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Abstract
The structure of contacts that mediate transmission has a pronounced effect on the out-

break dynamics of infectious disease and simulation models are powerful tools to inform

policy decisions. Most simulation models of livestock disease spread rely to some degree

on predictions of animal movement between holdings. Typically, movements are more

common between nearby farms than between those located far away from each other.

Here, we assessed spatiotemporal variation in such distance dependence of animal move-

ment contacts from an epidemiological perspective. We evaluated and compared nine sta-

tistical models, applied to Swedish movement data from 2008. The models differed in at

what level (if at all), they accounted for regional and/or seasonal heterogeneities in the dis-

tance dependence of the contacts. Using a kernel approach to describe how probability of

contacts between farms changes with distance, we developed a hierarchical Bayesian

framework and estimated parameters by using Markov Chain Monte Carlo techniques. We

evaluated models by three different approaches of model selection. First, we used Devi-

ance Information Criterion to evaluate their performance relative to each other. Secondly,

we estimated the log predictive posterior distribution, this was also used to evaluate their

relative performance. Thirdly, we performed posterior predictive checks by simulating

movements with each of the parameterized models and evaluated their ability to recapture

relevant summary statistics. Independent of selection criteria, we found that accounting for

regional heterogeneity improved model accuracy. We also found that accounting for sea-

sonal heterogeneity was beneficial, in terms of model accuracy, according to two of three

methods used for model selection. Our results have important implications for livestock dis-

ease spread models where movement is an important risk factor for between farm trans-

mission. We argue that modelers should refrain from using methods to simulate animal

movements that assume the same pattern across all regions and seasons without explicitly

testing for spatiotemporal variation.
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Introduction

Outbreaks of infectious livestock diseases can have a severe impact in terms of both economics
and animal welfare. For instance, foot-and-mouth-disease (FMD), a viral disease that effect all
animals with cloven hooves, can cause fevers, cause blisters in mouth and feet and sometimes
lameness. The cost of the FMD outbreak in United Kingdom in 2001 has been estimated at
more than £8 billion and more than four million animals were slaughtered [1]. Another major
concern is classical swine fever (CSF), which causes high fever, huddling, anorexia and often
mortality within weeks. The CSF outbreak in the Netherlands in 1997/1998, resulted in slaugh-
ter of at least 11 million pigs and total costs estimated at US $2.3 billion [2].
In order to reduce the impact of livestock diseases,mathematical models are powerful tools

that may be used to inform policy. Modeling can be used to localize hotspots where the disease
is more likely to spread [3], evaluate different control strategies [4] [5] and inform decisions
that minimize the risk of an outbreak [6]. Analytical SIR models that assume a mass-action
mixing process with equal probability for contact with other premises provide important theo-
retical insight, but have less implication in terms of addressing specific policy questions. There-
fore, researchers are increasingly using stochastic simulation models that can account for
important heterogeneity in the contact pattern [7]. Such heterogeneities can include assortative
contact pattern depending on farm characteristics such as herd sizes and/or production types
as well as spatial aspects that accounts for distance between premises [8–10]. In order to
improve the reliability of epidemic models, it is essential that valid assumptions are made in
regards to this contact structure. Predictions can vary with the underlying assumptions of the
models and their parametrization [4, 11, 12] and erroneous assumptions can make models mis-
guiding in terms of informing policy decisions.
Depending on the pathogen, livestock animal diseases can have several different transmis-

sion routes, including vectors, wildlife and direct contacts [13]. However, animal movement
contacts are of particular importance for most infectious diseases [14, 15]. Consequently, it is
essential that models make accurate assumptions about animal movement contacts whenmod-
els are used for epidemiological prediction.
Contacts via livestock animal movements are generally distance dependent [16–21]; the lon-

ger the distance between two premises is, the lower the probability is of a movement to occur
between them. Because of the high probability of between-herd infection via livestock move-
ments, reliable estimation of this distance dependence is an integral part of most disease spread
models. Somemodels, such as InterSpread Plus [22], do this by creating a look-up table based
on empirical data. Other models implement kernel functions [23–25].
The importance of livestock movement for disease transmission varies between diseases.

For epidemic outbreaks of transboundary diseases such as FMD or CSF, a nation wide move-
ment ban would generally be instigated upon detection in previously disease free countries. As
such, the primary effect of movement on disease transmission occurs during the silent spread
phase. For endemic diseases however, animal movements can enhance the persistence of the
pathogen by continuously spreading the disease between farms. Examples of endemic diseases
where animal movement have been demonstrated as a risk factor include Bovine Viral Diar-
rhea [26, 27], BovineHerpes [27], and Bovine Tuberculosis [15].
Previous studies have demonstrated seasonal and regional variation in the frequency of cat-

tle movements [16, 28, 29]. While less studied, regional and temporal heterogeneity in terms of
distance dependence of movements could also be expected. For instance, if the underlying
mechanisms that determine the distance dependence in movement differ between regions,
using a single kernel for the entire countrymay be inaccurate. Similarly, the distance depen-
dence of movements during the summer may differ from that during the winter. If such
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heterogeneity exists, failing to recognize them in diseasemodeling will reduce the accuracy of
predictions and potentially provide erroneous guidance for policy decisions.
The aim of this study was to provide insight into regional and/or seasonal variation in dis-

tance dependence of animal movement contacts and pinpoint whether they need to be
accounted for in disease spread models.We addressed this by analyzing Swedish cattle move-
ments and selected between nine models based on the granularity of the regional and temporal
heterogeneities in distance dependence. Building on a kernel approach introduced by Lind-
ström et al. [9, 19], parameters were fitted in a (Hierarchical) Bayesian framework usingMar-
kov Chain Monte Carlo (MCMC) methods and we used Deviance Information Criterion
(DIC) [30] and log pointwise predictive density (lppd) evaluation [31] for model selection. To
ensure that the model selectionwas robust, we also conducted a third test based on posterior
prediction of relevant summary statistics.

Materials and Methods

Data

We used data of cattle transports between non-abattoir premises in Sweden (excluding the
island Gotland) year 2007 and 2008, where the latter year’s data used for validation only. Here
we considered premises, that were active during 2007 to 2008. An active premises, is here
defined as in [28]. I.e. a premises is considered to be active if it had reported any movement of
cattle to or from the premises (including movement to slaughter), or if it had reported births or
deaths during the period. Premises where information of coordinates were missing, or where
there was a mismatch between coordinates and the reported county, were also removed from
data. In total, the data consisted of 24238 active premises. 63599 and 62029 livestock animal
transports for year 2007 and 2008, respectively, were included. Fig 1 shows (A) premises loca-
tions and region borders, (B-C) frequency of movement distances and (D) the number of live-
stock animal movements per month. In Fig 1(B) and 1(C), x-axes were truncated at 600 km
and 527 transports of distances 600 km to 1265 km and 432 transports of distances 600 km to
1293 km a, respectively, is not shown due to their, in comparison, low frequency.
The size of the premises was obtained by taking the most recent available data from observa-

tions made in July 2005, June 2006, July 2006 and December 2008. If no data were available, we
used the median size (33 heads of cattle) of all premises in the data. This was the case for 3% of
the premises data.
The data was originally provided by the Swedish Board of Agriculture and was used in

edited form in [28].

Bayesian models

We created nine candidate models based on the different combinations of level of granularity
of the seasonal and regional heterogeneities in the relative shipment distances. That is, the
models differ in at what level they are considering the spatial and temporal variability in the
distance dependence.
We assumed the probability of shipments to decreasemonotonically with distance between

farms and modeled this with a power exponential distribution of the form,

g Dijja; b
� �

/ e�
Dij
a

� �b

: ð1Þ

Here, Dij is the Euclidean distance between farms i and j, and a and b are parameters determin-
ing the form of the kernel. However, it is not straight forward to interpret these parameters or
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to quantify differences between estimates. Instead we seekmeasures to quantify the scale and
shape of the kernel.
In ecology, kernels are commonly quantified by moment statistics [32–34]. In particular,

raw moments, which evaluate the kernel characteristics from the point of origin (here the ship-
ping farm), are useful because of their relationship to invasion speed [35]. Simple diffusion
tends to a Gaussian distribution, and the second raw momentmi = E[Di] is proportional to the
diffusion constant (d = 4m2 for two-dimensional kernels). The invasion speed will thus be pro-
portional tom2, and this holds also for deviations from the Gaussian distribution, as long as
the tails of the kernels are exponentially bounded [35]. It is further convenient to describe the
kernel shape by its kurtosis, κ, measured as the fourth moment, normalized by the square of
the secondmoment, k ¼ m4=m2

2
. In general, kurtosis of a distribution provides a scale free

measure of shape, mostly determined by the tail of the kernel [36]. These definitions and inter-
pretations are straightforward in continuous space. Defining appropriate measures of kernel
characteristics is more cumbersome for point pattern landscapes, which is commonly used for
epidemiologicalmodels. That is, farm positions are represented as discrete locations with

Fig 1. (A) Premises locations and county borders in Sweden. Thick borders indicate the borders separating the three lands of Sweden, from

south to north: Götaland, Svealand and Norrland. Counties selected as examples in other figures are also pointed out (Y, T and N). (B)

Frequency of movement distances in Sweden 2007. x-axis is truncated at 600 km and 527 movements of distances 600 km to 1265 km are

not shown. (C) Frequency of movement distances in Sweden 2008. x-axis is truncated at 600 km and 432 movements of distances 600 km to

1293 km are not shown. (D) Number of transports per month in 2007 and 2008, respectively.

doi:10.1371/journal.pone.0164008.g001
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specified coordinates. When using a kernel approach to model transports between farms, the
kernel describes the underlying process whereby the probability of a destination for a transport
changes with distance. However, realized transport distances will be the result of both the
underlying process, modeled by the kernel, and the farm locations, represented by coordinates.
Simply put, a transport can only end up at a distance where there is a farm to receive it. The
effect of kernel characteristics on the speed of biological invasions (including epidemics) in
point pattern landscapes are less well studied. The effect of kernel characteristics on invasion
speed depend on landscape characteristics [33]. Yet, we still rely on moment statistics to
describe the kernel specified in Eq (1), but do so for communication purposes rather than theo-
retical expectations about the effect that they have on the invasion speed of an epidemic
spreading through the contacts that transports mediate. By defining the scale of the kernel as
s �

ffiffiffiffiffiffim2

p , we obtain a measurement with a specified unit, here m. Thus, we can compare e.g.
estimates for different seasons and if σ1 = x and σ2 = 2x we can say that the kernel with σ2 is
stretched out by a factor of two compared to σ1. Further, we use κ as a measurement of kernel
shape. If e.g. two kernels have parameters σ1 = σ2 and κ1> κ2, the kernel with κ1 will have
higher probability of short distance movements and at the same time a fat tail of the kernel
describing higher probability of producing long distance movement. This is similar to what
have been used in [32]. It should however be stressed again that realizedmovements will also
depend on the position of farms, and as such the kernel σ and κ should be interpreted as mea-
surements that quantify the underlying distance dependence in contact probabilities.
For kernels of the form shown in Eq (1), σ and κ are calculated as

s ¼
ffiffiffiffiffiffi
m2

p
¼ a

ffiffiffiffiffiffiffiffiffi
G 4

b

� �

G 2

b

� �

s

and k ¼
m4

m2
2

¼
G 6

b

� �
G 2

b

� �

G 4

b

� �2
; ð2Þ

where Γ indicates the gamma function. Fig 2 shows examples of the kernel for different σ and κ.
We estimated parameters in a Bayesian framework, thus obtaining probability distributions

for quantities of interest rather than point estimates. This is beneficialwhen models are used
for predicted purposes because parameter uncertainty can be included in the predictions.
The models will be denotedMρω where subscripts ρ and ω indicates the level of regional and

seasonal granularity respectively. Subscripts s, l, c, y, q and m, correspond to Sweden, lands,
county, year, quarter and month, respectively. Here, lands denotes three collection of counties
in Sweden (see Fig 1). We here start by outlining the likelihood functions for each of the models
and then present each of the (hierarchical) Bayesian models below.

Seasonallyand regionally invariant model—Msy. For modelMsy, we assumed that no
seasonal or regional variation exist in the contact pattern. We let T denote the set of all observed
transports, and letN denote the set of active premises. The probability of a transport t 2 T of
distanceDot ;dt

, originating at premises ot 2 N and destinating at premises dt 2 N, dt 6¼ ot is

ftðDot ;dt
ja; bÞ ¼

e�
Dot ;dt

a

� �b

X

j 2 N

j 6¼ ot

e
Dot ;j

a

� �b : ð3Þ

We acknowledge that distance is not the only factor of determining the movement probabil-
ities. Specifically, it is likely that premises with a large number of animals are more likely to
receive animals. Thus, a function of the size of the premises was used as a weight when calculat-
ing the probability of a transport ending at a particular farm. The size component was intro-
duced to assert that regional differences were not an artefact of the sizes of the premises. A
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weight functionW ðwdt
Þ, wherewdt

is the number of cattle on the destination premises for
transport t, was introduced and four weight functions were used.We evaluated our models
usingWðwet

Þ ¼ wx
et
, for ξ 2 {0, 0.5, 1, 1.5}, where 0 indicate no effect of farm size, 0.5 indicate

sublinear effect, 1 indicate linear effect and 1.5 indicate superlinear effect. Using the notation
Θ = (σ, κ), the likelihood for modelMsy is defined as

L1ðYjDt 2TÞ ¼

Y

t 2T

Wðwdt
Þe�

Dot ;dt
a

� �b

X

j 2 N

j 6¼ ot

WðwjÞe
�

Dot ;j
a

� �b ð4Þ

Seasonal variationmodels—Msq andMsm. In the secondmodel, we allowed the move-
ment patterns to vary seasonally. This was accounted for by introducing season specific
Θω = (σω, κω) for seasonω 2 O, where the set of seasons was denotedO. As such, this model
(and the ones below) can be described as random effectsmodels. For modelsMsq and Msm, the
setO was equal to set of quarters and months, respectively. Further, the set of transports occur-
ring in seasonω, was denotedTω. Hence, the probability of all movements in seasonω is

Fig 2. Kernel shape for three parameter sets, inset figure shows kernel values (on the log scale) for larger distances.

doi:10.1371/journal.pone.0164008.g002
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written as

lðYojDt 2To
Þ ¼

Y

t 2To

Wðwdt
Þe�

Dot ;dt
ao

� �bo

X

j 2 N

j 6¼ st

WðwjÞe
�

Dot ;j
ao

� �bo
ð5Þ

and the likelihoodof all movements as

L2 ΘOjDt 2Tð Þ ¼
Y

o2Ω

l ΘojDt 2To

� �
: ð6Þ

Regional variationmodels—Mly andMcy. Analogously, in the model where regional dif-
ferences were considered, every region was modeled as having its unique set of kernel parame-
tersΘρ = (σρ, κρ) for all regions ρ 2 P, where P indicates the set of all considered regions. The
regions in models Mly and Mcy, are three collections of counties (the lands of Sweden) and the
counties of Sweden, respectively. The set of transports originating from region ρ was denoted
Tρ. Hence, probability of movements from a specific county is written as

lðYrjDt 2Tr
Þ ¼

Y

t 2Tr

Wðwdt
Þe
�

Dot ;dt
ar

� �br

X

j 2 N

j 6¼ ot

WðwjÞe
�

Dot ;j
ar

� �br
ð7Þ

and the likelihoodof all transports as

L3 ΘPjDt 2Tð Þ ¼
Y

r2P

l ΘrjDt 2Tr

� �
: ð8Þ

Regional and seasonal variationmodels—Mlq, Mlm, Mcq andMcm. To capture the
assumed seasonal and regional heterogeneities, we modeled the displacement kernels with to
have separate parameters for both different regions as well as different seasons. In this model,
the notationΘρω = (σρω, κρω) is used for the sought parameters and the set of observed trans-
ports, originating in region ρ seasonω, is denotedTρω. Thus, the probability of movements for
a particular combination of region and season can be written as

lðYrojDt 2Tro
Þ ¼

Y

t 2Tro

Wðwdt
Þe
�

Dot ;dt
aro

� �bro

X

j 2 N

j 6¼ ot

WðwjÞe
�

Dot ;j
aro

� �bro
ð9Þ

and consequently the likelihood is defined as

L4 ΘPΩjDt 2Tð Þ ¼
Y

r2P

Y

o2Ω

l ΘrojDt2Tro

� �
: ð10Þ

Spatiotemporal Variation in Distance Dependent Animal Movement Contacts: One Size Doesn’t Fit All

PLOS ONE | DOI:10.1371/journal.pone.0164008 October 19, 2016 7 / 20



Bayesian modeling and prior elicitation

Model Msy. To express the probability density function ofΘ (the model where no hetero-
geneity in space or time are considered), the prior probability forΘ was chosen asC(Θ) =
Cσ (σ|ασ, βσ)Cκ−4/3 (κ|ακ, βκ). With Cσ andCκ−4/3 as prior distributions for σ and κ respec-
tively. The distributionCσ was specified as a gamma distribution with shape and scale parame-
ters ασ and βσ. Since the lower limit of κ is 4/3,Cκ−4/3 was chosen to be a shifted gamma
distribution with shape and scale parameters ακ and βκ. That is,

Cs sjas; bsð Þ ¼
b
� as

s

G asð Þ
sas � 1e

�

s

bs and

Ck� 4=3ðkjak; bkÞ ¼
b
� ak

k

GðakÞ
ðk � 4=3Þ

ak � 1e
�

k � 4=3

bs :

ð11Þ

To keep the prior distributions vague, we chose the parameters as (ασ, βσ) = (0.001, 1000) and
(ακ, βκ) = (0.001, 1000) (σ * Gamma(0.001, 1000) and κ − 4/3* Gamma(0.001, 1000)).
Thus, the joint posterior probability distribution was written as

pðΘjDt 2TÞ / L1 ΘjDt2Tð ÞCðΘÞ ¼

Y

t 2T

W wdt

� �
e
�

Dot ;dt

a

� �b

X

j 2 N

j 6¼ ot

W wj

� �
e
�

Dot ;j

a

� �b Csðsjas; bsÞCk� 4=3ðkjak; bkÞ: ð12Þ

Models Msq, Msm andMly, Mcy. In the models with season and region specific parameters,
respectively, the joint posterior distribution was modeled as a product of the probability of
movements for each season and region, respectively. Further, since the transport data were
divided into different subsets with less amount of data in each set, hierarchical priors were
implemented. Thus, the parameters σω, κω, σρ and κρ, respectively, were viewed as samples of a
common population distribution (details can be found in [37]). That is, the prior parameters
ασ, βσ ακ and βκ, were modeled to come from hyper prior distributions p(ασ), p(βσ), p(ακ) and p
(βκ), respectively. The posterior distribution for modelsMqs and Mms (seasonal heterogeneity
assumed) is written as

pðΘ1; . . . ;ΘjΩj; as; bs; ak; bkjDt 2TÞ /
Y

o2Ω

lðΘojDt 2To
ÞCsðsojas; bsÞCk� 4=3ðkojak; bkÞpðasÞpðbsÞpðakÞpðbkÞ:

ð13Þ

Analogously, the joint probability distribution for modelsMyl and Myc (regional heteroge-
neity assumed) is written as

pðΘ1; . . . ;ΘjPj; as; bs; ak; bkjDt 2TÞ /
Y

r2P

lðΘrjDt 2Tr
ÞCsðsrjas; bsÞCk� 4=3ðkrjak; bkÞpðasÞpðbsÞpðakÞpðbkÞ;

ð14Þ

i.e. similar as Eq 13, but data separated by region rather than season.
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Models Mlq, Mlm, Mcq andMcm. A similar approach was used when both seasonal and
regional variability was taken into account. As with modelsMqs, Mms and Myl, Myc, a hierarchi-
cal structure was implemented, but the prior was here defined for all parameters specific for
each combination of region and season. Thus, the joint posterior probabilities were written as

pðΘ1;1; . . . ;ΘjPjjΩj; as; bs; ak; bkjDt 2TÞ /
Y

r2P

Y

o2Ω

lðΘrojDt 2Tro
ÞCsðsrojas; bsÞCk� 4=3ðkrojak; bkÞpðasÞpðbsÞpðakÞpðbkÞ:

ð15Þ

When using hierarchical priors, the priors for σρ, σω, σρω and κρ, κω, κρω were chosen as
gamma and shifted gamma distributions, respectively (i.e. of the same form as in the case with
no regional or seasonal heterogeneity). However, instead of fixed shape and scale parameters
for the prior distributions, the parameters were modeled to come from gamma distributions
with parameters, shape = 0.001 and scale = 1000. That is, ασ, βσ, ακ, βκ * Gamma(0.001,
1000). The motivation for the choice of parameter values of the hyper priors were to form
vague, but proper hyper prior densities.

Computation

None of the full Bayesian models (Eqs 12, 13, 14, 15) has a known form, and we computed the
posterior distribution of the parameters of interest with Markov ChainMonte Carlo (MCMC)
methods. To achieve this, we usedMetropolis-Hastings algorithms [38] with component wise
random walk updates [39] with a bivariate Gaussian proposal on the log scale of theΘ parame-
ters in all four models. For the prior parameters (ασ, βσ) and (ακ, βκ) in the models with sea-
sonal and/or regional heterogeneities, we used bivariate Gaussian proposals on the linear scale.
Component wise random walk updates were used for these parameters as well. We computed
1,000,000 iterations and discarded the first 200,000 iterations as burn in. The figure in supple-
mentarymaterial S3 Fig. shows Markov chains for the hyper parameters (shape and scale) for
σρ and κρ in modelMcy.
To facilitate goodmixing, we used an adaptive proposal algorithm describedby Garthwaite

et al. [40] to obtain a long term acceptance rate of 0.234 [41]. This algorithm has been shown
to be efficient for high dimensional models [17].
To speed up calculations, we did not use exact distances but approximations. We approxi-

mated distances by splitting the distance between 0 km to the maximum possible distance
(1484 km) into 50 intervals of the same length. Further, since higher precision is more impor-
tant at short distances, we split the first interval into 50 sub intervals. The second interval in to
49 sub intervals and so on until we came to the point where we split one interval in halves. The
remaining intervals were also split in halves, thus we have sub intervals describing unique
range of distances. A distance of length within the range of a sub interval, were approximated
the length equal to the mid point of the sub interval. The maximum deviation from the true
distance ranged from approximately 300 m at shortest distance to 10 km at longest distance.
The models were implemented in C++ and parallelized using OpenMP 4.0. Calculations

were made at the Triolith and Gamma clusters at Swedish National Infrastructure for Comput-
ing (SNIC) at Linköping University [42]. Computation times varied from approximately 1.5h
for the simplest model, to approximately 10h for the most complex model on a computation
node with 16 cores.

Model selection

Model selectionwas performed by three different methods. First, we calculated the Deviance
Information Criterion (DIC) for each of the nine candidate models. DIC was chosen in favor
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over other criterion such as Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC), due to its advantages when considering hierarchical Bayesian models [30].
Both AIC and BIC requires a specifiednumber of parameters, which isn’t predefined for hier-
archical models. DIC instead estimates the effective number of parameters. The interpretation
is however similar to that of AIC or BIC in that the model with the lowest DIC score is consid-
ered to best fit the data.
Secondly, we estimated the log predictive posterior density [31] for 2008 year’s data

(lppd2008) for the models. As in [31], we sought

lppd ¼
Xn

i¼1

log
Z

pðyijΘÞppostðΘÞdΘ; ð16Þ

where y1, . . ., yn are data points and ppost(Θ) is the posterior distribution.We estimated
lppd2008 by calculating the computed lppd (clppd) [31], as

llpd2008 ¼ clppd ¼
Xn

i¼1

log
1

S

XS

s¼1

p yijΘsð Þ

 !

: ð17Þ

Here, the data points yi are the observedmovements in 2008 andΘs are simulation draws from
the posterior distribution. Here, we used S = 10000. This provides us with a relative measure of
the predictive ability. The interpretation is, the higher value, the better prediction.
Thirdly, we performed an analysis based on the ability of models to reproduce relevant sum-

mary statistics. Focusing on county and month specificmovements, i.e. the highest spatiotem-
poral resolution considered in the analysis, we investigated if models were able to accurately
predict the median (p50) and upper 95 percentile (p95) of 2008 year’s observedmovement dis-
tances. For this purpose, we generated 1000 movement networks per model, each parameter-
ized by a random draw from the posterior distribution of parameters as represented by the
MCMC analysis. The generated movements were chosen to have the same origin premises as
the 2008 year’s movement data. As such, we do not make any assumptions about the origin
farms, modeling only the focal process of this study: the prediction of movement distances.
Considering the 240 combinations of county and month, we scored the models by the percent-
ages of observedvalues of p50 and p95 encapsulated by the range of the 95% central credibility
interval of posterior predictive distributions.

Results

Our analysis selectedmodels with spatial granularity at county level, as the three most pre-
ferred models, with support of both DIC, lppd and posterior predictive accuracy. At temporal
level, the results are more ambiguous. Different selection criteria, support different levels of
seasonal granularity. Table 1 shows DIC and lppd2008 estimates as well as percentages of coun-
ties and month where summary statistics p50 and p95 were encapsulated by the 95% central
credibility interval of corresponding posterior predictive distributions. The linear correction
for farm sizes, i.e.Wðwdt

Þ ¼ w1:0
dt
, consistently outperformed other corrections with minimum

DIC difference of 2786, compared to the correspondingmodel with alternative functions for
W ðwdt

Þ. This is interpreted as inconsequential support for alternative corrections and we
therefore present results for models withWðwdt

Þ ¼ w1:0
dt
.

Fig 3 shows the seasonal and regional variations in the parameter estimates frommodels
with seasonal variability (modelsMsq and Msm) and regional variability (models Mly and Mcy),
respectively, indicated by median and 95% credibility intervals (CI). For comparison, parame-
ter estimates for modelMsy, i.e. where neither regional nor seasonal differentiation is
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Table 1. Table of DIC scores, lppd values and the proportion of 95th percentile and 50th percentile, encapsulated by the corresponding posterior

predictive distributions 95% central credibility intervals.

Model DIC lppd2008 p95 acc. p50 acc.

Msy 698,045 -419,001 42.1% 48.8%

Msq 698,059 -418,976 38.3% 47.1%

Msm 697,785 -418,935 38.3% 47.5%

Mly 688,692 -418,138 58.3% 46.3%

Mcy 680,905 -417,299 65.0% 66.7%

Mlq 688,517 -418,152 55.0% 47.1%

Mlm 688,580 -418,158 55.0% 45.8%

Mcq 680,458 -417,399 64.6% 64.6%

Mcm 680,881 -417,627 65.0% 75.0%

doi:10.1371/journal.pone.0164008.t001

Fig 3. 95% credibility intervals of shape (upper row) and scale (lower row), for Msq and Msm (left panel), accounting for seasonal variability in

movements; and Mly and Mcy (right panel), accounting for regional variability. Corresponding parameter values of Msy are shown to the far right in

the left panel.

doi:10.1371/journal.pone.0164008.g003
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considered, are shown on the far right of the left panels. The figure illustrates considerable spa-
tial variation with non-overlapping CIs for estimates specific to each region, thereby giving fur-
ther support to the notion that regional differentiation should be considered. Non-overlapping
CIs at the temporal scale exists, but not as prominent as on the regional scale.
Fig 4 further illustrates regional variations for quarter Q1 to Q4 in Model Mcq. Different col-

ors correspond to different median values of scale and shape on the log scale.
Fig 5 shows the predicted summary statistics for the nine models, for three different coun-

ties in April, August and December, illustrating the method of calculating accuracy of

Fig 4. Median shape and scale estimates for counties in Sweden in quarter Q1 to Q4, presented on the log scale.

doi:10.1371/journal.pone.0164008.g004
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predictions for p50 and p95. The error bars indicate the interval between the 2.5th and 97.5th per-
centiles of the posterior predictive distributions and the medians corresponding to the p50 and
p95 estimates are indicated as dots and diamonds, respectively. The observedquantities for p50
and p95 year 2008 are indicated with dashed and dotted lines, respectively. For example, Fig 5
shows that for county T and December, p50 and p95 were encapsulated by CIs generated with
Mcy, Mcq and Mcm, whereas using any of the other models did not provide CIs that encapsulate
the observedvalues. As another example, for county Y and December, all models succeeded in
encapsulating the p95 and only Mly, Mlq and Mlm failed in encapsulating p50. The counties were
chosen based on location to represent the southern (N), middle (T), and northern (Y) parts of
Sweden. These counties are annotated in Fig 1.

Discussion

Animal movement is of particular importance for livestock disease spread between farms
because of high transmission risk [14] and the ability to carry diseases over long distances [25,
43]. It is therefore of great importance to sufficiently capture the contact pattern in disease

Fig 5. Medians and corresponding 95% credibility intervals of the posterior predictive distribution of the 50th (dots) and the 95th (diamonds)

percentiles of movement distances for selected months and counties, based on parameters from 2007. Dashed and dotted lines indicate the

corresponding quantities in the observed data from 2008.

doi:10.1371/journal.pone.0164008.g005
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simulation models that are used to inform policy when livestock movement is an important
pathway for between farm transmission.
The aim of this study was to demonstrate the importance of regional and seasonal differ-

ences in the distance dependent component of the contact pattern. For this purpose, we com-
pared nine predictive models for cattle movements, fitted to data of all reported shipments of
one year in Sweden. Our results clearly showed that spatial factors are important whenmodel-
ing distance dependence in cattle movements, whereas temporal factors may be less important.
Table 1 shows that based on DIC score, Mcm, which accounts for both regional and tempo-

ral variability, is the preferred model. The DIC score indicates that regional variability at the
finest granularity, i.e. county, is preferred, and that temporal variability should be accounted
for at medium granularity (quarter). The DIC difference betweenMcq and the nearest model is
423, indicating inconsequential support for alternative models.
Though the DIC scores clearly shows that Mcq fit the data best, it does not provide easily

interpreted information on the difference in predictive abilities among the candidate models.
We therefore performed two additional model selection analyses, using parameter estimates
from 2007 year’s data, and 2008 year’s data for validation. First, we estimated lppd:s for the
models (Table 1). The llpd2008 values indicate that Mcy is the preferred model which is the
model where we accounted for regional differences at county level, but where we did not
assume temporal variability.
Secondly, comparing observed summary statistics of movement distances, to the corre-

sponding posterior predictive distributions of these statistics. We focused on the medians and
upper 95% percentiles movement distances for each month and county and compared the
models by their ability to predict the observed2008 year’s data from estimates based on data
from 2007. Table 1 shows that model selection based on these summary statistics would lead to
Mcm as most preferred model. That is, when we account for the highest of the considered levels
of granularity in spatial and temporal variability.
Figs 3 and 4 show that although both seasonal and regional variations in parameter esti-

mates exist, the variability is more evident when considering regional location. This is in agree-
ment with the model selection presented in Table 1. The consideredmethods for model
selection clearly prefers models with spatial variability at county level, but the preferred level of
seasonal variability is harder to determine. The three methods for model selection all agree that
regardless of the considered temporal granularity, the preferred model is the model accounting
for spatial variability at county level, and the least preferred model does not account for spatial
heterogeneities. Further, the preferred model based on llpd2008 value, does not consider tempo-
ral heterogeneities whereas preferred models evaluated by DIC and summary statistics for p50
and p95 do, but at different granularity.
Animals are shipped between holdings for several purposes, including e.g. grazing, breeding,

fattening before slaughter, and farmers increasing or decreasing herd sizes. The underlying fac-
tors that determine animal movement distances can be expected to vary with the reason for
shipment. For instance, the economic and social factors that regulate the shipment of a single
breeding animal are different from those that determine shipment of dairy herd bulls for the
purpose of fattening before slaughter. The spatial, and to some extent seasonal, variability in
shipment distances we reveal here is therefore likely a result of regional and seasonal differ-
ences in cattle production. Cattle farming in Sweden is highly seasonal (Fig 1) [16], with calves
generally born in spring. Animals are often kept indoors during the winter and are shipped for
grazing around April or May. The underlying purpose of shipments varies over the year, and
as such, the contribution of the different transports to the data used for kernel fitting will vary
seasonally. Though seasonal heterogeneity in distance dependence is observed, it is not clear if,
or to what extent, it should be accounted for. When using DIC based on the 2007 data, i.e. the
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data used for parameter estimation, the intermediate seasonal granularity was selected. Thus,
we can say that for the analyzed data, there was some seasonal variation. However, the DIC
scores are relatively similar, and there appears to be no benefit for predictive purposes.When
using the models for prediction of the subsequent year’s transports, the lppd2008 scores selects
the model with no temporal variability as the preferredmodel. These results suggest less impor-
tance of seasonal variation in distance dependence, and is somewhat surprising, given the sea-
sonality in farming practices in Sweden.
Ourmethod focuses on the relative distance dependence by normalizing probabilities over all

possible destination farms. Eq 3 describes how the relative probability of destination farm
changes with distance. Thus, the regional differences we observe in shape and scale (Fig 3) are
not merely the result of differences in farm densities and average distances between farms.
Instead, we propose that regional differences in production systems could explain the observed
spatial variability. For pigs, it has been demonstrated that the distance dependence in contact
probability varies among production types [9]. No available data exist on production types for
cattle in Sweden, preventing us from explicitly analyzing how production types affect shipment
distances. Farming is however generally more intensive in the south compared to the north [16],
and we expect that the observed spatial component is largely an effect of differences in farming
practices. This hypothesis can however not be tested in the absence of more detailed data. We
argue that lack of detailed data is not a unique situation for Sweden and that this framework can
be suitable when analyzing distance dependencies in other countries (e.g. France, Belgium and
United Kingdom) where regional heterogeneity in farming practices exist [44].
The lack of detailed data on farming practices at herd level and the underlying reasons for

an individual shipment, can with this framework to some extent be circumvented. We here
show that by accounting for regional, and to some extent seasonal differences, the ability to
predict shipment distances is improved considerably.
The aim of this study was to investigate the presence of spatiotemporal variability in move-

ment distances, using Swedish shipment data as a case study. For this purpose, we used a low
dimensional model and showed that when regional variability is accounted for, the predictions
can be improved considerably (Fig 3 and Table 1). The importance of accounting for temporal
variability is more ambiguous, and differs with criteria for model selection. In order to further
improve prediction of between farmmovement, additional covariates may be necessary. We
here adjusted contact probabilities by herd size, but acknowledge that additional factors are
important. The framework is however flexible, and can be expanded to account for additional
factors when reliable data is available.
Our study provides important insight for modelers of livestock diseases. Prediction of ani-

mal movement is an integral part of most stochastic disease spread models, and various
approaches have been implemented, including resampling of observed shipments [45], creating
look-up tables [22] or parametric estimation of contact probabilities [17, 25]. Our results show
the importance of accounting for regional, and to lesser extent also seasonal variations when
doing so. Previous studies have primarily looked at spatiotemporal dynamics of shipment fre-
quency [15, 16, 28, 29], but we here demonstrate that the distance component also vary with
region, and to a lesser extent with season.
The implications of these findings for diseasemodeling varies with the disease as well as with

the question that models are used to answer. For outbreaks of FMD or CSF, a nationwide move-
ment ban would be constituted upon detection.As such, epidemicmodels primarily need to
account for movement in the silent spread phase. For instance, during the 2001 outbreak of
FMD in the UK, most transmission occurredpost movement ban, and thus other factors were
more important [46]. This indicates that factors other than animal movement are more impor-
tant to account for whenmodeling.However, a major reason for the large and prolonged
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outbreak was that the disease was already widespread upon detection,making it difficult to con-
tain, and much of this spread occurred though animal movements [1]. Accounting for spatio-
temporal variability in animal movement contacts can therefore be important also for modeling
of outbreaks of such transboundary diseases, particularly for issues related to detection time.
For endemic diseases or outbreaks of diseases without movement bans, livestockmovement can
continue to spread pathogens between farms. Models are commonly used to rank different con-
trol options [4, 12, 47], incorporating realistic movement pattern in models will be important
when these models are used to compare control actions for such diseases. For instance, if spatial
heterogeneity in the contact pattern isn’t accounted for, models may provide erroneous policy
recommendations about which farms to target for control and/or surveillance.
Movement is typically one of several pathways that can transmit the disease between farms.

Other transmission processes typically also show spatiotemporal variability, and heterogeneity
in the movement contact pattern can interact with other processes. Here, we particularly iden-
tified the importance of spatial variability in animal movements with the temporal component
of lesser or no importance, depending on the selection criteria. The same pattern might not be
present in other countries, and we propose that seasonal and regional variability should be
tested for before assuming a homogeneous contact structure for modeling purposes.
We argue that the kernel approach is ideally suited for this, and has some important benefits

over direct use of movement data for diseasemodeling. Somemodels incorporate animal
movements by resampling observedmovements [45], but when considering finer spatial or
temporal resolution, the number of movements that can be resampled for a region or period
are reduced. Thus, the variability in the contact pattern can be underestimated. Other models
create look-up tables of movement distances [22], which poses a similar problem.When con-
sidering fine-grained spatiotemporal resolution, the tables for a specific region or periodmay
be based on fewmovements. This may underestimate the variability in possible contacts in epi-
demic models.
Also, an advantage of our kernel approach is that it separates the underlying distance depen-

dence in animal movement contacts from the spatial distribution of farms. Directly using the
data to create look-up tables may be problematic when there is spatial heterogeneity in farm
density, as is the case for Sweden Fig 1. The observeddistribution of transports may largely be
the result of the spatial configuration of farms, and the distribution of possible destination
farms is not the same for e.g. shipping farms in sparse and dense areas. The kernel approach
circumvents this issue by modeling the relative probability of destination farms as a function of
distance from the shipping farm, and realizedmovement distances are modeled as unique for
each farm location. Thus, we propose that the framework considered here is a promising
approach and could be used to improve epidemiologicalmodels where animal movement is an
important factor.
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