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It is well-known, but frequently overlooked, that low- and high-throughput molecular
data may contain batch effects, i.e., systematic technical variation. Confounding of
experimental batches with the variable(s) of interest is especially concerning, as a
batch effect may then be interpreted as a biologically significant finding. An integral
step toward reducing false discovery in molecular data analysis includes inspection for
batch effects and accounting for this signal if present. In a 30-sample pilot Illumina
Infinium HumanMethylation450 (450k array) experiment, we identified two sources of
batch effects: row and chip. Here, we demonstrate two approaches taken to process
the 450k data in which an R function, ComBat, was applied to adjust for the non-
biological signal. In the “initial analysis,” the application of ComBat to an unbalanced
study design resulted in 9,612 and 19,214 significant (FDR < 0.05) DNA methylation
differences, despite none present prior to correction. Suspicious of this dramatic
change, a “revised processing” included changes to our analysis as well as a greater
number of samples, and successfully reduced batch effects without introducing false
signal. Our work supports conclusions made by an article previously published in this
journal: though the ultimate antidote to batch effects is thoughtful study design, every
DNA methylation microarray analysis should inspect, assess and, if necessary, account
for batch effects. The analysis experience presented here can serve as a reminder to
the broader community to establish research questions a priori, ensure that they match
with study design and encourage communication between technicians and analysts.

Keywords: DNA methylation, 450k array, Illumina, batch correction, batch effects, ComBat, EWAS

INTRODUCTION

Advances in large-scale genomic technologies make it relatively easy for investigators to
generate “big data” to explore a range of novel biological questions. Given the cost of
such experiments and susceptibility to p-hacking (i.e., mining data until a significant result
is achieved) (Nuzzo, 2014), it is important to establish appropriate study design a priori,
including both the experimental setup as well as data analysis approach. Pilot studies give
researchers such an opportunity; to determine effect size, develop processing pipelines and

Abbreviations: DNAm, DNA methylation; EWAS, epigenome-wide association study; FDR, false discovery rate; GEO,
gene expression omnibus; MTHFR, 5,10-methylenetetrahydrofolate reductase; PC, principal component; PCA, principal
component analysis.
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statistical analyses, produce preliminary data for grant
applications, and ultimately assess whether an experiment
warrants commitment of additional time and resources. Through
a recent pilot study using a popular DNA methylation (DNAm)
microarray platform, our group learned an unanticipated lesson,
with implications for those who process and analyze DNAm
microarray data.

The Illumina Infinium HumanMethylation450 BeadChip
(450k array) (Bibikova et al., 2009) has been employed to
assess DNAm in close to 1000 experimental series listed in
NCBI’s GEO (the Gene Expression Omnibus, see GPL13534)
(Edgar et al., 2002), making it the dominant platform for
EWAS. This microarray uses oligonucleotide probes to assess
the level of methylation in bisulfite-converted DNA at more
than 450,000 CpG sites throughout the human genome. The
platform accommodates measurement of 12 samples on a single
“chip,” organized into two columns of six rows. Like other
microarrays, the 450k array has been found to be subject to
batch effects [i.e., technical – as opposed to biological – sources
of data variation (Leek et al., 2010)] due to for example, the
processing of samples on different days, use of different reagent
lots or the distribution of samples across chips (Harper et al.,
2013; Michels et al., 2013; Mill and Heijmans, 2013; Lehne
et al., 2015). Adding batch variables into statistical models
or removing batch signal prior to hypothesis testing are two
of the approaches used to account for unwanted technical
signal (Nygaard et al., 2016). However, several groups have
cautioned that some methods used to adjust high-throughput
data for batch effects can introduce false biological signal
(Harper et al., 2013; Buhule et al., 2014; Nygaard et al.,
2016).

In a 2014 issue of this journal, Buhule et al. (2014), describe
an experience with the bioinformatic tool ComBat to remove
chip- and row-effects from 450k data generated from the blood
of lean and obese men. In the initial study, termed “sample one,”
all lean samples were run on the same four 450k chips while all
obese samples were run on another four 450k chips; in other
words, the biological variable of interest (obese vs. lean) was
completely confounded with a technical variable (chip). Before
batch correction, 25,650 sites (FDR < 0.05) were identified as
differentially methylated between lean and obese individuals, but
this increased to 94,191 sites after batch correction. Suspicious
of these results, the authors regenerated their data using a
stratified randomization design that distributed obese and lean
samples equally across 450k chips (“sample two”). With this
balanced study design, no sites were differentially methylated
between lean and obese patients before or after ComBat batch
correction, indicating that (i) sites identified as differentially
methylated in sample one were due to batch effects and (ii)
applying ComBat to an unbalanced study design can introduce
false signal.

In this Perspective article, we describe our experience with
batch correction in a pilot study, which in many ways mirrors
that of Buhule et al. (2014). We present the initial study
design and analysis, technical issues encountered, and a revised
approach that used ComBat to removed batch effects without
introducing false signal. While the success of the revised analysis

is encouraging, it is alarming that thousands of false discoveries
might have been claimed if the analysis had been limited to
standard processing pipelines. We aim to support the cautionary
messages of others (Harper et al., 2013; Buhule et al., 2014;
Nygaard et al., 2016), and implore users to explore, be skeptical
and monitor every step of DNAm microarray data analysis.

BIOLOGICAL MOTIVATION FOR OUR
PILOT STUDY

The biological motivation for our pilot study was to clarify
whether patterns of DNAm varied in association with genotype
at two loci in the human genome. The genetic variants of
interest were located on chromosome 1 within the gene coding
for MTHFR. MTHFR catalyzes a reaction that commits methyl
groups to the methylation cycle in one carbon metabolism,
and two polymorphisms in MTHFR, 677C > T (rs1801133)
(Frosst et al., 1995) and 1298A > C (rs1801131) (van der Put
et al., 1998), reduce its enzymatic activity to about 45 and
68%, respectively (Weisberg et al., 2001). It has been suggested
that the association of the “high-risk” homozygous alterative
MTHFR genotypes (677TT or 1298CC) with increased disease
risk [e.g., pregnancy complications (Yadav et al., 2015) and adult
cardiovascular disease (Gao et al., 2014)], may be due to altered
DNAm capacity (Stern et al., 2000; Friso et al., 2002; Castro et al.,
2004; Narayanan et al., 2004; Shelnutt et al., 2004; Blom et al.,
2006; Axume et al., 2007). To assess the association of DNAm
with high-risk MTHFR genotypes during pregnancy, we used the
450k array to compare placental DNAm patterns (from a pool
of 3 sites per placenta) between three different MTHFR genotype
groups: variant 677 (n = 10; 677TT and 1298AA), variant 1298
(n = 10; 677CC and 1298CC), and reference (n = 10; 677CC
and 1298AA). These 30 samples were randomly distributed
within a larger batch of 84 samples run across seven 450k
chips and processed following standard Illumina protocols. This
design maximized cost-effectiveness by allowing several subsets
of the 84 samples to be analyzed to address separate research
questions.

INITIAL PROCESSING OF 450k DATA
(n = 30)

For initial processing, we extracted only data relating to the
30-sample MTHFR pilot to be processed in the R software
environment (R Core Team, 2014). Analyses were performed on
M values generated using the Bioconductor methylumi package
(Davis et al., 2015), since this log2 ratio of array intensities
has been shown to be valid for differential analysis of DNAm
array data (Du et al., 2010). Testing for batch effects using
PCA is a standard step in our DNAm processing pipeline.
Orthogonal PCs are identified to reduce high-dimensional data
into a lower number of dimensions accounting for the majority
of data variation. In this study, the top six PCs were tested for
association with three biological variables (fetal sex, gestational
age at delivery and MTHFR genotype group) and four technical
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variables (bisulfite conversion batch, chip, row, and column) to
suggest sources of data variation. Given that PC3 (rs = −0.5,
p = 0.005) and PC4 (rs = 0.5, p = 0.005) were associated with
the distribution of samples across rows (n = 6), while PC6
(F = 3.1, p = 0.023) was associated with the distribution of
samples across chips (n = 7) (Figure 1A, top), we decided to

remove these batch effects during data cleaning. Batch effect
correction was attempted using ComBat, an empirical Bayes
approach implemented in the R software environment (R Core
Team, 2014), as this tool has previously been applied to DNAm
data (Buhule et al., 2014; Lehne et al., 2015) and was specifically
developed for small sample sizes (Johnson et al., 2007).

FIGURE 1 | Data monitoring in the initial and revised processing approaches. (A) Association of top PC loadings with biological variables: (i) MTHFR genotype group,
(ii) gestational age at birth, and (iii) fetal sex; and batch variables: (i) bisulfite conversion batch, (ii) chip, (iii) row position, and (iv) column position in the initial
processing (top; n = 30 samples) and the revised processing (bottom; n = 30 samples subset from 59) before and after ComBat correction. Box colors indicate
significance of association based on unadjusted p-values: dark blue p ≤ 0.001, mid-blue p ≤ 0.01, light blue p ≤ 0.05, gray p > 0.05, and contain the associated
test statistic: ANOVA F-statistic for categorical variables (#) and Spearman’s rho for continuous/ordinal variables (∗). (B) At each data state, a linear model was fit to
test for differential methylation between each variant MTHFR group vs. reference placenta. Unadjusted p-value distributions for each comparison were plotted for the
initial processing (top; n = 30 samples) and the revised processing (bottom; n = 30 samples subset from 59). The number of sites tested in initial and revised
processing, respectively, was n = 485,577 and n = 485,577 for the raw data, n = 442,389 and n = 442,378 for the filtered data, n = 442,389 and n = 442,378 for the
Swan normalized data, n = 442,035 and n = 442,355 for the ComBat row corrected data, and n = 442,035 and n = 442,355 ComBat chip corrected data.
(B) Created using ggplot2 (Wickham, 2009).
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Our 450k analysis pipeline took the data through five major
states:

(1) Raw data (n = 485,577 sites);
(2) Filtered data: removal of systemically poor-quality array

probes (resulting in n = 442,389 remaining CpG sites)
including:

• probes targeting the sex chromosomes, n = 11,648;
• sex chromosome cross-hybridizing probes (Price et al.,

2013), n = 11,412;
• polymorphic probes (Price et al., 2013), n = 19,957;
• 65 rs probes;
• probes with detection p-value > 0.01 or < 3 bead

replicates in >20% of samples, n = 106;

(3) Swan normalized data: normalization to correct for
differences in the dynamic range of Type I and Type
II probes using SWAN (Maksimovic et al., 2012)
(n = 442,389 CpG sites);

(4) ComBat row-corrected data: removal of probes with <2
values in a batch level (n = 354), followed by batch
correction using ComBat (Leek et al., 2017) to correct
for the location of samples in different chip rows while
protecting MTHFR genotype group (n = 442,035 CpG
sites);

(5) ComBat chip-corrected data: batch correction using
ComBat (Leek et al., 2017) to correct for the distribution
of samples across chips while protecting MTHFR genotype
group (n = 442,035 CpG sites).

ASSESSING THE PROCESSING OF 450k
DATA

Following each of the five states outlined above, limma (Smyth,
2005) was used to apply a linear model to each CpG site
to model DNAm as a function of MTHFR genotype group.
Sex and gestational age at delivery were included as additive
covariates in the model, as they were associated with top
PCs (Figure 1A, top) and changes in DNAm have previously
been found associated with these biological variables (Fuke
et al., 2004; Chavan-Gautam et al., 2011; Novakovic et al.,
2011; Mayne et al., 2017). Results were extracted for two
comparisons, variant 677 vs. the reference group and variant
1298 vs. the reference group, which generated a p-value
for every CpG site per comparison. The distribution of
unadjusted p-values for each step was plotted to give an
overall view of the data at each processing step (Figure 1B,
top). As data was cleaned, normalized and corrected for
batch effects, we expected p-value distributions would flatten
toward uniform (i.e., equal likelihood of significant and non-
significant tests) or may become skewed toward a higher
number of p-values (i.e., right-skewed or left-peaking), if there
were more differences in DNAm between genotype groups
than expected by chance. The first three graphs of Figure 1B
(top) show similar and slightly right-peaking distributions,
suggestive of missing explanatory variables in the model, often

batch effects. Correcting for chip row (graph 4) resulted in
slightly left-peaking distributions and finally correcting for
chip (graph 5) resulted in extremely left-peaking distributions,
suggestive of many differences in DNAm between MTHFR
genotype groups.

Principal component analysis was reapplied on data from
state 5 to assess sources of variability in the “clean” data
(Figure 1A, top). The application of ComBat removed variability
due to chip and row, while a strong association with MTHFR
genotype group appeared in PC1 (F = 28.6, p < 0.00001)
and PC2 (F = 17.5, p < 0.00001) after batch correction. At
a typical threshold of FDR < 0.05, no differences in DNAm
were observed by MTHFR genotype group prior to batch
correction (i.e., after SWAN normalization). After correction
for chip and row, the data contained 9,612 differentially
methylated CpG sites for the variant 677 comparison, and
19,214 sites for the variant 1298 comparison. Like Buhule
et al. (2014), we were wary of the magnitude of change in
differentially methylated CpG sites after correcting for batch and
so re-examined the study design and processing of this pilot
data.

REVISED PROCESSING OF 450k DATA
(n = 59)

ComBat requires two inputs to correct for batch effects: (i)
a model describing the parameter(s) that should be protected
from correction (in this case, MTHFR genotype group); and
(ii) the batch variable to be corrected for (in this case,
row and then chip). Because of the randomization of our
small number of samples of interest (n = 30) within the
larger group of samples run at the same time (n = 84),
the distribution of any given MTHFR genotype group across
chips and rows was sparse (Figure 2), leading to partial
confounding of biological and technical variables. Nygaard
et al. (2016) showed that the use of ComBat in high-
dimensional datasets where the batch variable and protected
variable are confounded can lead to inflation of p-values, and
that the magnitude of the effect is related to the severity
of confounding. Thus a “revised processing” was conducted
including two changes to our analysis aimed at improving batch
correction:

(i) Increased sample size: we made use of 29 other placental
samples from within the 84-sample batch (white arrays in
Figure 2), to increase the pre-processing sample size from
30 to 59, with a better distribution of samples across chips
and rows. This also allowed for the inclusion of a technical
replicate to better monitor data processing (replicate pair
indicated by r’s in Figure 2).

Unlike the original 30 samples, none of these additional
samples was homozygous for both MTHFR variants
and also from a healthy pregnancy. Thus, the protected
parameters in the revised analysis were the sample
genotypes at rs1801133 (677) and rs1801131 (1298),
so that heterozygous samples could be included. This
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FIGURE 2 | Sample distribution on seven Illumina Infinium HumanMethylation450 chips. The locations of the placental samples used in the initial processing (n = 30
samples) are indicated by color: yellow – reference; blue – variant 677; and orange – variant 1298. In the revised processing, all other placental samples (white) were
genotyped for MTHFR c.677 (rs1801133) and c.1298 (rs1801131) and added to the processing (n = 59 samples). Non-placental and poor-quality samples were
ineligible for inclusion in the revised processing (hashed).

also meant that the exact biological variable of interest
(MTHFR group) was no longer protected by ComBat.

(ii) Reduced sample subdivision: in running of the 450k
arrays, chips stand vertically for approximately 3 h while
a series of washes are applied. We hypothesized that this
step may account for some of the row effect. Thus, samples
were grouped into high (rows 5 and 6), mid (rows 3 and
4), and low (rows 1 and 2) locations to reduce the number
of row categories that needed to be estimated (i.e., three
instead of six), and thereby reduce the confounding of
batch and biological variables.

During the revised processing, the number of sites went
from 485,577 to 442,378 to 442,355 in the raw to filtered to
combat datasets respectively. The 30 MTHFR samples were
selected out of the larger group of 59 samples after each
processing step and a linear model was fit (Figure 1B, bottom),
as described for the initial processing. While graphs 1 through
3 mirror those of the initial processing, the distributions in
graph 5 are close to uniform, suggesting that the applied
models fit and that batch effects were removed. In support,
the pairwise correlation of all probes in the technical replicate
included in the revised processing improved slightly, from
r = 0.99616 in the raw data to r = 0.99668, after batch
correction. PCA confirmed the removal of row and chip effects,
without introduction of a strong MTHFR genotype group signal
(Figure 1A, bottom). The corrected data contained strong
gestational age (PC1 rs = −0.5, p = 0.006; PC2 rs = 0.4, p = 0.042)
and fetal sex (PC1 F = 5.8, p = 0.022) signal, as well as some
signal associated with the technical variables bisulfite conversion
batch (PC3 F = 3.2, p = 0.041) and column (PC4 F = 9.7,
p = 0.004; PC6 F = 8.0, p = 0.008). This final PCA suggests
that bisulfite batch and column may be additional sources of
batch effects to consider in the design of DNAm microarray
experiments.

DISCUSSION AND CONCLUSION

When batches of experiments, such as processing date, operator,
or run plate, are confounded with the variable of interest,
differences between biological groups may be identified that
are, in fact, artifacts (Harper et al., 2013; Buhule et al., 2014).
This issue has been discussed for some time in gene expression
microarray studies; a striking example was highlighted by
Akey et al. (2007), who attempted to reanalyze a publicly-
available dataset comparing gene expression between two ethnic
groups (Spielman et al., 2007). Akey and colleagues found
that most of the data for European participants was produced
2 years prior to that for Asian participants. The reanalyzed data
showed that the near-complete confounding of measurement
year with ethnicity was likely the source of >4,000 “differentially
expressed” genes identified in the original study (Akey et al.,
2007).

Another 2007 publication identified batch effects as one
of the top three sources of data variability in eight of nine
gene expression microarray studies examined (Leek et al.,
2010). It was suggested that most, if not all, high-throughput
datasets contain batch effects, and that in many cases this
unwanted signal is the primary source of data variation
(Leek et al., 2010). In 2006, a consortium of scientists and
organizations, ran the MicroArray Quality Control or MAQC
project to systematically test for batch effects in gene expression
microarray data (Shi et al., 2006). From this project, guidelines
and methodologies for standardized processing, reporting, and
analysis of gene expression microarray data were established.
ComBat, the R function employed in our pilot, is one such tool
developed to aid researchers in correcting batch effects in ‘omics’
datasets.

But analysts, reviewers and readers should be wary that even
by employing tools like ComBat, it may not be possible to remove
technical signal when batches are confounded with variables of
interest. Our experience adds to the growing set of empirical
and simulated examples demonstrating that the application of
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ComBat to high-throughput data with uneven study design may,
in fact, introduce false signal. Interestingly, if, as suggested by
Nygaard et al. (2016), we had used row and chip as additional
covariates in our linear model instead of adjusting for batch
effects in the initial processing, the inflation of p-values would
have been avoided. We hope our experience will aid 450k users
to better design their experiments and analyses, especially in
cases of limited samples size due to rare exposures/phenotypes,
difficult to access tissues (e.g., brain, liver, fetal tissues) or budget
constraints. For critical evaluation of EWAS, manuscripts must
include details of study design along with the approach to
mitigate batch effects, and metrics (e.g., replicates, PCA, p-value
distributions) used to assess data processing. Furthermore,
identified significant differences should ideally be verified using
a different assay as well as validated in a distinct cohort (Michels
et al., 2013).

Many journals and funding agencies now require data to
be posted to public repositories, a key resource in which
to test replication in populations with similar and different
characteristics (Munafò et al., 2017). However, a systematic
review (Piwowar, 2011) suggested that though data sharing is
on the rise, only 45% of gene expression microarray datasets
were deposited in NCBI’s GEO (Edgar et al., 2002) or EBI’s
ArrayExpress (Parkinson et al., 2006). Furthermore, the degree
of compliance with data sharing is variable; for example, of
nearly 2,500 450k samples in GEO in 2014, close to 1,000
did not report sex on a per-individual basis (Cotton et al.,
2015). For shared data to be used to its full potential, a
truly altruistic approach is needed: accept and publish negative
findings, describe challenges, detail the processing pipeline and
report demographics (tissue, sex, age, ethnicity etc.) as well as
technical features (design, batches, processing steps etc.) on a
per-sample level.

MATERIALS

Raw and processed data for the samples used in this study were
deposited in NCBI’s Gene Expression Omnibus (Edgar et al.,
2002) and are accessible through GEO Series accession number
GSE1085671.

1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108567
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