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ABSTRACT

Heterogeneity is a fundamental feature of complex
phenotypes. So far, genomic screenings have pro-
filed thousands of samples providing insights into
the transcriptome of the cell. However, disentangling
the heterogeneity of these transcriptomic Big Data
to identify defective biological processes remains
challenging. Here we present GSECA, a method ex-
ploiting the bimodal behavior of RNA-sequencing
gene expression profiles to identify altered gene
sets in heterogeneous patient cohorts. Using sim-
ulated and experimental RNA-sequencing data sets,
we show that GSECA provides higher performances
than other available algorithms in detecting truly
altered biological processes in large cohorts. Ap-
plied to 5941 samples from 14 different cancer
types, GSECA correctly identified the alteration of the
PI3K/AKT signaling pathway driven by the somatic
loss of PTEN and verified the emerging role of PTEN
in modulating immune-related processes. In particu-
lar, we showed that, in prostate cancer, PTEN loss ap-
pears to establish an immunosuppressive tumor mi-
croenvironment through the activation of STAT3, and
low PTEN expression levels have a detrimental im-
pact on patient disease-free survival. GSECA is avail-
able at https://github.com/matteocereda/GSECA.

INTRODUCTION

In recent years, genomic screenings have studied RNA-
sequencing (RNA-seq) expression profiles of large cohorts
to gain insights into complex phenotypes, including can-
cer. Despite the abundance of expression data, it remains
challenging to identify the biological processes that con-
trol disease progression. A major hurdle is the presence of
inter-sample heterogeneity (IH), or the variable expression
of genes across samples due to genetic, environmental, de-
mographic, and technical factors (1). Furthermore, the ad-
mixture of different cell types in the sequenced sample is
a well-known source of heterogeneity (2). As the number
of samples or the complexity of the phenotype grows, the
confounding role of IH in detecting relevant biological in-
formation increases (1,3). As a consequence of IH, genes
can be expressed at different levels in distinct samples. Spe-
cific genes can be activated and repressed in different sub-
populations rather than being concordantly expressed in
the whole population. Overall, these coordinated hetero-
geneous changes can result in small expression differences
in the whole population that are difficult to detect, espe-
cially in large cohorts (4). Moreover, it is well-known that
complex phenotypes arise from subtle alterations of distinct
genes sharing common functions or involved in the same bi-
ological process (i.e. gene sets) in different patients affected
by the same condition (5).

In diseases such cancer, heterogeneity strongly impacts
on disease progression and drug response (6). Therefore,
dissecting the contribution of IH on gene expression be-
comes crucial to detect defective biological processes and
to the therapy management of patients (7). This issue has
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recently begun to be exploited with single cell analysis (8).
Nevertheless, ‘bulk’ methods of RNA-seq remain the con-
ventional approach to measure gene expression for the ad-
vantages of time, cost, and standardized data processing (9).
Currently, novel insights on complex phenotypes can be ob-
tained from analyses of the growing public repository of
genomic Big Data (10). In this view, the concept of ‘path-
way’ rather than ‘single gene’ alteration has become widely
employed (11). Gene set analysis (GSA) aims at identifying
gene sets whose cumulative expression is altered in the phe-
notype of interest. During the last years, several GSA meth-
ods using different statistical tests and null hypothesis for-
mulation have been proposed (11–15). In particular, GSA
algorithms can be divided into ‘self-contained’ and ‘com-
petitive’ algorithms depending on whether they identify al-
tered gene sets (AGSs) while ignoring or not genes that are
outside the gene set of interest, with the former being more
powerful than the latter (16).

Most existing GSA methods suffer a few marked limi-
tations (13,16,17). Firstly, GSA algorithms have been de-
signed to handle microarray expression data and subse-
quently adopted to handle RNA-seq data (11,13). RNA-
seq gene expression profiles are characterized by a bimodal
behavior reflecting the presence of two major subpopula-
tions of genes in cells (i.e. lowly and highly expressed genes)
(18). This behavior is not observable using low-sensitive
microarray experiments (19), and to date it has not been
taken into account by existing GSA methods. Thus, their
application to RNA-seq expression profiles may not be ef-
ficient (13). Secondly, GSA methods have been developed
to handle experimental conditions in the absence of IH
(i.e. altered genes are concordantly activated or repressed
in the cohort of interest) (17). As a consequence, biologi-
cal processes composed of genes that exhibit a significant
excess of coordinated variability (i.e. activated or repressed
in different subpopulations) cannot be detected by conven-
tional GSA methods (17). Finally, most existing GSA meth-
ods have been designed to assess gene expression of case–
control studies with limited sample size and, thus, char-
acterized by a negligible IH and high signal-to-noise ra-
tio (13). These limitations become crucial in the analysis
of RNA-seq datasets of large-scale screening projects that
are characterized by a high IH. Therefore, GSA algorithms
that are able to handle IH are needed. To date, few studies
carried out a comprehensive analysis of the performance of
GSA methods on high-volume RNA-seq datasets (20).

Nowadays, Big Data analysis employs machine learn-
ing approaches to assess the contribution of data hetero-
geneity. It has been recently shown that the division of nu-
merical features into a limited number of non-overlapped
intervals (i.e. data discretization, DD) improves the accu-
racy of such algorithms (21–23). In computational biology,
the DD approach has been used to explore gene regula-
tory networks (24) and, as a pre-processing step, to im-
prove classification accuracy using microarray data (25).
Here, we present a Gene Set Enrichment Class Analysis
(GSECA) algorithm to identify AGSs in heterogeneous
RNA-seq datasets. GSECA implements a sample-specific
finite mixture modeling (FMM) approach to assess the bi-
modal distribution of each RNA-seq profile followed by
a model-based DD process to increase the signal-to-noise

ratio. Discretized data are then evaluated in a statistical
framework to detect AGSs between two groups of sam-
ples. We showed that GSECA has the highest sensitivity and
specificity in detecting AGSs as compared to other ‘state-
of-the-art’ GSA algorithms in the presence of IH on both
simulated and real RNA-seq data. We developed a GSECA
as a user-friendly R/Shiny application freely available from
GitHub (https://github.com/matteocereda/GSECA).

MATERIALS AND METHODS

Finite mixture modeling of gene expression distributions

To identify the two subpopulations of lowly and highly ex-
pressed genes, GSECA models the bimodal distribution of
RNA-seq expression profile x of all protein-coding genes of
a given sample i as a mixture of two Gaussian probability
densities Φ, as previously proposed (18):

f (xi ) = λ1φ(x1; μ1, σ1) + λ2φ(x1; μ2, σ2) (1)

where λ is the mixing proportion, μ and σ are the mean and
the standard deviation, respectively (26). To estimate the pa-
rameters μ and σ of the two components the method applies
the Expectation–Maximization (EM) algorithm (26,27).
The algorithm runs iteratively until the maximum likeli-
hood of the parameters of the two components is reached.
To ensure a consistent subdivision with the overall expres-
sion profile an additional heuristic step was implemented.
In particular, GSECA requires the mean of the first com-
ponent (i.e. highly expressed genes) to be greater than the
mean of the second one (i.e. lowly expressed genes). The EM
step is repeated until the condition is satisfied. Besides pro-
viding an estimate of the Gaussian components, the mixture
model calculates the posterior probabilities � of the compo-
nent membership of the mixture (26). Thus, GSECA mea-
sures the probabilities � 1 and � 2 of each gene to belong to
the two distributions defined by the two components.

Definition of expression classes

For each sample, genes are considered as (i) not expressed
(NE), or not detected, if their expression level (i.e. FPKM)
is smaller than 0.01; (ii) lowly expressed (LE) if the probabil-
ity � 2 of belonging to the second component of the mixture
is greater than 0.9; (iii) highly expressed (HE) if the proba-
bility � 1 of belonging to the first component is greater than
0.9; or (iv) medium expressed (ME) if both the probabilities
� 1 and � 2 are <0.9. To ensure an adequate distribution of
genes among expression classes (ECs), thus a similar degree
of statistical power for the subsequent tests performed for
all classes, and retain as much information from the orig-
inal continuous attribute as possible, HE genes are further
divided accordingly to the percentiles of the expression level
distribution defined by the first Gaussian component (see
Supplementary Notes). In particular, for each sample, HE
genes were assigned to (i) the first class of high expression
(HE1) if their expression level is less than or equal to the
25th percentile of the distribution of HE genes; (ii) the sec-
ond class of high expression (HE2) if their expression level
ranges between the 25th and the 50th percentile; (iii) the third
class of high expression (HE3) if their expression level falls
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between the 50th and the 75th percentile; or (iv) the fourth
class of high expression (HE4) if their expression level is
greater than or equal to the 75th percentile.

Statistical analysis of expression classes

After discretizing the gene expression levels into seven ex-
pression classes, GSECA implements a statistical frame-
work to detect altered gene sets between the two groups of
samples A and B. First, for each gene g and each EC c, the
number of samples in which g is and is not assigned to the
class c, n and r, respectively, are calculated for the two co-
horts as follows:

∀g and c, ng,c = ∑
i g ∈ c; rg,c = ∑

i g /∈ c; (2)

where i are the samples in cohorts A and B (Figure 1).
For each gene set G = {g1,. . . ,gm}, the cumulative num-

ber of samples with genes of G that are and are not in each
expression class across samples of A and B, N and R, re-
spectively, are computed as follows:

∀ G and c, NG,c = ∑
g∈G ng,c; RG,c = ∑

g∈G rg,c; (3)

To determine whether cohort A is enriched or depleted of
genes of a gene set G in an EC c as compared to cohort
B, GSECA implements a two-tailed Fisher’s Exact test. In
particular, GSECA tests the null hypothesis that the cumu-
lative proportions of genes of a gene set in each EC across
samples are not different between A and B:

∀ G and c, Ho : (NG,c; RG,c)A = (NG,c; RG,c)B (4)

As a result, all seven ECs are characterized by a P-value
representing the alterations (i.e. enrichment or depletion)
of expression in the gene set. Given the contingency table
defined by N and R for the two cohorts, the algorithm sim-
ulates the table under two independent binomial distribu-
tions and performs a two-tailed Fisher’s Exact test. RG,c is
evaluated considering all genes in the gene set that are not
in the EC, regardless their class membership. Therefore, all
statistical tests perform independent evaluations of the null
hypothesis (see Supplementary Notes). In the case of mul-
tiple gene sets, the P-value of each comparison is corrected
for false discoveries using either the Bonferroni or the Ben-
jamini & Hochberg method, respectively, as defined by the
user.

Since GSECA tests the overrepresentation of genes in
each EC independently from the other ECs (see Supplemen-
tary Notes), to quantify the degree of expression perturba-
tion in each gene set G between the two cohorts A and B, the
P-values of the seven expression classes are combined using
the Fisher’s method into one goodness-of-fit (X2) statistic,
to obtain the Association Score (AS)(28):

� = −2
∑

c
log (p (c)) (5)

AS (G) = Pcomb = 1.0 − Pχ2
2k (�) (6)

where � is the combined test statistic and χ2
2k is a Chi-

squared distribution with 2k degrees of freedom (k = num-
ber of ECs), p is the P-value and c is the expression class.

To calculate the significance level of the AS a bootstrap-
ping procedure (random sampling with replacement) is im-
plemented as previously described (29). For 1,000 times,
sample labels are shuffled and the AS is calculated for all
gene sets. At the end of all iterations, for each gene set, the
empirical P-value (pemp) is measured as the number of times
the AS is smaller than the observed one:

pemp (ASG) = 1 + (
∑

i ASG,i < ASG)
1 + #iteration

(7)

Finally, in case the sample sizes differ substantially between
cohort A and B, a bootstrapping procedure (random sam-
pling with replacement) is implemented to measure the suc-
cess rate (SR). The algorithm down-samples the larger co-
hort to reach the sample size of the smaller cohort randomly
1,000 times and repeats the analysis at each iteration. At the
end of all iterations, for each AS, the SR, or the propor-
tion of significant enrichments (P-value < 0.01, two-tailed
Fisher’s Exact Test) over the total number of comparisons
is calculated as previously described (30).

Prostate adenocarcinoma data

Somatic mutations (i.e. single nucleotide variants and small
insertion/deletions (InDels)) and RNA sequencing, pro-
tein expression and phosphorylation data were downloaded
from TCGA Data Matrix portal (Level 3, https://tcga-data.
nci.nih.gov/tcga/dataAccessMatrix.htm) for 498 prostate
adenocarcinoma (PRAD) samples and processed as pre-
viously described (6). Briefly, PTEN was considered as
somatically lost if undergoing homozygous/heterozygous
gene deletions, truncating mutations (i.e. stopgain, stoploss,
frameshift indels) and damaging mutations. Damaging al-
terations were defined as missense and splicing (i.e. up to
two nucleotides surrounding the splice sites) mutations with
predicted damaging effects on the encoded protein. Mis-
sense mutations were considered damaging if supported
by at least five out of eight function-based scores (SIFT
(31), PolyPhen-2 HDIV and HVAR (32), MutationTaster
(33), MutationAssessor (34), LTR (35) and FATHMM
(36)) or two out of three conservation-based scores (Phy-
loP (37), GERP++ RS (38), SiPhy (39)). Splicing muta-
tions were predicted as damaging if supported by at least
one ensemble score of dbscSNV (40). The copy number
status of PTEN was assigned as previously reported (41)
(see Supplementary Notes). Sample processing was per-
formed using the GeCo++ library (42). The gene set list
was composed of 158 manually curated gene sets compris-
ing 4866 human genes from the Kyoto Encyclopedia of
Genes and Genomes available from MSigDb35 (version 5,
https://software.broadinstitute.org/gsea/msigdb/).

Differential gene expression and gene ontology analysis

Differentially expressed (DE) genes between 75 PTEN-loss
and 423 PTEN-wt samples were detected using the R pack-
age DESeq2 (43). Briefly, read counts of 19946 genes of each
sample were used as input for DESeq2. Genes with read
count equal to zero across all samples were removed. An ab-
solute log2FoldChange ≥ 1 and a false discovery rate ≤0.1
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Figure 1. Schematic representation of GSECA algorithm. GSECA requires as input normalized gene expression data of two groups of samples A =
{a1, . . . , an} and B = {b1, . . . , bn}, and a list of gene sets G = {g1, . . . , gn}. The algorithm proceeds through three sequential steps: (i) the sample-specific
finite mixture modeling of gene expression distribution; (ii) the sample-specific discretization of expression values into seven categorical expression classes
and (iii) the statistical identification of altered gene sets (AGSs) obtained by comparing the cumulative proportion of genes of a gene set in each EC between
the two cohorts using a Fisher’s exact test. The expression perturbation is summarized into an association score (AS), corrected with two bootstrapping
procedures for false discoveries (empirical P-value) and different sample sizes of the cohorts (success rate, SR). The AGSs are visualized as EC maps. The
EC maps display the difference of the cumulative proportion of the genes of a gene set in the seven ECs between the two cohorts as triangles, whose sizes
are proportional to such difference. The upper and the lower vertex of the triangles represent enrichment and depletion in cohort A as compared to B,
respectively. EC maps depict the proportion N of genes in the gene set in each EC as grey bars. GSECA orders AGSs accordingly to their AS, thus obtaining
the list of the most altered processes associated with the phenotype of interest.

were used to detect DE genes in PTEN-loss versus PTEN-
wt samples. Gene ontology (GO) analysis of DE genes
was performed using g:Profiler (http://biit.cs.ut.ee/gprofiler/
index.cgi) considering KEGG pathways as gene sets. Statis-
tical results were corrected for multiple comparisons using
the native g:SCS method and only gene sets with a corrected
P-value smaller than 0.05 were retained (44).

PTEN protein–protein interaction network

Proteins interacting with PTEN were retrieved from
STRING database (http://string-db.org/). Sources as
‘textmining’, ‘experiment’ and ‘databases’ were used as
a type of evidence to measure the interactions between
PTEN and other proteins. A minimum interaction score

http://biit.cs.ut.ee/gprofiler/index.cgi
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of 0.9 (i.e. ‘highest’ confidence) was applied to retrieve the
ten best-scoring hits. STRING GO analysis using KEGG
pathways was performed with default parameters and gene
sets with false discovery rate ≤0.01 were considered as
significantly enriched.

Literature-based text mining

Text mining analysis on published journal articles avail-
able at the National Center for Biotechnology Informa-
tion (NCBI) PubMed database was performed using the R
package RISMed (https://cran.r-project.org/web/packages/
RISmed). For each KEGG gene set, abstracts of published
articles were inspected for the co-occurrence of keywords
such as ‘PTEN’ and the gene set nomenclature. For gene
sets displaying <50 articles, manual curation of results was
performed.

Gene set analysis algorithms

Seven GSA algorithms (i.e. GSVA (13), Z-Score (14),
PLAGE (15), ssGSEA (12), Globaltest (45), ROAST (46)
and GSEA (11)) were used to assess GSECA performances.
Implementations of GSVA, Z-Score, PLAGE, and ssGSEA
methods were available in the R package GSVA. All four
methods were run as previously described (13) considering
a Poisson kernel to fit RNA-seq expression data. Implemen-
tations of Globaltest and ROAST were available from the
R/Bioconductor package ‘EnrichmentBrowser’ (47) and
they were run using the sbea function with default parame-
ters. The GSEA algorithm was run using GSEA.1.0.R func-
tion available from the Broad Institute website (http://www.
broadinstitute.org/gsea). Gene sets with corrected P-value
≤0.1 were considered significantly associated with the phe-
notype of interest. To correct for false discoveries due to an
unbalanced sample size of the cohorts, the SR of each com-
parison was measured using bootstrap simulations as pre-
viously described (30). For each method, the larger cohort
was down-sampled to reach the sample size of the smaller
cohort randomly 1,000 times and the analysis was repeated
at each iteration. At the end of all iterations, for each com-
parison, the proportion of significant enrichments (P-value
< 0.05) over the total comparisons was calculated.

Pancancer dataset

Somatic alterations and transcriptome profiling data were
downloaded from the TCGA Data Matrix portal (Level 3,
https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm)
for 9944 and 31 cancer types. For each cancer dataset,
samples with somatic loss of PTEN were identified as
described for the PRAD cohort. Cancer types with at least
30 samples harbouring the somatic loss of PTEN were
retained for further analyses.

Linear regression modeling of AS distributions across cancer
types

The distribution of the ASs (i.e. median and inter-quartile
range) of 158 KEGG gene sets across cancer types was mod-
eled as a linear regression of six predictors: the number of

PTEN-loss and PTEN-wt samples, the median Pearson’s
correlation coefficient of pairwise comparison of expres-
sion profiles in the two cohorts, the statistically significant
difference of PTEN expression and of PI3K/AKT signal-
ing pathway cumulative expression (i.e. one- and two-tailed
Wilcoxon rank sum P-value, respectively). The search for
the best subsets of regressors was performed using a branch-
and-bound algorithm (48) implemented in the regsubsets
function in the R ‘leaps’ package. For models using a dif-
ferent number of variables (i.e. from 1 to 6) the best model
in terms of correlation coefficient R2 was reported. The rel-
ative importance of regressors in the linear regression model
of six variables was calculated using the function calc.relimp
in the R ‘relaimpo’ package (49). This function divides the
correlation coefficient R2 into the contribution of each re-
gressor using the averaging over ordering method (50).

Survival analysis

Clinical data were downloaded from the GDC data por-
tal (https://gdc.cancer.gov/). Disease-free survival time was
defined as the interval between the date of treatment and
disease progression, as defined by biochemical or clinical
recurrence, or until the end of follow-up (51). Disease-free
survival analysis was carried out on the PRAD dataset com-
paring the survival probabilities of PTEN-loss and PTEN-
wt samples. The analyses were performed using the ggsurv-
plot function from the R package survminer. Kaplan–Meier
estimation of the survival probabilities for the two groups
of samples (i.e. PTEN-loss and PTEN-wt) was measured
and the resulting survival curves were compared using the
implemented log-rank test. PTEN TPM optimal cutpoint
to separate continuous variables was identified using the
surv cutpoint function from the R package survminer.

Immune cell composition

Cellular composition of the immune infiltrates for TCGA
tumors of 14 cancer types were collected (52). The ‘relative
number’ of immune cells (53) was used as a measure of im-
mune composition. To determine whether the composition
of each immune infiltrate was different in PTEN-loss sam-
ples as compared to wild-type samples, a Student’s t test was
employed. P-values of each comparison are corrected for
false discoveries using the Benjamini & Hochberg method.
To quantify the degree of perturbation of immune cells, for
each cancer type, P-values were combined using the Fisher’s
method into one goodness-of-fit (X2) statistic (28), referred
to as immuno score (IS).

RESULTS

Method overview

We designed GSECA as ‘model-based’ data discretization
(MDD) approach fulfilling both a biological and a ‘sta-
tistical’ requirement. First, we required that the division
of expression values into expression classes (ECs) must re-
semble the presence of two major subpopulations of lowly
and highly expressed genes in the cells (18) (i.e. biologi-
cal requirement). Second, we considered that the discretiza-
tion process must provide an adequate distribution of genes

https://cran.r-project.org/web/packages/RISmed
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among classes and, thus, ensure a similar degree of statisti-
cal power for the subsequent tests performed for all ECs (i.e.
statistical requirement).

To identify AGSs in a list of gene sets G = {G1, . . . ,Gn} be-
tween two cohorts A = {a1, . . . , an} and B = {b1, . . . , bn} of
heterogeneous RNA-seq expression profiles, GSECA runs
through three sequential steps: (i) the sample-specific analy-
sis of gene expression distribution (Figure 1, Step 1), (ii) the
discretization of expression values into ECs (Figure 1, Step
2) and (iii) the statistical identification of AGSs (Figure 1,
Step 3). The method is based on a null hypothesis of no over-
representation of genes in the gene set in any EC between
two cohorts (see Materials and Methods). To increase the
signal-to-noise ratio GSECA converts the continuous mea-
surements of expression level into discrete values. For each
sample of the cohorts, the algorithm identifies the two sub-
populations of lowly and highly expressed genes by fitting
a two-component FMM on the normalized expression lev-
els of all protein-coding genes as previously proposed (18)
(Figure 1, step 1, see Materials and Methods, Supplemen-
tary Notes and Supplementary Figure S1). Using the infor-
mation derived from the FMM, GSECA defines seven cate-
gorical ECs and assigns each gene to the corresponding EC
(Figure 1, step 2, see Materials and Methods). Seven is the
minimum number of classes that (i) ensures the minimal in-
formation loss between the discrete and continuous expres-
sion profiles and (ii) provides an adequate distribution of
genes among classes (see Supplementary Notes and Supple-
mentary Figures S2 and S3). Finally, GSECA implements
a statistical framework to measure the perturbation of each
EC between the two cohorts (Figure 1, Step 3). The pur-
pose of GSECA is to evaluate whether the expression pat-
tern of the genes in a gene set shows a significant displace-
ment across the ECs in the samples of interest as compared
to controls, thus suggesting a causal relationship between
the condition and the phenotype. To quantify the extent of
expression perturbation across the ECs for all gene sets, the
algorithm combines the significance level of each compari-
son into an association score (AS) using the Fisher’s method
(28). To reduce false positives discoveries and correct for a
different sample size of the cohorts, GSECA implements
two bootstrapping procedures measuring the empirical P-
value (pemp) and the success rate (SR) of each AS.

We designed GSECA to provide the user with a graphi-
cal overview of the variation of expression of each gene set
across the seven classes between the two cohorts. GSECA
visualizes the AGSs as a heatmap, namely expression class
maps (i.e. EC maps), depicting the variation of expression
across the seven ECs (Figure 1).

Performance evaluation

To evaluate the performance of GSECA in detecting AGSs
we employed simulated and real data sets. For each analysis,
we compared GSECA results with those of seven different
‘state-of-art’ methods (i.e. GSEA (11), GSVA (13), ssGSEA
(12), Z-Score (14), PLAGE (15), ROAST (46) and Global-
test (45)) that, even if designed to treat microarray data, are
widely used in the scientific community to analyze RNA-seq
data (Supplementary Table S1).

Type I error rate and statistical power evaluation

In real-life systems, genes are differentially expressed with
a certain degree of fold change (FC) and dispersion (i.e.
a measure of IH) between two groups of samples (43).
GSECA has been developed to dissect the contribution of
IH, and thus of dispersion, in large cohorts of samples and
detect the truly AGSs. To understand how well the algo-
rithm achieves this aim, we first evaluated its type I error
rate and statistical power as compared to the other GSA
approaches using simulated RNA-seq data under different
parameter settings.

To measure the type I error rate, we generated read counts
for N samples and 1000 gene sets of equal size P in the
condition of no differential expression as previously pro-
posed (4). Then, for each gene set, we tested the null hy-
pothesis of no difference between the two cohorts (see Sup-
plementary Notes). To examine the effects of sample and
gene set sizes, we ran the analysis under different param-
eter settings of N (60, 150, 300, 500) and P (25, 50, 100,
300), repeating the analysis ten times to obtain more sta-
ble results. GSECA resulted in being the most conservative
approach, with the lowest type I error rate (average me-
dian = 0.002) as compared to the other approaches (av-
erage median = 0.05, Figure 2A). The conservativeness of
GSECA is due to the conservativeness of the Fisher’s Exact
test (FET) (54) that are combined into the AS (see Supple-
mentary Notes and Supplementary Figure S4). Each FET
depends on to the cumulative number of genes in the gene
set in the EC across samples of the cohorts (see Materials
and Methods). As the sample size grows, the ability of the
test to detect a small variation with high specificity and sen-
sitivity increases (Supplementary Figure S4A and B). As a
consequence, combining conservative FET P-values using
a logarithmic scale (i.e. Fisher’s Method) results in small
ASs (Supplementary Figure S4C). For this reason, GSECA
accounts for false positives better than the other GSA algo-
rithms. Furthermore, GSECA specificity was not influenced
by the sample and gene set sizes, remaining constant even
in case of large cohorts and large gene sets (Figure 2A).

To assess the statistical power of each algorithm (i.e. the
likelihood to detect an AGS when the gene set is altered)
we implemented two independent simulations, namely ‘FC’
and ‘dispersion’ studies, modelling the contribution of fold
and dispersion changes, respectively, in gene expression be-
tween two cohorts. In doing so, we first defined three pa-
rameters: (i) the proportion of gene sets that contains dif-
ferentially expressed (DE) genes �, (ii) the percentage of DE
genes in each gene set � and (iii) the FC in gene counts be-
tween the two cohorts (iv). Then, we introduced a scaling
factor D to control the estimated dispersion in gene counts
(see Supplementary Notes). For both studies, we modeled
eight conditions where, out of 1000 gene sets, the fractions
of truly AGSs � (i.e. true positives) was equal to 5% and 25%
and the percentage of DE genes in each gene set was set at
25% and 50% for relatively small and large gene set sizes
(P = {25,100}). For the FC study, we selected FC values
ranging between 1.5 and 3 without changes in the estimated
dispersion (D = 1), thus simulating a differential expres-
sion driven by homogeneous changes across samples. Con-
versely, for the dispersion study, we let D vary between 1.5



1736 Nucleic Acids Research, 2020, Vol. 48, No. 4

Figure 2. GSA performance evaluation. (A) Boxplots depicting the type I error rates for GSA methods evaluated for different settings of sample and gene
set sizes on ten replicates. Red and blue dashed lines show the nominal � values of 0.01 and 0.05, respectively. (B) Scatter plots depicting the statistical
power of each GSA algorithm at the increase of FC between cohorts for different settings of sample size N, gene set size P, the proportion of gene sets
containing differentially expressed genes �, the percentage of DE genes in each gene set � . (C) Scatter plots depicting the statistical power of each GSA
algorithm at the increase of dispersion factor D at a fixed FC of 1.1 between cohorts for different settings of N, P, � and � . (D) Scatter plot showing
GSECA statistical power at increasing values of dispersion parameter D for different settings of P, � , � and FC. (E) Bar plots representing the median
values of statistical power and F1 score measured for all GSA methods in all simulations for the FC and dispersion studies. Gray and purple dashed lines
represent values of 0.7 and 0.9, respectively. Black error bars depict standard errors.
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and 10 allowing small, or no, FC changes between cohorts
(FC = {1,1.1,1.25}), modelling expression changes driven
by IH. Under these conditions, we generated read counts
for N samples divided into two groups. For each group, we
constructed 1000 gene sets composed from P random real-
izations of negative binomial distribution (4) (see Supple-
mentary Notes). For each gene set, we assessed power by
testing the null hypothesis of no differential expression be-
tween cohorts for all methods. To account for the differ-
ent specificity of GSA methods, we measured the F1 score,
a performance evaluation metric that provides a harmonic
mean of the precision and sensitivity in case of an uneven
distribution of true and false positives (i.e. truly AGSs and
invariant gene sets, respectively) for all simulations (55).

In presence of FC differences between cohorts (i.e. homo-
geneous changes across samples), the statistical power of
GSECA increased with sample sizes and FC values with-
out being affected by the gene set size and changes in the
percentage of DE genes in the gene set (i.e. � and � , Fig-
ure 2B). In particular, GSECA showed a power, or sensitiv-
ity, higher than 70% for medium and large sample sizes (N
≥ 150) under different parameter settings, similar to those
of the other self-contained approaches (Figure 2B). Con-
versely, for small sample size (N = 60), other GSA methods
show a higher power than GSECA. Overall, we noticed that
GSECA predictions showed a better tradeoff between preci-
sion and sensitivity (F1 score > 0.7) than all other methods
even for subtle changes in gene expression for small gene set
sizes (i.e. � = 0.05 and P = 25, Supplementary Figure S5A),
reflecting the high specificity of GSECA in detecting truly
AGSs.

GSECA outperformed other GSA methods in case of IH,
and negligible FC, in gene expression between groups (i.e.
heterogeneous changes across samples, Figure 2C and Sup-
plementary Figure S5B). In particular, its statistical power
grew exponentially with the dispersion parameter (Figure
2C). For small sample sizes (i.e. N = 60), none of the al-
gorithms achieved considerable power. GSECA sensitiv-
ity increased with sample size whereas the power of all
other approaches was almost unaffected with values <70%.
Even to a lesser extent, ssGSEA performed similarly to
GSECA in handling heterogeneity (Figure 2C). Compara-
bly to GSECA DD approach, ssGSEA brings expression
profiles to a common scale collapsing the range of possi-
ble gene expression (4). In doing so, ssGSEA reduces the
noise of IH (i.e. genes with similar expression levels will have
the same rank) increasing its power to detect truly AGSs.
GSECA achieved the highest F1 scores, underlining its high
sensitivity and specificity in case of heterogeneous gene ex-
pression (Supplementary Figure S5B). These results did not
considerably change for small variation of FC values or with
gene set sizes (Figure 2D and Supplementary Figure S6).

In summary, GSECA has a high sensitivity, proper of
self-contained tests (55), of identifying truly AGSs in pres-
ence of FC variations between cohorts (Figure 2E, left
panel). Most importantly, GSECA is the most powerful
GSA approach, among the tested ones, to treat dispersion,
and thus IH, in gene expression between phenotypes (Fig-
ure 2E, right panel). The results of the simulation studies
show that the performances of GSECA are enhanced in
case of large cohorts (i.e. N ≥ 150, Supplementary Figure

S7). The statistical power of GSECA increased with sample
size as a consequence of the DD, where it is expected that
small sample sizes might be not sufficient to estimate the
correct distribution of data (56) (see Supplementary Notes
and Supplementary Figure S4D). When the IH noise be-
tween cohorts is negligible and the cohort size is small,
GSECA requires strong FC differences to reach adequate
power. GSECA showed the best performance to identify
AGSs between heterogeneous cohorts even in presence of
overlapping gene sets (Supplementary Notes and Supple-
mentary Figure S8).

Identification of AGSs in PTEN loss prostate adenocarcino-
mas

To evaluate the performance of GSECA on real data we
simulated a condition where known deregulation of a bi-
ological process was expected. In particular, a frequently
occurring event in prostate cancer is the loss of the tumor
suppressor PTEN (57,58) that results in the alteration of
the PI3K/AKT signaling pathway (59) and promotes onco-
genic programs (60). Among the first ten top-ranked pri-
mary interactors of PTEN in the STRING protein-protein
interaction (PPI) network (61), nine genes are involved in
the PI3K/AKT signaling pathway accordingly to the Ky-
oto Encyclopedia of Genes and Genomes (KEGG) (Sup-
plementary Figure S9A). Indeed, gene ontology based on
the STRING PPI network revealed the enrichment for
genes in PI3K/AKT signaling pathway (Supplementary
Table S2).

In view of the above, we hypothesized that stratifying
human prostate adenocarcinomas (PRADs) accordingly to
the somatic loss of PTEN could reveal the altered mod-
ulation of the PI3K/AKT signaling pathway. To test this
hypothesis, we collected genomic data of 498 PRAD sam-
ples available from TCGA and divided them into PTEN
loss (PTEN-loss) and wild-type (PTEN-wt) tumors accord-
ingly to somatic mutations and/or copy number alterations
in PTEN as previously described (6) (see Supplementary
Notes, Supplementary Figure S9B). Using RNA-seq and
protein data we measured a significant (i) lower expression
of PTEN, (ii) altered modulation of PI3K/AKT genes and
(iii) higher phosphorylation level of AKT1 in PTEN-loss
tumors compared to PTEN-wt ones (Supplementary Figure
S9C-E, P-value < 0.05, two-tailed ranked Wilcoxon test).
These results show that the sample stratification led to a
dataset characterized by a significantly altered regulation of
PI3K/AKT signaling pathway.

We next evaluated the level of IH of the cohorts re-
flected in the RNA-seq data. Using correlation analyses we
found that on average 64% of samples had a low similar-
ity of expression patterns with the others (Pearson’s Cor-
relation Coefficient < 0.75, Supplementary Notes, Supple-
mentary Figure S9F and G), confirming the presence of
IH in the dataset. To further characterize IH, we measured
the FC and dispersion of FPKM values for 19663 protein-
coding genes between PTEN-loss and PTEN-wt samples
(Figure 3A). We found that 56% of genes showed a re-
duced expression upon PTEN loss, which was reflected in
the higher number of down-regulated genes (n = 631) than
up-regulated ones (n = 325, see Materials and Methods).
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Figure 3. Identification of AGS in PRAD PTEN-loss samples. (A) Scatter plot showing the log2 fold change (FC) and dispersion (D) values of all genes
between PTEN-loss and PTEN-wt samples. Grey lines represent the median values of FC and D. Dashed grey lines show the 25th and 75th percentile of
the FC and D distributions and define four regions of expression changes (TL = top-left; TR = top-right; BL = bottom-left; BR = bottom-right). (B)
Boxplots depicting the percentage of genes of each KEGG gene set in the four regions of expression changes. Red dots represent genes in PI3K/AKT
signaling pathway. (C) Kernel density distributions of FPKM values for PTEN-loss and PTEN-wt samples. (D) Comparison of the component parameters
(i.e. mean �, standard deviation � and mixing proportion �) defined by the FMM between PTEN-loss and PTEN-wt samples. Statistical tests with a
P-value <0.05 are considered as significant (*, Student’s t-test). (E) Boxplot distributions of genes in each EC for PTEN-loss and PTEN-wt samples.
Statistical tests with a Bonferroni adjusted P-value <0.05 are considered as significant (*, two-tailed rank sum Wilcoxon test). (F) EC map for the AGSs
identified by GSECA in PTEN-loss prostate adenocarcinoma.

Furthermore, out of 4830 genes with a high level of dis-
persion (i.e. ≥75th percentile of the dispersion distribution),
29% were activated (i.e. FC ≥ 75th percentile of the FC dis-
tribution) and 48% repressed (i.e. FC ≤ 25th percentile of
the FC distribution). These findings highlight a general re-
duction of expression characterized by IH in the PTEN-loss
cohort. This might be a possible consequence of the role
of PTEN in regulating basal transcription through histones
and chromatin remodeling (62).

To assess the effect of PTEN loss on cellular processes,
we applied GSECA on a list of 158 KEGG gene sets (Sup-
plementary Table S3). We found that the fraction of genes
in the gene sets reflected the landscape of FC and disper-
sion values of the cohorts, with the highest proportion of

genes being repressed and dispersed (Figure 3B). In partic-
ular, 15% of genes in PI3K/AKT signaling pathway were
repressed and highly dispersed, suggesting variable repres-
sion of PI3K/AKT genes across patients upon the somatic
loss of PTEN (Figure 3B).

For each sample, GSECA implemented the FMM ap-
proach to model the normal distribution of lowly and highly
expressed genes, referred to as ‘first’ and ‘second’ compo-
nents, respectively. As expected, the kernel density distribu-
tions (KDDs) of the FPKM values displayed the bimodal
profile underlining the presence of the two subpopulations
of expressed genes (18) and visually presented different pro-
files reflecting the presence of outlier samples in the cohorts
(Figure 3C).
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To assess whether the FMM depicted PRAD IH, we
compared the component parameters (i.e. �, �, and �) be-
tween the cohorts. Even if showing the same �, the aver-
age � of the first component (i.e. lowly expressed genes)
was significantly higher in PTEN-loss samples as compared
to PTEN-wt ones (P-value = 0.031, two-tailed Student’s t-
test, Figure 3D, left panels), suggesting that PTEN-loss are
more heterogeneous at low levels of expression (i.e. distinct
lowly expressed genes in different patients) as compared to
PTEN-wt samples. Inspecting the second component (i.e.
highly expressed genes), we found that, on average, � was
significantly higher in PTEN-loss as compared to PTEN-
wt samples (P-value = 0.003, two-tailed Student’s t-test)
whereas � did not differ between the cohorts (Figure 3D,
right panels). These results confirmed that IH is less pro-
nounced for high expressed genes than lowly expressed ones
in PTEN-loss tumors. Finally, comparing the mixing pro-
portions � we found, on average, a significantly higher num-
ber of genes assigned to the first component (i.e. lowly ex-
pressed) in PTEN-loss as compared to PTEN-wt samples
(P-value = 0.001, two-tailed Student’s t-test, Figure 3D, left
bottom panel). These results indicate that the FMM fully
captures the features of the expression landscape of the co-
horts resulting in a higher degree of IH at low expression
levels upon PTEN loss.

Next, GSECA applied the DD process and clustered
genes into the seven ECs for each sample of the two cohorts.
We compared the distribution of the proportion of genes in
each EC and found a significant increase and reduction of
genes in the LE class (Bonferroni adjusted P-value = 0.016,
two-sided Wilcoxon test) and in the four HE classes, respec-
tively, in PTEN-loss samples as compared to wild-type ones
(Bonferroni adjusted P-value = 0.021, two-sided Wilcoxon
test, Figure 3E), reflecting the differences detected by the
FMM. This result confirmed that the DD process preserves
the structure of the expression dataset.

Then, GSECA compared the fraction of genes in each of
the seven classes between PTEN-loss and PTEN-wt sam-
ples in the 158 KEGG gene sets. For each gene set, we de-
termined the enrichment or depletion of samples with genes
in each EC and corrected this for multiple tests. Further-
more, for all gene sets GSECA provided the AS, the as-
sociated empirical P-value to avoid false discoveries, and
the SR controlling for the different sizes of the two co-
horts (see Materials and Methods). We found that 21 out
of 158 KEGG gene set were significantly altered in PTEN-
loss as compared to wild-type samples (AS ≤ 0.01, pemp ≤
0.001 and SR ≥ 0.9, Figure 3F, Supplementary Table S4).
Among these gene sets, GSECA identified the PI3K/AKT
signaling pathway as the second top-ranked AGSs, show-
ing a significant increase in the number of samples express-
ing genes in the LE, ME, and HE1 classes and a signifi-
cant decrease in the HE2 and HE3 classes (FDR < 0.1,
Figure 3F, Supplementary Table S4), supporting the pres-
ence of high IH for PIK/AKT genes at low level of ex-
pression (Figure 3B). Among the remaining AGSs, GSECA
identified five gene sets of signal transduction (i.e. calcium
signaling, cytokine-cytokine receptor interaction, cell adhe-
sion molecules (CAMs), MAPK and WNT signaling path-
way) that are tightly connected with PI3K/AKT signaling
pathway. In particular, PTEN silencing, and the subsequent

alteration of PI3K/AKT pathway, impairs calcium signal-
ing (63), alters epithelial CAMs and focal adhesion gene
expression in prostate (64), alters MAPK (65) and WNT
signaling cascade (66). Furthermore, GSECA detected the
alteration of five immune-related processes (i.e. hematopoi-
etic cell lineage, chemokine signaling pathway, B and T cell
receptor signaling, FC gamma R mediated phagocytosis),
supporting the role of PTEN in regulating the proliferation
and differentiation of hematopoietic stem cell (67), con-
trolling signaling and homeostasis in both B and T cells
(68,69), and inhibiting FC gamma receptor signaling (70),
as well as the role of PI3K/AKT pathway in the regula-
tion of chemokine signaling during prostate tumorigene-
sis (71). Finally, GSECA highlighted the alteration of nine
metabolic pathways (Figure 3F and Supplementary Table
S4), underlining the contribution of PTEN in metabolism
control (72). GSECA also identified the alteration of car-
diac muscle contraction and aldosterone-regulated sodium
reabsorption gene sets (Figure 3F and Supplementary Table
S4). It is worth noting that the down-regulation of PTEN
decreases heart muscle contractility (73) and the activation
of PI3K/AKT pathway might be responsible for the alter-
ation of aldosterone-mediated sodium transport in epithe-
lial cells (74).

These results indicate that the FM modelling of RNA-
seq expression profiles, the sample-specific DD process and
the statistical framework implemented in GSECA can suc-
cessfully identify known altered biological processes (i.e.
PI3K/AKT signaling pathway) in a phenotype of interest
(i.e. PTEN somatic loss) considering datasets characterized
by IH.

Comparison with available GSA algorithms

We next compared the performances of GSECA in detect-
ing AGSs in PRAD samples upon the somatic loss of PTEN
with those of the other GSA methods. Since these meth-
ods were not designed to work with an unbalanced sam-
ple size between two cohorts (17), we measured the suc-
cess rate of each comparison using bootstrap simulations
as previously described (30) (see Materials and Methods).
We found that Z-Score, PLAGE, ssGSEA identified an av-
erage of 20 AGSs, comparably to GSECA, whereas GSVA
identified 41 AGSs, and ROAST and GSEA detected only
one AGS (adjusted P-value < 0.1, SR > 0.9, Figure 4A).
To assess the concordance of results among methods, we
measured the proportion of shared AGSs over the total
number of unique AGSs between any couple of algorithms
(i.e. Jaccard Coefficient, JC). Overall, the similarity of re-
sults among methods was low (mean JC = 12%). GSECA
identified four AGSs that were not detected by any other
methods (i.e. T and B cell receptor signaling pathway and
steroid hormone biosynthesis) and showed the higher con-
cordance of results with ssGSEA (JC = 19%, Supplemen-
tary Figure S10). The weak concordance of results among
different GSA algorithms has been previously reported as a
consequence of the distinct statistical assumptions of each
method (17). Thus, the number and the type of algorithm-
specific AGSs might reflect the ability of a method to handle
the IH of a complex dataset.
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Figure 4. Performance evaluation of GSA algorithms on the PRAD dataset. (A) Overlap of AGSs in PRAD PTEN-loss samples identified by the GSA
algorithms. GSECA results are reported in red. (B) Hierarchical clustering of the first ten top-ranked AGSs in PRAD PTEN-loss detected by GSA
algorithms. Each cell reports the rank of the gene set of a specific method. The ranks of the top ten ranked gene sets are reported in black. Annotation
heatmap (right) depicts gene sets identified by GO analysis performed considering the STRING PPI network and differentially expressed genes (i.e. DEG)
in black and (ii) evidence coming from literature text mining in color key of blues. (C) Scatter plot of the mean absolute FC (Abs. FC), and D averaged on
the 20 top-ranked gene sets detected by each method. Dot size represents the average standard deviation (�) of D for the 20 top-ranked gene sets. Color
key depicts the percentage of the 20 top-ranked gene sets that contain both activated and repressed gene sets, namely coordinated variability.

To evaluate the biological reliability of the informa-
tion provided by each method, we compared GSA re-
sults with those of orthogonal approaches. In doing so,
we first selected the ten top-ranked AGSs identified by
each algorithm and hierarchically clustered their rankings.
Next, we performed gene ontology (GO) analyses using
the STRING PPI network and the differentially expressed
genes in PTEN-loss as compared to PTEN-wt tumors. Fi-
nally, we integrated GSA and GO results with a text min-
ing analysis of published articles exploring the connection
of PTEN with the selected AGSs (see Materials and Meth-
ods). The hierarchical clustering of AGSs highlighted the
presence of five groups composed by gene sets that were
(i) mainly identified by GSECA and Globaltest (G1); (ii)
generally detected by different methods (G2) and (iii) ex-
clusively marked by methods other than GSECA (G3, Fig-
ure 4B). Remarkably, GSECA was the only algorithm able
to detect, the alteration of PI3K/AKT signaling pathway
as a top-ranking result. We found that G1 contains 75%
of gene sets enriched from the STRING PPI gene ontol-

ogy, suggesting the highest ability of GSECA in detecting
gene sets that are functionally related to the somatic loss
of PTEN as compared to the other methods (Figure 4B).
Considering differentially expressed genes, we found that
five out of the eight gene sets enriched for significantly up-
and down-regulated genes were detected by GSECA (Fig-
ure 4B, column ‘DEG’). The GO analysis revealed enrich-
ment of PI3K/AKT genes only when we considered signifi-
cantly activated and repressed genes (Supplementary Table
S5). The fact that GSECA was the only algorithm able to
identify this gene set as top-ranked AGSs suggests its abil-
ity in identifying processes where genes are significantly al-
tered in both directions rather than being either activated or
repressed. Finally, four out of the ten top-ranked GSECA
AGSs showed published evidence (≥9) for the interaction
of PTEN with the gene set, with the highest number of arti-
cles (n = 499) supporting PTEN regulation of PI3K/AKT
signaling pathway (Figure 4B, right column and Supple-
mentary Table S5). Conversely, we found few published
records (mean = 4) supporting the interaction of PTEN
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with AGSs that were detected by other methods (Figure
4B and Supplementary Table S5). In particular, AGSs that
were exclusively marked by methods other than GSECA did
not show any supports from GO and text mining results,
with the only exception of the pentose phosphate pathway
(Figure 4B). Overall, GSECA was the only algorithm able
to identify the altered modulation of PI3K/AKT pathway
and of other known and functionally related processes in
a real dataset characterized by IH. We further evaluated
the degree of these algorithms to handle the heterogene-
ity of PRAD dataset assessing (i) the minimum number of
samples required to detect alterations of the ten top-ranked
GSECA results and (ii) how the stratification of samples
according to PTEN expression levels affected the results
(see Supplementary Notes). Using simulation studies, we
found that GSECA achieves the best results in identifying
the alteration of PI3K/AKT genes at the increase of IH (i.e.
smaller cohort sizes or less stringent PTEN stratification,
Supplementary Figures S11 and S12 and Table S6).

To gain further insights into the reasons why GSECA
outperformed the other algorithms in detecting the alter-
ation of PI3K/AKT signaling pathway upon PTEN loss,
we analyzed the gene expression levels of the 20 top-ranked
gene sets of each method independently from their statis-
tical significance. As mentioned above, a consistent frac-
tion of PI3K/AKT genes is down-regulated in a highly vari-
able manner across samples upon PTEN somatic loss (Fig-
ure 3B and Supplementary Figure S13A). Hence, to detect
the alteration of this gene set, GSA methods must han-
dle ‘coordinated’ expression changes (i.e. activation or re-
pression) of distinct genes in different samples even if they
can also result in small FC differences in the whole popu-
lation. Therefore, we first inspected the distribution of ex-
pression levels of genes in each gene set across PRAD sam-
ples (Supplementary Figure S13B). GSECA, ssGSEA and
Globaltest detected gene sets predominantly composed by
genes expressed at both low and high levels (see Supplemen-
tary Notes and Supplementary Figure S13B). Conversely,
the other algorithms detected gene sets predominately com-
posed of highly expressed genes, suggesting that they might
be not effective in detecting changes of lowly expressed
genes. This held particularly true for GSEA whose KDDs
showed the strongest shift towards high expression levels
(Supplementary Figure S13B).

To corroborate these findings, we assessed four param-
eters (i.e. FPKM values, FC, absolute FC and dispersion,
see Supplementary Notes) measuring the range, direction,
intensity, and IH of gene expression captured as altered by
each method. In particular, we evaluated the mean � and
standard deviation � of each parameter across PRAD sam-
ples and, then, averaged results across genes (Supplemen-
tary Figure S13C). Overall, GSECA showed the best results
in handling gene sets characterized by expression changes
of groups of genes that are more intensively activated or
repressed (i.e. direction and intensity, Supplementary Fig-
ure S14) at all levels (i.e. range) in a heterogeneous manner
across samples (i.e. IH, Figure 4C). For this reason, GSECA
was able to detect the altered modulation of PI3K/AKT sig-
naling pathway that is composed of genes that are expressed
at different levels (i.e. low and high) and are distinctly ac-
tivated or repressed in different samples upon PTEN loss

(Supplementary Figure S13B and C). It is worth noting that
Globaltest performed similarly to GSECA. However, the
highest type I error (i.e. 119 AGSs out of 158 gene sets, Fig-
ure 4) confers less confidence to the results (i.e. PI3K/AKT
signaling pathway rank = 69, Figure 4B). Remarkably, our
analyses show that other methods, particularly GSEA, can-
not handle datasets characterized by high IH (Figure 4 and
Supplementary Figure S13C).

These results show that GSECA can detect functionally
relevant altered biological processes under a phenotype of
interest when considering more heterogeneous cohorts in
contrast to other available methods.

The somatic loss of PTEN impacts on immune-related pro-
cesses

Somatic inactivation of PTEN occurs in a wide range of
human cancers with various effects on each tissue (75).
For this reason, we employed GSECA to perform a com-
prehensive analysis of biological processes that are altered
upon the loss of PTEN across cancer types. In particular,
we collected genomic data of 9944 samples of 31 cancer
type available from TCGA (Supplementary Table S7) and
stratified them with respect to somatic alterations in PTEN
as described for the PRAD cohort. Together with PRAD,
we retained for further analyses 13 cancer types for which
we could identify at least 30 samples with somatic alter-
ation of PTEN (Supplementary Table S7). As expected, we
measured a significant decrease in PTEN expression levels
in PTEN-loss samples as compared to wild-type ones (P-
value < 0.05, one-tailed Wilcoxon Rank sum test, Supple-
mentary Figure S15A), leading to a significant alteration
of expression pattern of the PI3K/AKT signaling path-
way in corpus endometrial carcinoma (UCEC), low grade
glioma (LGG), skin cutaneous melanoma (SKCM) and sar-
coma (SARC) (P-value < 0.05, two-tailed Wilcoxon Rank
sum test, Supplementary Figure S15B). Using GSECA,
we discretized the gene expression levels into the ECs and
found a significant alteration of the number of genes in the
ECs between PTEN-loss and PTEN-wt samples in UCEC,
LGG, SKCM, lung squamous carcinoma (LUSC) and kid-
ney chromophobe (KICH, Supplementary Figures S16 and
S17), suggesting a possible regulation of transcriptional
programs driven by PTEN in these tissues. We next com-
pared the fraction of genes in the ECs between PTEN-
loss and PTEN-wt samples in the list of 158 KEGG gene
sets looking for significant differences. We found that 10
out of 13 cancer types showed at least one AGS (AS ≤
0.05, pemp ≤ 0.05 and SR ≥ 0.7, Supplementary Table S8).
Importantly, six cancer types (i.e. UCEC, LGG, HNSC,
SARC, PRAD and BRCA) showed the significant alter-
ation of the PI3K/AKT signaling pathway expression pat-
tern (Figure 5A). Indeed, GSECA AS showed a significant
positive correlation with the extent of PI3K/AKT signal-
ing pathway alteration, which was measured as the statis-
tical difference in the cumulative expression of PI3K/AKT
related genes in PTEN-loss tumors as compared to wild-
type samples (two-tailed Wilcoxon Rank sum test, Figure
5B). To further assess whether the AS exploits the alteration
of PI3K/AKT signaling pathway, we employed a linear re-
gression approach. In particular, we modeled the AS distri-
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Figure 5. Pan-cancer analysis of PTEN somatic loss. (A) GSECA EC map showing the pan-cancer alteration of PI3K/AKT signaling pathway as a
consequence of the somatic loss of PTEN. (B) Scatter plot showing the correlation of GSECA AS (i.e. -10*log10(AS)) and the alteration of PI3K/AKT
signaling pathway in PTEN-loss as compared to PTEN-wt tumors measured in terms of the adjusted P-value (i.e. -10*log10(FDR)) across cancer types. The
size of the colored circles shows the number of samples, while the inner white circles the number of PTEN loss samples. (C) Coefficients of determination
(R2) of the linear regression model at the increasing of model complexity (i.e. the number of regressors in the model). PI=PI3K/AKT signaling pathway
alteration; PT=PTEN downregulation; N=number of samples; RCS=correlation of PTEN-loss samples; RCN=correlation of PTEN-wt samples. Bar plots
in red show the relative importance of each predictor to the R2 measured by the linear regression model of all variables. (D) Heatmap showing the altered
classes of gene sets across cancer types. Classes are defined accordingly to the KEGG category. Each cell reports the number of AGSs. The annotation
heatmap indicates the KEGG superclass of biological processes. (E) Heatmap on the left panel shows the number of immune-related gene sets that are
altered upon the loss of PTEN across cancer types accordingly to GSECA and the other GSA methods. On the right panel, EC map-like heatmap depicts
the statistically significant alteration of the immune cell population across cancer types. The size of triangles the relative change of the percentage of tumor
immune infiltrates between PTEN-loss and wild-type samples. Upper/lower vertexes of the triangles represent the increase/decrease of immune cells in
PTEN-loss samples as compared to PTEN-wt tumors. The bar plot reports the IS for each cancer type. (F) GSECA EC map showing the altered immune
expression signatures as a consequence of the somatic loss of PTEN in PRAD. (G). Disease-free survival (DFS) Kaplan-Mayer curves for PTEN-loss
and PTEN-wt patients. (H). DSF Kaplan-Mayer curves measured stratifying PRAD patients on the optimal PTEN expression level (i.e. TPM=3.56,
maximally selected rank statistics=2.34) within two years from the initial treatment. (I) Boxplots showing expression distributions of PTEN normalized
expression levels for PTEN-loss and PTEN-wt samples of four immune-response related genes. (J) Boxplot distributions of the relative level of STAT3
phosphorylation for PTEN-loss and PTEN-wt PRAD samples.
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bution across cancer types as a function of the alteration
of both PTEN and PI3K/AKT signaling pathway expres-
sion levels, the number of PTEN-loss samples, and the cor-
relation of expression profiles in PTEN-loss and PTEN-wt
tumors (see Materials and Methods). We then performed
an exhaustive search for the best subsets of variables for
predicting the variability of the AS distributions using a
branch-and-bound algorithm (48) (see Materials and Meth-
ods). We found that the alteration of PI3K/AKT signaling
pathway gave the best fitting of the AS distributions in terms
of coefficient of determination when using one predictor (R2

= 0.81, Figure 5C). Increasing the model complexity led to
a closer fitting between the AS distributions and the predic-
tors (Figure 5C). We next measured the relative importance
of each regressor in the linear model using the averaging
over ordering method (50) (see Materials and Methods). We
found that even considering all variables in the model the
alteration of expression of the PI3K/AKT signaling cas-
cade was the most critical regressor accounting for 80% of
the explained variance by the model (P-value = 0.009, Fig-
ure 5C). These results indicate that GSECA AS recapitulate
the extent of PI3K/AKT cascade alteration. Furthermore,
GSECA identified PI3K/AKT signaling pathway as altered
in two cancer types (i.e. UCEC and LGG) for which the al-
teration of PI3K/AKT signature is known to impact on pa-
tient survival in positive and negative way (76,77). The sur-
vival analysis based on PTEN loss stratification in UCEC
and LGG confirmed these results, reinforcing the robust-
ness of GSECA prediction (Supplementary Notes and Sup-
plementary Figure S18A).

To gain functional insights on the cancer-specific regula-
tion of PTEN, we next inspected the 10 top-ranked AGSs in
each cancer type and hierarchically clustered them at an in-
termediate KEGG gene set category level (78). We found
that (i) metabolic processes were explicitly altered in dis-
tinct cancer types, (ii) information-related processes were
altered among different tumor types, and, importantly, (iii)
immune system gene sets were altered in the majority of tis-
sues (Figure 5D). In particular, SARC, KICH and SKCM
showed the highest number of immune-related AGSs, being
hematopoietic cell lineage, chemokine and T cell receptor
signaling pathways the most altered gene sets across cancer
types (Supplementary Table S9). These results highlight the
association between the loss of PTEN and the alteration of
immune cell infiltrates, which has been recently noted (2). To
verify the accuracy of the results of GSECA, we performed
two different analyses. First, we compared the results of the
other GSA methods on the immune-related gene sets. Sec-
ond, we evaluated the changes in the tumor immune mi-
croenvironment (TIME) upon the loss of PTEN. For the
latter analysis, we collected information about the cellu-
lar composition of immune infiltrates for TGCA tumors of
14 cancer types (52) and statistically measured the differ-
ences in the composition of 22 distinct immune cell types
between PTEN-loss and PTEN-wt samples. Finally, to pro-
vide the degree of alteration of the immune cell population
we combined the significance level of each comparison into
an immune score (IS) using the Fisher’s Method (see Mate-
rials and Methods, Supplementary Figure S18B and Table
S10). Compared to the other GSA methods, GSECA de-
tected the highest number of cancer types with a significant

alteration of immune cell fractions (Figure 5E, left panel).
Moreover, GSECA showed the highest positive correlation
between the number of immune-related AGSs and the IS
across GSA methods (Pearson’s correlation coefficient R =
0.77, P-value = 0.003, Figure 5E, right panel). In partic-
ular, the AS resulted significantly positively correlated with
the IS, highlighting the accuracy of GSECA results (Supple-
mentary Figure S18C). Together these results indicate that
GSECA was the most robust approach to highlight the link
between PTEN loss and alteration of immune regulation by
detecting the highest number of immune-related AGSs in
the vast majority of cancer types with statistically signifi-
cant changes in TIME composition.

Emerging evidence has suggested that PTEN loss is an
immunosuppressive event in prostate tumors (79). How-
ever, the connection between PTEN and the immune sys-
tem is complex and involves both pro- and anti-tumorigenic
immune responses depending on the cellular phenotype
and the TIME (80). To assess the general applicability
of GSECA we finally sought to investigate the impact of
PTEN loss on TIME of PRAD samples. In doing so, we
ran GSECA on a collection of 102 expression signatures
representative of different immune cell activities, states, and
modes in tumor tissues (52). We found that 15 immune sig-
natures were significantly altered upon PTEN loss (AS ≤
0.05, pemp ≤ 0.01 and SR ≥ 0.7, Supplementary Table S11).
Six of the top ten AGSs characterized the state and activity
of T and B cells, showing a general reduction of gene ex-
pression in the highly expressed classes, and a reciprocal in-
crease of genes in lowly expressed classed (Figure 5F). These
observations are consistent with previous data suggesting
that PTEN loss prostate cancers are non-T cell inflamed, or
‘cold’, tumors (81). In particular, GSECA identified the de-
creased expression of genes representative of CD8 T cells,
which was supported by the results of the TIME analysis
(Figure 5D), as previously reported (79).

Interestingly, the two top-ranked AGSs contained mark-
ers of lymphocyte activation (i.e. Module4 T/B cells) and
cell proliferation (i.e. Module11 Proliferation), respectively
(82). The combination of the down-regulation of the T/B
cell module and the upregulation of the proliferation mod-
ule has been strongly associated with decreased disease-free
survival (DFS) in breast cancer patients (82). Since GSECA
identified this same pattern, showing a reduction of genes in
HE classes for the T/B cell module and an increase for the
proliferation module (Figure 5F), we assessed the impact of
PTEN loss on DFS in prostate cancer patients. Using DFS
data for 355 PRAD patients available from TCGA, we ob-
served a statistically significant difference in time to disease
progression in the first 24 months from the treatment be-
tween patients with PTEN loss and wild-type (Figure 5G
and Supplementary Figure S18D). These data confirm the
detrimental impact of PTEN loss on prostate cancer disease
phenotype. Furthermore, since PTEN status determination
impact on therapy management of prostate cancer patients
(80), we wondered whether absolute PTEN expression lev-
els could be prognostic of a shorter DFS. Using the maxi-
mally selected rank statistics approach (83), we found that
patients with PTEN expression levels lower than 3.58 TPM
had a statistically significant shorter DFS time in the first
two years (Figure 5H), as well as three years (Supplemen-



1744 Nucleic Acids Research, 2020, Vol. 48, No. 4

tary Figure S18E), from the initial treatment. These results
highlight that not only the genomic status but also the ab-
solute expression levels of PTEN are associated with poor
outcomes in patients with prostate cancer.

It has been shown that in Pten-null mice the activa-
tion of the Stat3 establishes an immunosuppressive TIME
that contributes to tumor growth and chemoresistance (84).
Therefore, to finally validate GSECA results, we compared
the expression levels of STAT3 in PRAD PTEN loss tu-
mors as compared to controls. We also evaluated the ex-
pression of the inhibitory immune checkpoint molecule PD-
L1 and PD-L2 and the immune inhibitor VEGFA (52).
We found that PRAD PTEN loss tumors significantly ex-
pressed STAT3 at higher levels and PD-L1 and PD-L2 at
lower levels than PRAD PTEN wild-type samples (Fig-
ure 5I). Moreover, the level of phosphorylation of STAT3
was significantly higher in PRAD PTEN loss tumors as
compared to controls (Figure 5J). These data support the
establishment of an immunosuppressive TIME in human
prostate cancers, which could be driven by the activation of
STAT3, and validate the statistically significant associations
found by GSECA.

Taken together, these results show the general applica-
bility of GSECA in detecting biological processes that are
altered in high-volume heterogeneous data sets, including
pathological and physiological conditions other than can-
cer (Supplementary Notes, Supplementary Figure S19 and
Table S12). In particular, GSECA has proved highly accu-
rate in associating the loss of PTEN to the alteration of
PI3K/AKT signaling pathway and to the different regu-
lation of immune-related processes across cancer types. In
prostate cancer, GSECA detected the detrimental impact of
PTEN loss on DFS of patients and the establishment of a
‘cold’ TIME through the down-regulation of lymphocytes
signatures. Hence, our results support the emerging role of
PTEN in immune system (2,85,86) and therapy resistance
(87–89).

DISCUSSION

In this study, we have developed and evaluated GSECA, a
tool to identify altered biological processes from the analy-
sis of high-volume and heterogenous RNA-seq experiment
data. Heterogeneity is a fundamental characteristic of in-
formation associated with complex traits, which can arise
from subtle deregulation of distinct genes in different pa-
tients rather than of a single gene (6,11,30). IH affects the
ability to detect such modifications in large datasets. Here
we explored the importance of IH for the correct identifica-
tion of biological mechanisms that are relevant for the phe-
notype of interest and confirm its confounding role in signal
detection (90,91).

By exploiting the concept of two major subpopulations
of genes expressed by the cell (18), GSECA estimates the
IH due to biological and technical conditions. The method
employs sample-specific estimates of gene expression dis-
tribution in a discretization process that reduces the large
set of numerical values into a small list of categorical val-
ues. Finally, using these discrete units of measure, GSECA
identifies the processes that are significantly altered in the
phenotype of interest.

We employed simulated RNA-seq data modelling sev-
eral conditions of differential gene expression between two
cohorts to evaluate the performance of GSECA as com-
pared to other seven ‘state-of-art’ GSA methods. Overall,
GSECA showed a deflated type I error rate and a higher
power than the other GSA methods when handling het-
erogeneous RNA-seq datasets. The algorithm also achieved
a substantial sensitivity to detect AGSs in absence of IH,
even if not designed to treat this scenario. Most importantly,
GSECA displayed the highest F1 score among all methods
to detect truly AGSs in the presence of IH in gene expres-
sion between samples. To summarize, GSECA can iden-
tify a smaller number of AGSs as compared to other GSA
methods but with a higher sensitivity. The conservativeness
of GSECA allows to avoid the ‘overproduction’ of signifi-
cant results (92), and to provide the user a narrowed list of
truly altered processes to inspect in details in further anal-
yses. The predictions of GSECA were the most accurate
ones when treating heterogeneous samples suggesting that
its framework enhances the signal-to-noise ratio, and thus
data interpretation. Interestingly, ssGSEA showed similar
performance to GSECA in handling heterogeneity. Compa-
rably to GSECA, this method treats each sample individu-
ally and collapses gene expression levels to a common scale
using ranks (12). This finding confirms that the reduction of
the large set of expression levels into a smaller range of val-
ues increases the power to detect truly AGSs in the presence
of IH.

We used our approach to identify the biologically rel-
evant gene sets that are altered upon the somatic loss of
PTEN, and the subsequent alteration of the PI3K/AKT
signaling cascade in prostate cancer. The EC maps gen-
erated by GSECA correctly detected the alteration of the
PI3K/AKT signaling pathway and related signal transduc-
tion gene sets, such as calcium signaling (63), epithelial
CAMs (64), MAPK (65) and WNT signaling pathways (93).
Interestingly, the FMM and the DD approaches captured
the heterogeneity among the cohorts revealing a general de-
creased and widespread gene expression in prostate cancer
due to the loss of PTEN that might underline the role of
PTEN in regulating basal transcription through histones
and chromatin remodeling (62).

The comparative performance analysis of GSA meth-
ods in detecting the effect of PTEN silencing shows that
GSECA was the only algorithm able to tackle the hetero-
geneity of the prostate cancer dataset and to reveal the al-
tered modulation of PI3K/AKT signaling pathway. More-
over, GSECA detected the altered regulation of processes
where genes directly interact with PTEN and, thus, are in-
fluenced by the somatic loss of their interactor. This result
indicates the ability of the method to spot functionally re-
lated AGSs. Importantly, GSECA highlights the alteration
of gene sets composed by genes that are coordinately and
heterogeneously modulated rather than being uniformly ac-
tivated or repressed at different levels (i.e. low and high) in
distinct samples, whereas other methods might suffer from
this limitation. Together, these results indicate that GSECA
boosts the signal-to-noise ratio in heterogeneous datasets
enabling the identification of the general mechanisms that
are more likely to be altered across samples. In particular,
compared to the other GSA algorithms, GSECA requires
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a smaller number of heterogeneous samples to detect the
AGSs, and it can handle different degrees of IH without af-
fecting the final results.

The pancancer analysis of the effect of PTEN somatic
loss generated a comprehensive assessment of its regulation
across tissues. PTEN critically interconnects the canonical
PI3K/AKT and the RAS/MEK/ERK pathway, which are
the two dominant tumorigenic gene sets controlling cell sur-
vival and proliferation (75). Our data shows that the impact
of PTEN silencing on cellular program regulation is pro-
portional to the impaired modulation of the PI3K/AKT
signaling cascade, with the stronger effect of gliomas, en-
dometrial, head and neck, breast carcinomas, melanomas,
and sarcomas. GSECA revealed a tissue-specific control of
PTEN on metabolic processes, whereas information-related
processes, such as signal transduction, are more uniformly
affected across tissues. Most importantly, GSECA correctly
highlighted the role of PTEN in controlling immune-related
processes in the majority of cancer types, particularly in
those showing a significant alteration of the TIME com-
position. These data support the importance of PTEN in
modulating the immune system (85) and therapy resistance
(89). Recently, it has been shown that the loss of PTEN im-
pacts on T cell lineage stability (86), inhibits T cell-mediated
tumor killing and trafficking in melanomas (88,94) and pro-
motes resistance to T cell-mediated immunotherapy in uter-
ine cancers (87). Using additional immune expression sig-
natures, GSECA correctly highlights the immunosuppres-
sive TIME of PTEN-loss prostate tumors (80), which could
be driven by the significant activation of STAT3. Further-
more, GSECA results were pivotal to show the shorter of
disease-free survival of these patients and to underline the
biomarker potential of PTEN expression levels. These re-
sults validate previous findings in prostate mouse models
(84), melanoma (88), breast (82) and provide indications
that might be important for the clinical management of
prostate cancer patients.

To conclude, we tested GSECA under several conditions
using distinct simulated and real RNA-seq datasets and dif-
ferent collections of gene sets. Our findings concordantly
indicate that GSECA can improve the comprehensive iden-
tification of relevant biological processes that are altered
in complex phenotypes. In particular, GSECA can detect
functionally related and relevant altered cell mechanisms in
a condition of interest considering more heterogeneous co-
horts as compared to other available methods. By boosting
signal-to-noise ratio, GSECA can successfully manage the
heterogeneity of thousands of samples and provides use-
ful insights on clinical and biological patterns proper of a
phenotype. In this work we introduced the paradigm shift
of ‘less is more’ in treating large heterogenous RNA-seq
datasets and showed that it improves the detection of the
altered biological processes in the phenotype of interest.

DATA AVAILABILITY

GSECA is implemented as an R/Shiny appli-
cation and is freely available on GitHub (https:
//github.com/matteocereda/GSECA) to be run locally
or through a shiny web interface. The EM algorithm
for finite Gaussian Mixture is provided by the imple-

mented method in the R package ‘mixtools’ (95). The
normalmixEM function was used with default parameters
and random initialization.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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