15 mL centrifugal tube and incubated in a shaking
incubator for 3 h at 25 ◦C. Then, 50 µL of MPTS and 50 µL of NH4OH were added to the
mixture. Next, the mixture was incubated in a shaking incubator for 3 h at 25 ◦C. To obtain
QD-introduced SiO2 NPs (SiO2@QDs), SiO2@QDs were washed several times with EtOH
via centrifugation (8885 RCF, 15 min). These SiO2@QDs were dispersed in 5 mL EtOH to
adjust their concentration to 2 mg/mL (based on the initial concentration of SiO2 NPs). To
coat the SiO2@QDs with silica, 50 µL of TEOS and 50 µL of NH4OH were added to 5 mL
of SiO2@QDs in the EtOH solution (2 mg/mL, 10 mg). The mixture was incubated in a
shaking incubator for 20 h at 25 ◦C. Finally, silica-coated SiO2@QDs (SiO2@QD@SiO2, QD2)
were obtained after washing the mixture several times with EtOH and dispersing in 5 mL
of EtOH (2 mg/mL).

2.3. Conjugation of Anti-PSA Abs onto QD2 (QD2-PSA Ab)

Anti-PSA Abs were conjugated onto QD2, as described in our previous study [36].
To aminate QD2, 10 µL of APTS and 10 µL of NH4OH were added to 1 mL of QD2 in
EtOH (1 mg/mL, 1 mg) and incubated for 1 h at 25 ◦C. Next, QD2s were washed twice
with NMP. After aminated QD2s were dispersed in 500 µL of NMP, 1.75 mg of succinic
anhydride and 3.05 µL of DIEA were added into this mixture to introduce the carboxyl
group. This mixture was incubated for 1 h at 25 ◦C. QD2s were washed several times with
DW and dispersed in 700 µL of DW. Then, EDC/sulfo-NHS coupling was conducted to
make active groups. At first, 100 µL of 2% (w/v) EDC hydrochloride in DW, 100 µL of
2% (w/v) sulfo-NHS in DW, and 100 µL of 500 mM MES in DW were added to the QD2

mixture and incubated for 30 min at 25 ◦C. QD2s were washed once with 50 mM MES
and dispersed in 1 mL of 50 mM MES. After 10 µL of NH2-PEG-COOH (1.6 mM) was
added to this suspension, the mixture was incubated for 2 h at 25 ◦C. These PEGylated
QD2 were washed once with 50 mM MES and dispersed in 1 mL of 50 mM MES. Then,



Nanomaterials 2022, 12, 33 4 of 11

3.2 µL of ethanolamine was added to the suspension to passivate the remaining active
groups. After 30 min of incubation, the PEGylated QD2s were washed several times with
DW and dispersed in 700 µL of DW. EDC/sulfo-NHS coupling was conducted again to
generate active groups. Next, 150 µg of anti-PSA Ab (14803) was added to the suspension
and incubated for 2 h at 25 ◦C. Anti-PSA Ab-conjugated QD2s (QD2-PSA Ab) were washed
once with 50 mM MES and dispersed in 1 mL of 50 mM MES. The active groups were then
passivated again. Finally, QD2-PSA Ab samples were dispersed in 1 mL of 0.5% (w/v) BSA
in PBS.

2.4. Characterization of QD2 and QD2-PSA Ab

Transmission electron microscopy (TEM) images were acquired using JEM-F200 and
JEM-1010 (JEOL, Tokyo, Japan). The ultraviolet–visible (UV–Vis) absorbance was mea-
sured using a UV–Vis spectrophotometer (Mecasys OPTIZEN POP, Daejeon, Korea). The
photoluminescence (PL) intensity of NPs was measured by using a model Cary Eclipse fluo-
rescence spectrophotometer (Agilent Technologies, Santa Clara, CA, USA), at an excitation
wavelength of 385 nm.

2.5. Preparation of Test Strips

The LFIA kit was prepared by assembling the cassette, backing card, absorbent pad,
conjugate pad, and sample pad. First, an NC membrane was prepared by spraying 1 mL of
anti-PSA Ab (14801) in PBS (1 mg/mL) on the test line and 1 mL of goat anti-mouse IgG
antibody in PBS (1 mg/mL) on the control line. The conjugate pad solution was prepared
by adding 50 mg of BSA, 70 mg of sucrose, 20 mg of PEG (MW ≈ 400 Da), 1 mg of Tween®

20, and 0.1 mg of QD2-PSA Ab to 1 mL of PBS (pH 7.4). The conjugate pad was then
prepared by spraying 5 mL of the conjugate pad solution. The sample pad solution was
prepared by adding 5 mg of Tween® 20 and 25 mg of PVP (MW ≈ 10,000 Da) to 5 mL of
20 mM tris-buffered saline (pH 8.0). The sample pad was prepared by spraying 1 mL of the
sample pad solution. Next, the NC membrane, absorbent pad, conjugate pad, and sample
pad were attached to the backing card. Lastly, the prepared test strips were cut at a width
of 4 mm and assembled with cassettes.

2.6. Preparation of Clinical Samples of Human Serum

This study was approved by the Seoul National University Bundang Hospital under
trial registration number IRB No. B 1711/432-302. Human serum samples were collected
according to the approved trial protocol. Participants of clinical samples are all men in
their 20s and 50s. Clinical samples were prepared after separating serum with plasma from
blood of 47 people. Additionally, the PSA level of serum samples was measured by using
the ELISA method.

2.7. Analysis of PSA and Human Serum Using the Prepared Test Strips

For detecting PSA, the concentration of PSA was adjusted from 0 to 100 ng/mL with
0.5% Tween® 20-containing PBS (0.5% PBST), and 100 µL of each sample was analyzed
with individual LFIA kits. When developing clinical samples, 60 µL of serum and 40 µL of
0.5% PBST were mixed to facilitate the development of the samples.

2.8. Photoluminescence Intensity Measurement of the Prepared Test Strips

The images of all test strips were acquired using a smartphone (iPhone 12, Apple
Inc., Cupertino, CA, USA) camera. The photoluminescence intensity was measured using
ImageJ ver. 1.53a (National Institutes of Health, Bethesda, MD, USA). The red, green, and
blue channels of the original images were split using the software, and only the intensity of
the red channel was measured because red fluorescence QDs were used.
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3. Results and Discussion

3.1. Characterization of QD2 and QD2-PSA Ab

QD2 are nanostructures in which numerous QDs are attached using silica as a template,
and the QDs are coated with a silica shell for easy surface modification. QD2s were selected
as probes in our facile lateral flow immunoassay (LFIA) system to detect PSA. It was
assembled as described in our previous study [36]. The schematic of this process is shown
in Figure 1a. First, SiO2 NPs, which are templates of QD2 with a size of 142.18 ± 6.47 nm,
were prepared using the Stöber method (Figure S1). Before conjugating QDs with SiO2
NPs, a thiol group was introduced by treating the surface of SiO2 NPs with MPTS. Then,
QDs were introduced onto the surface of SiO2 NPs based on the affinity between the QD
and thiol groups [35]. In addition, SiO2@QDs were coated with a silica shell to prevent
aggregation and ease the surface modification with various functional groups. Finally,
QD2s were synthesized via surface modification for use in the LFIA. Anti-PSA Ab was
conjugated to QD2 after PEGylation. NH2-PEG-COOH was added to prevent aggregation
between NPs [38]. The TEM image showed that the QDs were introduced onto the SiO2
surface, and no aggregation was observed (Figure 1b). The size of QD2 was measured
to be 190.13 ± 6.11 nm. The intensity of UV–Vis absorbance of NPs increased when QDs
were attached, whereas the intensity did not change significantly when anti-PSA Ab was
attached to QD2 through surface modification (Figure 1c). The PL intensity of SiO2 NPs,
QD2, QD2-PSA Ab, and QDs was also investigated (Figures 1d and S3). All concentrations
were unified to the same level (particles/mL). Comparison of the PL intensities of single
QDs and QD2 with the same number of particles indicated the very bright fluorescence
of QD2 under UV light (Figure S2). Comparison of the PL intensities at 620 nm showed
that the PL intensity of QD2 was 208-fold higher than that of single QDs (Figure 1e). These
very bright QD2 make sensitive detection possible despite the background noise of the test
strip. When the antibody was attached to QD2, the PL intensity did not markedly decrease
(84.3% of original QD2).
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3.2. Detection of PSA Using the QD2-Based LFIA Test Strip

The components of the LFIA kit for PSA detection and the overall analysis process are
described in Figure 2a. The test strip had four major components: the sample pad sprayed
with the sample pad solution, the conjugate pad sprayed with the conjugate pad solution
and QD2-PSA Ab mixture, NC membrane sprayed with antibody solutions, and absorbent
pad that absorbed the unbound developed sample. Preparation of the LFIA kit for PSA
detection was completed by assembling the test strip into a cassette. The concentration
of PSA was adjusted with 0.5% Tween® 20-containing PBS (0.5% PBST), and 100 µL of
each sample was analyzed with individual LFIA kits. For analyzing human serum, 60 µL
of serum and 40 µL of 0.5% PBST were mixed. The loaded sample containing PSA was
developed completely along the test strip in 15 min, and the results were visible on the NC
membrane. To analyze the results, a photograph of the developed LFIA kit was acquired
with a smartphone (iPhone 12, Apple Inc., Cupertino, CA, USA), and the RGB channels
of the photograph were separated using ImageJ software. Since QD2 was used as a probe
of LFIA emitting red fluorescence, PL analysis was performed using only the red channel.
Green and blue channel images are shown in Figure S4. To confirm the LOD of the prepared
kit, samples with various concentrations of PSA (0, 0.1, 0.3, 1, 3, 10, 30, and 100 ng/mL)
were prepared and analyzed using the LFIA kit (Figure 2b). The results confirmed that
non-specific binding did not occur in the absence of PSA, and the test line showed strong
fluorescence intensity when the concentration of PSA was 100 ng/mL. For the quantitative
analysis of PSA, fluorescence intensities of the test line (T value) and control line (C value)
were measured using ImageJ. Since the C value decreases as the T value increases in
LFIAs, the ratio of T to C values (T/C) is used for an accurate quantitative analysis [7].
Experiments were repeated three times at all concentrations, to obtain the T/C value at
each concentration, and a fitting curve for the results was constructed (Figures 2c and S5).
The LOD of the developed LFIA kit was calculated as 0.138 ng/mL (R2 = 0.9865). To our
knowledge, this LOD is the most sensitive result obtained to date for PSA detection using
any LFIA kit based on fluorescence. Individuals with PSA concentration <2.5 ng/mL were
considered to belong to a safe zone, while those with PSA concentration >2.5 ng/mL should
seek medical advice (medical checkup zone) because the latter concentration implies an
increased likelihood of developing prostate cancer [7].

3.3. Detection of PSA in Human Serum Using the QD2-Based LFIA Test Strip

Experiments were conducted to identify the LFIA kit that detects PSA both in the
prepared PSA solution and in the human serum. To this end, serum samples from
47 participants with PSA concentrations of 0.001–12.950 ng/mL were analyzed using the
developed LFIA system (Table 1, Figure 3a). For accurate analysis, the T/C value of each
serum sample was calculated, and these are denoted as dots in Figure 3b. Most T/C values
were less than 0.4 at PSA concentration <2.5 ng/mL (the criterion distinguishing the safe
zone from the medical checkup zone) and higher than 0.4 at PSA concentration >2.5 ng/mL.
Although there were some cases where the T/C values were >0.4 at PSA concentration
<2.5 ng/mL (false positive), the T/C values of all samples in the medical checkup zone
were less than 0.4 (false negative) because of the impurity of the clinical samples, which
include proteins other than PSA. Based on these results, potential prostate cancer patients
who require medical checkups can be identified using the T/C value. Since the process of
obtaining the T/C value only requires a smartphone and a software program, without addi-
tional equipment, patients undergoing examination can easily self-diagnose. Based on the
threshold T/C value of 0.4, a receiver operating characteristic (ROC) curve was generated
(Figure 3c) to illustrate the diagnostic ability of this binary classifier system [39,40]. AUC
was also measured to present the overall summary of diagnostic accuracy. The resulting
AUC was 0.852 (0.5 represents a coin flip (random) and 1.0 represents perfect diagnostic
accuracy). In the developed system, there is no concern of missing the optimal treatment
stage due to false-negative results, and it is possible to screen rapidly without obtaining
the false-negative results. However, there are some limitations in that the false-positive
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cases should be reduced, and 0.5% PBST solution is required to develop serum. To over-
come these limitations, our group plans to reduce non-specific binding and facilitate the
development of serum by adding new blockers such as casein to the conjugate pad.
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Figure 2. (a) Schematic illustration of lateral flow immunoassay (LFIA) process and precise analysis;
(b) fluorescence image showing only the red channel of the test strip with PSA developed under a
365 nm UV lamp; (c) T/C value and fitting curve of the fluorescence intensity generated for each
concentration of PSA.

Table 1. PSA concentration in clinical samples.

Clinical Sample No. PSA Concentration
(ng/mL) Clinical Sample No. PSA Concentration

(ng/mL) Clinical Sample No. PSA Concentration
(ng/mL)

1 0.001 17 0.954 33 4.557

2 0.159 18 1.146 34 4.655

3 0.164 19 1.309 35 4.815

4 0.300 20 1.412 36 4.888

5 0.323 21 1.455 37 4.931

6 0.429 22 1.488 38 5.182

7 0.479 23 1.514 39 5.607

8 0.514 24 1.677 40 5.880

9 0.577 25 1.689 41 6.418

10 0.619 26 2.093 42 7.551

11 0.677 27 2.233 43 7.729

12 0.797 28 2.788 44 7.900

13 0.897 29 3.637 45 8.125

14 0.919 30 3.847 46 12.843

15 0.921 31 4.043 47 12.950

16 0.945 32 4.398 - -
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human serum sample; (c) ROC curve.

3.4. Selectivity Test of the Developed LFIA System

A selectivity test was conducted to test whether the developed LFIA kit selectively
detected PSA. AFP, which is one of the biomarkers of liver cancer, newborn calf serum
(NCS), and PSA (100 ng/mL) were developed on separate strips (Figure 4a). The results
showed that during PSA detection, both the test and control lines showed fluorescence,
while only the control line showed fluorescence during AFP and NCS detection. To
determine the accuracy of the analysis, the T/C values of each strip were calculated
(Figure 4b) as follows: 1.033 (PSA), 0.026 (AFP), and 0.014 (NCS). This result shows that the
developed LFIA kit can detect PSA selectively.
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3.5. Stability Test of the Developed LFIA System

Clinical sample no. 31 (PSA concentration = 4.557 ng/mL) was analyzed using an
LFIA kit, and the strip that was used for this analysis was photographed every day for 10 d
to examine its signal stability (Figure 5a). As shown in Figure 5a, fluorescence intensity
was maintained even after 10 d because of a low photobleaching characteristic of QD.
To determine the accuracy of the analysis, the T/C value of the strip was calculated and
normalized (Figure 5b). The results showed that the T/C value was maintained even after
10 d, and the relative standard deviation (RSD) was 6.16%. Collectively, these findings
suggest that the fluorescence intensity does not markedly decrease and is sufficiently
maintained for a long time after the system is tested.
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4. Conclusions

In the present study, we developed a highly sensitive LFIA kit for detecting PSA using
QD2. This LFIA kit can be used only with a smartphone and software without additional
equipment. The developed LFIA kit had a LOD of 0.138 ng/mL, indicating the high
sensitivity of the kit. In addition, 47 human serum samples were analyzed using the LFIA
kit, and the results showed that the kit could be applied to actual clinical samples. Serum
samples that contained more than 2.5 ng/mL of PSA could be identified after calculating
the T/C value using this system, and thus, potential patients who need additional medical
checkups can be identified. Although there were some false-positive results with PSA
concentration <2.5 ng/mL, no false-negative results were obtained. The AUC value was
calculated as 0.852. In addition, only PSA was detected selectively using the developed
LFIA kit, and AFP and NCS were not detected. Furthermore, the fluorescence intensity did
not significantly decrease for 10 d after the examination of fluorescence detected on the strip.
The LFIA PSA test strip for prostate cancer screening developed in this study provides
results rapidly and is easy to use; thus, patients can easily self-diagnose the disease without
using complicated equipment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano12010033/s1, Figure S1: TEM image of SiO2 NPs, Figure S2: Comparison of fluorescence
intensity between QDs and QD2, Figure S3: PL intensity of QDs, Figure S4: Fluorescence image of
the test strip with the green and blue channels separated with PSA developed under a 365 nm UV
lamp, Figure S5: Equation of PSA detection fitting curve shown in Figure 2c.
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