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The influence of biophysical 
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Abnormal cortical folding patterns, such as lissencephaly, pachygyria and polymicrogyria 
malformations, may be related to neurodevelopmental disorders. In this context, computational 
modeling is a powerful tool to provide a better understanding of the early brain folding process. 
Recent studies based on biomechanical modeling have shown that mechanical forces play a crucial 
role in the formation of cortical convolutions. However, the effect of biophysical parameters in 
these models remain unclear. In this paper, we investigate the effect of the cortical growth, the 
initial geometry and the initial cortical thickness on folding patterns. In addition, we not only use 
several descriptors of the folds such as the dimensionless mean curvature, the surface-based three-
dimensional gyrification index and the sulcal depth, but also propose a new metric to quantify the 
folds orientation. The results demonstrate that the cortical growth mode does almost not affect the 
complexity degree of surface morphology; the variation in the initial geometry changes the folds 
orientation and depth, and in particular, the slenderer the shape is, the more folds along its longest 
axis could be seen and the deeper the sulci become. Moreover, the thinner the initial cortical thickness 
is, the higher the spatial frequency of the folds is, but the shallower the sulci become, which is in 
agreement with the previously reported effects of cortical thickness.

Human brain growth is accompanied by the folding of the cerebral cortex, which takes place in a hierarchical 
mode during gestational weeks 16–401, with primary folds forming the earliest and highly conserved, then 
secondary folds elaborating on these folds,  etc2,3. Recent studies have revealed that not only the molecular and 
cellular processes but also mechanical forces play an important role in the formation of the gyral and sulcal 
 convolutions4–7.

It has been revealed that mechanical models based on the hypothesis of differential tangential growth could 
produce realistic folding patterns when they are applied on human fetal brain  data6,7. 3D numerical simulations 
of brain growth demonstrate that the relative tangential expansion of the cerebral cortex constrained by the white 
matter generates compressive stress, resulting in cusped sulci and smooth gyri similar to those in developing 
fetal  brains6,7.

It has been shown that the cortical folding patterns are influenced by various physical parameters, e.g., the 
initial cortical  thickness5–9, the initial  geometry10–12 and the relative  growth2,5,13–16. In addition to these recent 
observations, many questions are still open regarding the morphogenesis of folding patterns, including links 
between the physical parameters of simulation models and the folding patterns observed in in vivo MRI data. 
A deeper understanding of these parameters can significantly contribute to comprehend pathologies associated 
with characteristic changes in cortical folding. For instance, polymicrogyria, pachygyria and lissencephaly mal-
formations can be accompanied by  autism17,18,  schizophrenia19,20 or  epilepsy21. Thus, in this work, we investigate 
the influence of physical parameters on surface morphology using the brain growth model proposed by Tallinen 
et al.6,7. The simulation results first allow us to visually remark the difference in the appearance of folding patterns. 
Then we quantify these folds through various quantitative metrics, such as the mean curvatures, the surface-
based three-dimensional gyrification index and the sulcal depth, which can be used to describe the complexity 
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degree of surface  morphology22,23. Besides we introduce a novel approach to measure the anisotropy of the folding 
orientation, through geometric  tools24,25 and the Kullback-Leibler divergence.

Specifically, this work attempts to answer the following questions: (1) What is the impact of the temporal 
cortical growth model onto the folding patterns? (2) What is the influence of the initial cortical thickness on 
the folding patterns of the brain? (3) Is there a relationship between the folding complexity (as measured by the 
average of the absolute value of mean curvatures, the surface-based three-dimensional gyrification index and 
the sulcal depth) and the shape of the brain (the initial geometry)? (4) Does the orientation of the folds depend 
on the shape of the brain?

Methods
Biomechanical model of brain folding. Tallinen et al. proposed a human cortical folding model, which 
can mimic a realistic brain folding  process6,7. Brain growth is modeled by a relative tangential expansion of the 
cortical layer and the white matter layer, the cortical layer is assumed to grow more rapidly than the white matter 
layer. The nonlinear stress-strain property of the human  brain26 and the bulk modulus (K) that is assumed to be 
five times the shear  modulus7 can be brought into the frame of a modestly compressible Neo-Hookean material 
solid. The model is based on an explicit dynamic solver for quasi-static equilibrium of the system and allows 
the simulation of the large strains and highly nonlinear mechanics involved in gyrification, but the brain solid 
should be discretized into high-density tetrahedral finite  elements6. In our simulation, we make use of dense 
meshes ( 106  tetrahedra/cm3 ) to ensure the folding accuracy, which is detailed in additional information. In 
addition, the time step dt = 0.05a

√
ρ/K  is set to avoid computational  instabilities27,28, where a is mesh spacing 

which should be set manually based on the average spacing in the mesh, ρ is mass density and K is bulk modulus.
The model uses free boundary conditions and the initial displacement and velocity are zero. Two main forces 

are considered in this model. One is the elastic force, which is derived from the volumetric strain energy density 
of neo-Hookean and a deformation gradient. Another is the contact force, which takes place when a separation 
between a node and a triangle face at the brain surface is less than a threshold in order to prevent nodes from 
penetrating element faces. The contact force is obtained via penalty based vertex-triangle contact  processing29.

The deformation gradient is defined in this model by F = A(GÂ)−1 , which differs from the traditional defini-
tion of F = AÂ−1 by integrating the relative tangential growth tensor G. The relative tangential growth tensor G, 
which describes the tangential expansion perpendicular to the normal vector n̂ of the tetrahedron, is calculated by

where g is the relative tangential expansion ratio of the grey matter to the white matter, which associates with the 
distance of a tetrahedron from surface in material coordinates and is given by the relation

where αt  controls the magnitude of local cortical expansion (expansion for each tetrahe-
dron). t parametrizes time of model and has a non-linear relation to gestational age (GA) as 
t = 6.926× 10−5GA3 − 0.00665GA2 + 0.250GA− 3.01899, t ∈ [0, 1] corresponds to GA ∈ [22weeks, adult] , y 
is the distance from the top surface, which is calculated for four vertices of each tetrahedron and would be aver-
aged, Hi is the initial cortical thickness. When the relative tangential growth tensor G is initialized, the brain solid 
starts to grow and the deformation gradient is formed, then the corresponding elastic force can be calculated. 
The resultant force (the sum of the elastic force and the contact force) is applied as the nodal force on each node 
of the mesh to produce the deformation of the brain solid. The Python code used in this study is available at 
https:// github. com/ rouss eau/ Brain Growth.

Biophysical and numerical parameters. To explore the mechanical mechanisms leading to folding, 
simulations are performed on an ellipsoid with mesh density of 106 tetrahedra/cm3 . The biophysical parameters 
defined in the model, such as the initial geometry, the initial cortical thickness ( Hi ) and the cortical growth 
( αt ), may affect the folding patterns on soft solids. For the definition of the initial cortical thickness ( Hi ), we 
should consider the size of the initial geometry. The two equatorial radius and polar radius of the ellipsoid are 
approximately 10, 9 and 7 mm respectively, thus the longitudinal length (LL) of this ellipsoid is 20 mm. For a 22 
weeks’ normal fetal brain, the brain longitudinal length (BLL) is approximately 60  mm30–32, and the typical corti-
cal thickness is 2.5  mm7. To respect the ratio of the initial cortical thickness to the longitudinal length, a scale 
factor is applied to obtain the initial cortical thickness of the ellipsoid, which is 0.83 mm. It should be noted that 
the model has a coordinates normalization part (the three-dimensional coordinates will be ∈ [−1, 1] ), thus the 
initial volume of the solid does not affect simulation results, and the initial cortical thickness will be normalized 
to 0.042.

For the cortical growth ( αt in Eq. 2), at t = 1 (adult brain) the cortical layer has an areal growth by a factor 
of g2 = 8 relative to the white matter zone in the victitious stress-free  state7, thus the linear cortical growth was 
originally defined as αt = (

√
8− 1)t = 1.829t in this model.

Cortical growth. The cortical growth (defined by αt in the model) has an effect on surface  morphology2,5,13–16. 
Different growth models, which are used to describe different change tendencies of the cortical growth, may also 
have an impact onto the folding patterns. To better understand it, we first use a linear growth model, which was 
initially defined in the brain folding model by αt = (

√
8− 1)t7. Secondly, considering that the Gompertz distri-

(1)G = gI + (1− g)n̂⊗ n̂,

(2)g = 1+ αt

1+ e
10(

y
Hi

−1)
,

https://github.com/rousseau/BrainGrowth
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bution can be used to model the growth of human  brains33, we choose the Gompertz growth model to compare 
with the linear growth model, which is defined as:

where a is the asymptotic value, b sets the growth rate and c sets the displacement along the t-axis. Since the pur-
pose is to explore the effect of change tendency of the growth, the initial and final values of the Gompertz growth 
model should be in agreement with those of the linear growth model, thus we assume a is a constant parameter 
( 
√
8− 1 ). With (b, c) equal to (6.6, 0.43) and (7.5, 0.19), we define two growing modes which correspond to the 

1st and 2nd Gompertz models shown in Fig. 1. In addition, another aim is to know how the extreme growth 
mode of non-growth for a long time and rapid growth at the end of the simulation to reach the same final growth 
will affect the folding patterns, thus the logistic model is adopted:

where a is curve’s maximum value, b is the logistic growth rate and c is the t value of the sigmoid’s midpoint. With 
a =

√
8− 1 , b = 50 and c = 0.9 , the model allows to grow rapidly around time 0.9. Eventually, these growth 

models are integrated into the brain folding model respectively to perform the simulations on the ellipsoid.

Initial geometry and cortical thickness. The pattern and location of folds can be influenced by initial  geometry10–12. 
For example, in ellipsoid models, most folds run either parallel or orthogonal to the ellipsoid’s long  axis10,11. In 
order to understand more clearly, an affine transformation (elongated transformation) is applied to the initial 
geometry to determine whether the complexity of folding patterns and how the direction of folds will change. 
Therefore, we propose that, while keeping the volume and the y-axis length of the geometry unchanged, the 
reference ellipsoid is scaled in x and z directions to obtain a sphere and the ellipsoids with different elongation 
ratios. The elongation ratio is defined by the ratio of the x-axis length to z-axis length. The y-axis length of these 
geometries is 18 mm, the x-axis length is from 19 to 27 mm, the z-axis length is from 18 to 12 mm, and the cor-
responding elongation ratio varies from 1.0 to 2.25.

In addition, the cortical folding patterns can also be influenced by the initial cortical  thickness5–7,9. To under-
stand the effect of the initial cortical thickness on surface morphology, based on each geometry with the linear 
growth model αt = 1.829t , we vary the initial cortical thickness in the brain folding model from 0.03 to 1.63 
mm (0.03, 0.43, 0.63, 0.83, 1.03, 1.23 and 1.63 mm) to simulate the folding processes. The cortical thicknesses 
from 0.43 to 1.23 mm are defined according to normative human cerebral cortex  measurements34 and the scale 
factor of the longitudinal length which is introduced in the Section of biophysical and numerical parameters. 
The other two cortical thicknesses (0.03 and 1.63 mm) are the hypotheses for abnormal cortical thicknesses.

Quantitative methods. Curvatures on triangle meshes. The normal curvature on a 3D surface in some 
direction is the inverse of the radius of the circle that best approximates a surface normal slice in that  direction35. 
The normal curvature for a smooth surface can be represented by the Weingarten matrix, i.e. the second funda-
mental tensor II, which is defined in terms of the directional derivatives of the surface normal:

where (u, v) are the directions of an orthonormal coordinate system in the tangent frame (the sign convention 
used here produces positive curvatures for convex surfaces with outward-facing normals).

(3)αt = ae−e−b(t−c)
,

(4)αt =
a

1+ e−b(t−c)
,

(5)II =
(

Dun Dvn
)

=
(

∂n
∂u · u ∂n

∂v · u
∂n
∂u · v ∂n

∂v · v

)

,

Figure 1.  Curves of the cortical growth defined by different expansion models.
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In this study, we compute the curvature based on Rusinkiewicz  estimation22, which may be thought of as 
an extension of common methods, such as the curvature presented in Knutsen et al.36 and used by subsequent 
authors like Garcia et al. 37, for the purpose of estimating per-vertex normals by averaging adjacent per-face 
normals. This algorithm uses the “Voronoi area” weighting which can produce more accurate normal estimates 
of curvature than other weighting methods for triangles of varying sizes and shapes. In this algorithm, the per-
face (per-triangle) curvature tensor is first computed by its three well-defined directions (the edges) together 
with the differences in normals in those directions (computed from the per-vertex normals). Then, the algorithm 
performs a coordinate system transformation for converting the curvature tensor to the vertex coordinate frame. 
Eventually, a per-face coefficient is applied to allow to weight the face curvature around each vertex.

Mean curvature of a vertex is defined by the average of the two principal curvatures (the maximal and minimal 
curvatures) of the vertex, and the principal curvatures are the eigenvalues of the vertex normal curvature tensor 
computed by Rusinkiewicz estimation:

where K1 and K2 are the eigenvalues and (u′, v′) are the principal directions, which are the directions in which 
the normal curvature reaches its minimum and maximum. Since surface curvature is useful to describe spatial 
variations in folding, thus for the overall folding complexity comparison, we first compute a dimensionless mean 
curvature by multiplying the mean curvature by the square root of the surface area ( K

√
area ), where K is the 

mean curvature. Then we calculate the average (across all vertices on the mesh surface) of the absolute value of 
dimensionless mean curvatures (at a vertex on the mesh surface) for each simulated surface. In the remainder 
of the manuscript, we simply use the term curvature for the sake of clarity.

Three‑dimensional gyrification index. Curvature-based features do not provide complete description of the 
folding patterns. In order to describe globally the folding complexity by considering the depth and wideness of 
the cortical folding, we also use the surface-based three-dimensional gyrification index (3D GI). It is a global 
measurement which is defined as the ratio of the cortical surface area to the area of its smooth “convex hull” (the 
minimum surface area needed to completely enclose the brain)23:

To get the convex hull, we scale the initial smooth surface in three dimensions so that the three-dimensional 
lengths of the convex hull are equal to those of the simulated cortical surface.

Sulcal depth. Sulcal depth can be used as a quantitative marker of cortical  morphology38. Several approaches 
have been proposed to compute the sulcal  depth39–41 but a well-defined computation of depth remains an open 
question. In this work, we make use of an intuitive approach to calculate the sulcal depth by using the distance 
between the deformed mesh surface and the corresponding convex hull. Specifically, for each surface vertex of 
the deformed mesh, we find the intersection point on the convex hull by using the vector determined by the 
corresponding vertex of the initial mesh and this vertex and the method of traversing all triangles on the convex 
hull. Then we compute the distance between each surface vertex of the deformed mesh and its corresponding 
intersection point on the convex hull.

Folds orientation. For the purpose of describing and comparing the direction of the folds on the simulated sur-
faces, we calculate the angle between the gradient of Fiedler  vectors24 and the principal directions of  curvatures25, 
which helps to understand whether the folds are isotropic. The Fiedler vector is the first non-constant eigenfunc-
tion of Laplace-Beltrami operator, represented by φ1 in Eq.  824. The Laplace-Beltrami operator is defined as 
�M = div · ∇M , where M is a Riemannian manifold. The eigenvalues of −�M are �0 = 0 ≤ �1 ≤ . . . and φ0 , φ1 , 
. . . are associated orthonormal basis of eigenfunctions, which satisfy

The Fiedler vector allows to describe the longitudinal extension of  surfaces24,42–44. The Fiedler’s extrema are the 
most distant  points24, and its contour lines are slices in the elongation axis. The gradient of the Fiedler vector that 
is perpendicular to the contour lines gives the direction of elongation. The principal directions of curvatures are 
the corresponding eigenvectors of the principal curvatures (the eigenvalues of the Weingarten matrix). Based 
on the local scalar product between the gradient of the Fiedler vector and the principal directions of curvatures, 
we can obtain the folds angle.

In order to compare quantitatively the uniformity of the angular distribution of folds, we use the Kull-
back–Leibler (KL) divergence. The KL divergence, also called relative entropy, is used to measure how one 
probability distribution is different from a second reference probability distribution. For two discrete probability 
distributions P and Q defined on the same probability space, the KL divergence from P to Q is defined to be

(6)II =
(

u′ v′
)

(

K1 0
0 K2

)(

u′

v′

)

,

(7)3D GI = areaofcorticalsurface

areaofconvexhull
.

(8)−�Mφi = �iφi .

(9)DKL(P||Q) =
∑

i

P(i) log
P(i)

Q(i)
.
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For angular uniformity calculations, P corresponds to the fold angular distribution on the folded surface, Q 
represents the theoretically uniform distribution of fold angles.

Results
Cortical growth. Surface morphology and 3D GI. Based on the simulation results of the reference ellipsoid 
with the same initial cortical thickness 0.83 mm but different growth models, we first compute the 3D GI over 
time, as shown in Fig. 2a. The increasing tendencies of the 3D GI for the different growth models are consistent 
with the curves of the cortical growth shown in Fig. 1. The final 3D GI is almost the same for the models, show-
ing that different growth models with the same initial and final growth will almost not affect the complexity of 
the final surface morphology.

For the 3D GI of 1.0, 1.4, 2.3 and 2.8, the surface morphology of different growth models is shown in 2b. When 
the 3D GI is 1.4, the folds on the surfaces of different growth models are almost in the same position. However, 
the divergence of folding patterns takes place when the 3D GI reaches 2.3 for the linear and 1st Gompertz model 
(in red frames) and is 2.8 for the 1st and 2nd Gompertz model (in green frames), suggesting that the same type 
of expansion model can make the difference in folds occur relatively late. For the logistic expansion model, the 
folds are relatively shorter compared to those of other models since the cortical growth is zero for a long time 
and suddenly increases close to the end. The final results (at time 1.0) of different growth models are shown in 
Fig. 2c. The amount of the final folds is almost the same for these growth models, but the patterns of the folds 
are visually different.

Surface curvature. The impact of growth model on dimensionless curvature is reported in Fig. 3a. For the 2nd 
Gompertz growth model, the curvature increases and reaches its maximum earlier than that of other models. 

Figure 2.  (a) The evolution of 3D GI over time for surfaces of different expansion models. (b) The comparison 
of folding patterns on the reference ellipsoid at the same 3D GI based on different expansion models. In red 
frames: difference in folding patterns for linear and 1st Gompertz models; in green frames: difference in folding 
patterns for 1st and 2nd Gompertz models. (c) The comparison of folding patterns on the reference ellipsoid at 
time 1.0 based on different expansion models. Software: (b, c) ParaView-5.8.0, https:// www. parav iew. org/.

Figure 3.  The comparison of (a), average of absolute value of dimensionless mean curvatures and (b), mean 
Pearson correlation coefficients of mean curvatures for surfaces based on different expansion models.

https://www.paraview.org/
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For the logistic model, the curvature suddenly increases towards the end of the simulation. The final value of the 
curvature (at time of model 1.0) is almost the same for these growth models.

Furthermore, in order to quantify the correlation of the folding patterns generated by different growth models 
under the same surface folding complexity, at the same 3D GI, we calculate the Pearson correlation coefficient of 
mean curvature on each vertex of the surfaces produced by every two different expansion models. The average 
of the correlation coefficients on all vertices is shown in Fig. 3b. The average correlation coefficients of surface 
curvatures between different growth models are all higher than 0.6. Especially for the linear and 1st Gompertz 
models, and 1st and 2nd Gompertz models, the average correlation coefficients are as high as 0.8 after all folds are 
formed. It can also be seen that before the 3D GI reaches 2.45, the average correlation coefficient of the surfaces 
generated by 1st and 2nd Gompertz growth models is higher than that of the others, which is consistent with 
the similar folding patterns of the two Gompertz models shown in Fig. 2b.

Initial geometry and cortical thickness. Surface morphology. The simulation results for the geom-
etries of the elongation ratios 1.0, 1.50 and 2.25 with the initial cortical thickness 0.83 mm are shown in Fig. 4. 
We can observe that, at time 0.27, the primary folds on geometries of different elongation ratios appear almost 
at the same positions, but the orientation of the folds begins to differ over time. After time 0.55 when most of 
the folds have already been formed, the size and spatial frequency of the folds are almost the same for the three 
geometries.

The simulated surfaces of the reference ellipsoid with the initial cortical thickness varying from 0.03 to 1.63 
mm are shown in Fig. 5. The surface with the thinnest initial cortical thickness 0.03 mm folds relatively late than 

Figure 4.  The comparison of folding patterns on different geometries with the same initial cortical thickness. 
Software: ParaView-5.8.0, https:// www. parav iew. org/.

Figure 5.  The comparison of folding patterns on reference ellipsoid for different initial cortical thicknesses. 
Software: ParaView-5.8.0, https:// www. parav iew. org/.

https://www.paraview.org/
https://www.paraview.org/
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the others. In addition to the surface of the thinnest initial cortical thickness, at time 0.32, other surfaces already 
showed some clear primary folds, and the thicker the cortex, the more obvious the folds are; starting from time 
0.55, most of gyri and sulci are formed for all of these thicknesses. As the initial cortical thickness increases, 
the gyri become larger and the folds become fewer, thus the adjacent sulci are more isolated; after time 0.77, 
the folds are almost no longer complex. The final surface morphology of the thinnest cortical thickness (0.03 
mm) resembles the folding patterns of  polymicrogyria5,45, while the surface morphology of the thickest cortical 
thickness (1.63 mm) is similar to the phenomenon of pachygyria.

Quantitative effect on folding complexity. The folding complexity is quantitatively evaluated using the dimen-
sionless curvature, 3D GI and the sulcal depth. Figure 6a shows the dimensionless curvature results for different 
cortical thicknesses and elongation ratios. It is found that the mean curvatures almost not depend on the elon-
gation ratio (i.e., the initial geometry), but depend only on the initial cortical thickness. For the initial cortical 
thicknesses between 0.43 and 1.63 mm, the thinner the initial cortical thickness is, the more quickly the curva-
ture increases after time 0.32, and the greater the curvature becomes. For the thinnest initial cortical thickness 
0.03 mm, the curvature is smaller than that of the others before time 0.55; Starting from time 0.55, it increases 
faster, and eventually becomes almost the same or even greater than the curvature corresponding to the thicker 
initial cortical thicknesses.

The comparison of the 3D GI calculated on the surfaces of different cortical thicknesses and elongation ratios 
is shown in Fig. 6b. Likewise, the 3D GI does not depend on the elongation ratio, but on the initial cortical thick-
ness. For the initial cortical thicknesses between 0.43 and 1.63 mm, the increment of 3D GI becomes smaller as 
the initial cortical thickness increases. When the initial cortical thickness is overly thin (0.03 mm), the increment 
of 3D GI is less than that of the other cortical thicknesses. These quantitative measurements demonstrate that 
when the initial cortical thickness is within a reasonable range, the thinner the initial cortical thickness is, the 
more complex the folding patterns become, which confirms the previously reported effects of cortical  thickness5,9.

The folding process can also be quantified by studying the sulcal depth. Figure 7 shows, as an example, a visual 
depth map of the folded reference ellipsoid and histograms of depth with respect to different initial geometries 
and cortical thicknesses. It can be clearly seen that the geometry has an effect on sulcal depth. The simulated 
sulci on the ellipsoids are deeper than in the case of the sphere, the greater the elongation ratio is, the deeper 
the sulci become. Combining the results in Figs. 4, 5 and 6, we can conclude that the elongation ratio of the 
initial geometry does almost not change the surface curvature and 3D GI, but it has an impact on sulcal depth. 
Moreover, the thinner the cortex is, the shallower the sulci become, which is in agreement with the analysis of 
sulcation morphology in  polymicrogyria46.

Effect on folding orientation. To understand the effect of the initial geometry on the folds orientation, we cal-
culate the angle between the gradient of Fiedler vectors and the principal direction of curvatures on the surface 
of each geometry. The angular distributions for the geometry of the elongation ratio 1.0, 1.50 and 2.25 with the 

Figure 6.  The comparison of (a), average of absolute value of dimensionless mean curvatures and (b), 3D GI 
over time for geometries with different initial cortical thicknesses and elongation ratios.
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same initial cortical thickness 0.83 mm at time 0.32, 0.55 and 0.79 are shown in Fig. 8. It is clear that at time 0.32, 
the distribution of the fold angles is almost uniform on the sphere and slightly nonuniform on the ellipsoid of 
the elongation ratio 1.50, while following a privileged direction on the ellipsoid of the elongation ratio 2.25. Since 
the direction of curvatures is perpendicular to the extension of folds, and the gradient of Fiedler Vector is along 
the longitudinal extension of surfaces, the peak appearing at around 90◦ indicates the most of folds are along 
the longitudinal axis of the ellipsoid of the elongation ratio 2.25, which is consistent with previous observations 
of the location of folds in ellipsoid  models10,11. As time passes, the number of folds increases and the angular 
distribution becomes more and more uniform, especially for the ellipsoid of the elongation ratio 2.25, but it is 
still not as uniform as that of the sphere and the ellipsoid of the elongation ratio 1.50.

To compare quantitatively the angular uniformity degree of the folding patterns for the surfaces of different 
elongation ratios and cortical thicknesses, the KL divergence is computed on each surface, and the results are 
shown in Fig. 9. The angular distribution of the folds strongly depends on the elongation ratio, and it becomes 
nonuniform as the elongation ratio increases, the thicker the cortex is, the more obvious this tendency becomes. 
As time goes on, the fold angles become more uniform especially for the geometries with larger elongation ratios.

Discussion
The biomechanical model based on the differential tangential growth hypothesis has been used for the realistic 
simulation of the early expansion and folding process of the human cerebral  cortex6,7. Therefore, such biome-
chanical model can be used to study the relationship between biophysical parameters and severe cortical folding 
malformations which are thought to be associated with neurodevelopmental diseases. In this work, we have 
implemented the model of Tallinen et al.6,7 in Python which is available at https:// github. com/ rouss eau/ Brain 
Growth, used here to investigate the impacts of the several cortical growth models, the initial cortical thickness 
and the initial geometry onto the cortical surface morphology in an attempt to answer the questions raised in 
the introduction.

Regarding the impact of the temporal cortical growth model onto the folding patterns, four growth modes 
are defined using linear, Gompertz and logistic models to simulate the folding process. The simulation results 
and quantitative indices (3D GI and surface curvature) demonstrate that, when all folds are formed on the 
surfaces, the different growth modes with the same initial and final growth will not cause noticeable changes of 
the complexity degree of the folding patterns. Nevertheless, the growth mode can affect the pattern of the folds 
using the logistic model. This may be due to the growth rate (the slope of the growth curve in Fig. 1) at certain 
moments being too high to fulfill the quasi-static constraint. In addition, in a quasi-static case, even if the abso-
lute growth rate should not affect folding, the relative growth rate of the cortex to the sub-cortical regions may 
have an effect on folding patterns.

In recent studies, Garcia et al. observed significant regional differences in growth across the cortical surface 
of 30 preterm infants, which are consistent with the emergence of new  folds16, but the effect of these regional 
differences on folding patterns has not been quantified. Therefore, choosing a proper local growth model may 
be a crucial step, which can contribute to the study of the regional differential growth of cortex.

To understand the influence of the initial cortical thickness on the folding patterns of the brain, the surface 
morphology is studied by using five normal and two abnormal cortical thicknesses varying from 0.03 to 1.63 
mm. The results show that, the thinner the initial cortical thickness is, the higher the spatial frequency of the 
folds appears to be, but the shallower the sulci become, which is consistent with the reported effects of the 
cortical thickness in previous  works5,9,46. The final surface morphology of the cortical thickness of 0.03 mm is 
similar to the phenomenon of polymicrogyria, while the surface morphology of the cortical thickness of 1.63 

Figure 7.  The effect of initial geometry and initial cortical thickness ( Hi ) on sulcal depth. (a), visualization 
of sulcal depth at time 1.0 on the deformed and corresponding initial reference ellipsoid with the initial 
cortical thickness 0.83 mm, (b), probability density function (PDF) of sulcal depth at time 1.0 for different 
initial geometries, (c), PDF of sulcal depth at time 1.0 for different initial cortical thicknesses. Software: (a), 
Visbrain-0.4.5, http:// visbr ain. org/.

https://github.com/rousseau/BrainGrowth
https://github.com/rousseau/BrainGrowth
http://visbrain.org/
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mm resembles the phenomenon of pachygyria. These observations may be crucial for exploring the causes of 
autism, schizophrenia and epilepsy diseases which may be related to cortical  malformations18,20,21.

To study whether there is a relationship between the folding complexity and the shape of the brain, we change 
the elongation ratio of the initial geometry from 1.0 to 2.25 while keeping the volume and the y-axis length of 
the geometry unchanged. The quantitative results illustrate that the variation in the shape (the elongation ratio) 
of the geometry has an impact on the sulcal depth, but not on the surface curvature and 3D GI.

In order to investigate whether the orientation of the folds depends on the shape of the brain, we propose to 
calculate the fold angles between the gradient of Fiedler vectors and the principal directions of curvatures on 
surfaces of different elongation ratios, and then use the Kullback-Leibler divergence to measure the anisotropy of 
the folding orientation. We find that the shape (the elongation ratio) of the geometry can predict the orientation 

Figure 8.  Illustration of principal directions of curvatures, gradients of Fiedler vectors, and angular 
distributions for surface of sphere, ellipsoid of elongation ratio 1.50 and ellipsoid of elongation ratio 2.25 at time 
0.32, 0.55 and 0.79. Software: MATLAB R2019b, https:// www. mathw orks. com/.

https://www.mathworks.com/
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of the folds (at least primary folds). The slenderer the initial geometry is, the greater the number of primary folds 
along its longitudinal direction becomes. In addition to the elongation ratio, other geometric changes may also 
affect the folding patterns, such as the longitudinal fissure of the human brain. Therefore, it’s also important to 
study the effect of other geometric changes on folding. The calculation method of folding orientation can be used 
for future works to measure the orientation of the folds on surfaces with other geometric changes.

Additional information
Mesh density. Mesh density is the number of elements per unit volume in a volumetric mesh. In finite ele-
ment analysis, mesh density is a crucial issue, which is closely associated with the accuracy of the finite element 
model and determines its complexity degree. In order to investigate the effects of variations in mesh density on 
surface morphology, based on the same surface mesh of the reference ellipsoid, we generated volumetric meshes 
by Netgen from approximately 102 to 106 tetrahedra. They have 535, 4280, 34240, 200944, 1181216, 2314240, 
3897088 and 5248576 tetrahedra, respectively. The normalized volume of these volumetric meshes is 2.5 cm3 , 
therefore, the mesh densities of them are approximately 214, 1712, 13696, 80378, 472486, 925696, 1558835 and 
2099430 tetrahedra/cm3.

With the initial cortical thickness 0.83 mm and the linear growth model αt = 1.829t , the simulation results 
of the brain folding model are shown in Fig. 10. It can be observed that deformations first appeared where the 
sizes of elements of entire ellipsoids were the smallest, i.e., the boundary areas of ellipsoids. Moreover, the higher 
the mesh density is, the greater the number of folds and the smaller the width of gyri becomes. However, when 
the mesh density reaches approximately the order of 106 (925696 tetrahedra/cm3 ), the size and the amount of 
folds will rarely change anymore. That is to say, when the mesh density reaches a certain order of magnitude, 
further increases in mesh density will increase computational cost but cannot significantly change the spatial 
frequency of folding patterns. However, the folding patterns are totally different for the last three largest mesh 
densities, which is because the volumetric meshes of different densities that we used are different. These different 
perturbations in mesh can produce different patterns because they are the mechanism breaking the symmetry 
in the  system6. In short, when the density of the mesh reaches a certain order of magnitude, the size of the folds 
tends to be stable, but the folding patterns have random spatial variations according to each mesh.

The comparison of the dimensionless curvatures for surfaces of different mesh densities is shown in Fig. 11. 
We can observe that after time 0.3, except for the mesh densities of 925696 and 1558835, the higher the mesh 
density is, the greater the curvature becomes. For the last three largest mesh densities, the change in the curvature 
is small enough (< 3.5), the error is less than 5% (3.5/61 ≈ 5.7%), which can be ignored. Therefore, it is possible 
to comprehend that when the mesh density reaches the order of 106 tetrahedra/cm3 , the solution converges and 
the complexity degree of folding patterns no longer changes, the curvature oscillates around 61.

Figure 9.  Kullback–Leibler divergence of uniformity of angular distribution for geometries with different 
elongation ratios and initial cortical thicknesses. Two scales are used here: the z-axis varies in each frame to 
allow a clear visualization of the behavior of KL divergence for a fixed initial cortical thickness (a)/time of 
model (b); the colorbar is the same across a row to show the evolution of KL divergence relative to uniform 
distribution.
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Figure 10.  The comparison of folding processes of ellipsoids with different mesh densities. Software: 
ParaView-5.8.0, https:// www. parav iew. org/.

https://www.paraview.org/
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The comparison of the 3D GI computed on surfaces of different mesh densities is shown in Fig. 12. The 
higher the mesh density is, the greater the 3D GI becomes, but for meshes with densities greater than the order of 
106 tetrahedra/cm3 , the difference in the 3D GI is very small (< 0.1) and the tendence is not evident. Considering 
both the mean curvatures and the 3D GI, the mesh with the density of 106 tetrahedra/cm3 can already achieve 
sufficient folding accuracy using the brain folding finite element model, thus this mesh density was used to study 
the impact of biophysical parameters onto folding patterns.
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