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High-throughput sequencing-based assays measure different biochemical activities pertaining to gene regulation, genome-

wide. These activities include transcription factor (TF)–DNA binding, enhancer activity, open chromatin, and more. A ma-

jor goal is to understand underlying sequence components, or motifs, that can explain the measured activity. It is usually not

one motif but a combination of motifs bound by cooperatively acting proteins that confers activity to such regions.

Furthermore, regions can be diverse, governed by different combinations of TFs/motifs. Current approaches do not

take into account this issue of combinatorial diversity. We present a new statistical framework, cisDIVERSITY, which models

regions as diverse modules characterized by combinations of motifs while simultaneously learning the motifs themselves.

Because cisDIVERSITY does not rely on knowledge of motifs, modules, cell type, or organism, it is general enough to be

applied to regions reported by most high-throughput assays. For example, in enhancer predictions resulting from different

assays—GRO-cap, STARR-seq, and those measuring chromatin structure—cisDIVERSITY discovers distinct modules and

combinations of TF binding sites, some specific to the assay. From protein–DNA binding data, cisDIVERSITY identifies po-

tential cofactors of the profiled TF, whereas from ATAC-seq data, it identifies tissue-specific regulatory modules. Finally,

analysis of single-cell ATAC-seq data suggests that regions open in one cell-state encode information about future states,

with certain modules staying open and others closing down in the next time point.

[Supplemental material is available for this article.]

High-throughput sequencing technologies are routinely used to
map multiple types of biochemical activities occurring across the
genome. Examples include protein–DNA binding events
(Johnson et al. 2007; Vogel et al. 2007), open chromatin regions
(Giresi et al. 2007; Boyle et al. 2008; Buenrostro et al. 2013), inter-
acting chromatin domains (Fullwood et al. 2009; Lieberman-Aiden
et al. 2009), active transcription start sites (TSSs) (Shiraki et al.
2003), andmanymore (Davis et al. 2018). Amajor goal of these ef-
forts is to understand what part of the underlying sequence might
be driving that particular activity. Now, although themeasured ac-
tivity might be of a specific nature, the same sequence signature
may not be responsible for it at all locations. Consider, for exam-
ple, an assay such as transposase-accessible chromatin with se-
quencing (ATAC-seq) or DNase I hypersensitive sites sequencing
(DNase-seq), which identifies open chromatin regions. The reason
behind the accessibility of a regionmay be one of several: Itmay be
an active promoter, an enhancer, an insulator, or even amatrix-at-
tachment region. Naturally, then, the pertinent sequence compo-
nents in those regions will also be different. In some cases, the
heterogeneity is less obvious, but present, all the same. For in-
stance, although the primary objective of a high-throughput chro-
matin immunoprecipitation assay (ChIP-seq) is to identify regions
bound by a specific transcription factor (TF), in reality the experi-
ment reports amiscellaneous set of genomic regions: thosemaking
direct contact with the TF, those indirectly bound to the TF via an
intermediate, those where the TF binds along with a cofactor, and

perhaps, those that are simply proximal to the TF in 3D space
(Farnham 2009).

Although the existence of such an assortment of regions is
well accepted in most high-throughput experiments, methods
used to learn the regulatory architecture at these regions do not ef-
fectively account for it. Reported regions are generally analyzed by
identifying individual overrepresented motifs by sequentially
searching for motifs one after the other, either from a known data-
base or de novo. This strategy can fail in certain situations. Motifs
may be missed because they are present only in a small set of re-
gions and therefore are not statistically overrepresented in the en-
tire set. A few recent methods do account for this by posing this as
a mixture problem with each component of the mixture being en-
riched with a potentially different motif (Eggeling et al. 2017;
Agrawal et al. 2018; Mitra et al. 2018). But these approaches do
not take into account combinations of motifs, which may be crit-
ical to drive the biochemical activity at the region. Additionally,
there may be multiple distinct motif combinations across the re-
ported regions, with each combination explaining a fraction of
the regions.

Here we propose a new method called cisDIVERSITY, which
attempts to explain the whole set of the reported regions in terms
of motifs and their combinations, all computed de novo. We take
inspiration from topicmodeling in computer science, inwhich the
goal is to cluster documents (here DNA regions) into different top-
ics (here functions/modules) based on word frequencies (here
DNA motifs). In contrast to typical topic modeling in which the
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words are established and parsed a priori, here the motifs are also
unknown and learned along with the modules.

Results

A sequence model for representing cis-regulatory diversity

A high-throughput sequencing experiment typically identifies a
setX of genomic regions that are enrichedwith a specific biochem-
ical activity.We assume that r different regulatorymodulesmay be
responsible for the activity and that each module is defined by the
presence or absence ofmmotifs. More specifically, each module is
modeled as a product of m Bernoulli distributions corresponding
to the presence or absence of each motif. Different modules will
have different Bernoulli distributions over the same motifs. A mo-
tif is modeled with the standard position weight matrix (PWM)
(Staden 1984). Figure 1A shows an instance of a simulated data
set of 1000 sequences, in which five motifs were planted from
the JASPAR database (Khan et al. 2018), with specific Bernoulli dis-
tributions across three modules. For example, motif 1 is present in
all sequences of module 2, in a fifth of sequences of module 1, and
never in module 3. On the other hand, motif 5 is present in all se-
quences of module 3, but because the module consists of only
about 40 sequences, overall, motif 5 occurs less frequently in the
data. The aim of cisDIVERSITY is to learn them motif parameters,
the r×m Bernoulli distributions, and the sequences that belong to
each of the r modules.

Gibbs sampling is used to iteratively sample each of these un-
known values, with the aim of finding the set that maximizes the
posterior distribution (Methods). cisDIVERSITY reports the output
in three parts (Fig. 1B). The first is the set of de novomotifs ordered

according to the number of sites that contribute to eachmotif. The
second is the overall structure of the modules describing the con-
tribution of each motif in every module. The color and the size
of the circles denote the proportion of sites of the corresponding
motif in each module. The last part of the output is the sequences
clustered together as per the identified modules, displaying the
sites that contribute to the PWMs in four colors for the four nucle-
otides. If a site is absent, those nucleotides are shown in black. The
modules are ordered according to their size, the largest one shown
on top. cisDIVERSITY finds all the motifs and recovers the general
module structure in this case.

Performance on simulated data sets

cisDIVERSITY can be thought of as a joint clustering and de novo
motif discovery method. To systematically assess how well
cisDIVERSITY is able to retrieve modules andmotifs, we simulated
more such data sets. To better emulate reality, we used random
nonrepetitive regions from the human genome as the data set X.
The number of planted motifs m was from the set {5, 10}, and for
each m, the number of modules was varied between the set {1, 2,
3, 5}. Now the performance of any clustering approachwill depend
onhow separable the clusters are, whereas that of amotif discovery
methodwill depend onhow informative themotifs are. For the lat-
ter, we simply use realmotifs from the JASPAR database (Methods).
The former is decided by the Bernoulli parameters (probability of
presence of a motif) in each regulatory module. The more extreme
(close to zero or one) this probability, the more informative the
motif is in describing the module. A value closer to 0.5 for all r×
m Bernoulli parameters will cause the modules to be less separable
from each other. This variation was included in the simulated data
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Figure 1. cisDIVERSITY. (A) DNA regions reported by the experiment are given as input to cisDIVERSITY. In this simulation, the n=1000 regions are a
mixture of three kinds of regions: Each region resembles one of r=3 regulatory modules. Each module can be represented in terms of the probability
of occurrence of m=5 motifs. For example, motif 1 is present in all sequences of module 2, 20% of sequences in module 1, but not at all in module
3. In contrast, motif 4 is present only in module 2 and that, too, only in 70% of the its sequences. (B) cisDIVERSITY is run with upper bounds of r≤10
and m≤20. cisDIVERSITY learns the planted structure in the data set. The output has three components. First is the set of motifs that are learned, second
(below) is r×m Bernoulli distributions describing the learned modules, and the third is an image matrix of the data, where each DNA sequence is a row and
the sites corresponding to each motif are represented in the column. If a site is absent, those cells in the column are shown in black. cisDIVERSITY recovers
the five motifs (motifs 1 and 3 are the reverse complements of the planted motifs) and the three modules to a great extent. The slight variability in the
number of sites and sequences in each module is expected owing to the stochastic nature of both, the PWMs as well as the learning algorithm.
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sets by sampling the Bernoulli parameters from a beta distribution
with a symmetric hyperparameter β taken from the set {0.01, 0.1, 1,
10}. A value much smaller than one results in extreme values of
Bernoulli probabilities, a value of one is akin to uniform sampling
between zero and one, whereas a value of 10 results in probabilities
closer to 0.5 and hence more “confused” modules. Ten sets were
generated for each combination of parameters (m, r, β), resulting
in 320 simulated sets, and cisDIVERSITY was run on each.
Module recovery was measured by the adjusted Rand index
(ARI), popularly used to compare the similarity of two clusterings
of the same data. Two identical clusterings get an ARI value of one,
whereas two random clusterings get a value of zero. Predictably,
the ability of cisDIVERSITY to identify the module structure goes
down as the beta hyperparameter goes up (Fig. 2A). It is reassuring
to see the modules are picked up, although the m and r used in
model learning (20 and 10, respectively) are larger than the true
number of planted motifs and modules.

Althoughplentyofmethods solve theproblemofdenovomo-
tif discovery, we are not aware of any othermethod that solves this
problem of simultaneously identifying multiple modules.
However, to evaluate how cisDIVERSITY compares with state-of-
the-art de novo motif discovery methods, we ran two commonly
used programs—MEME (Bailey and Elkan 1994) and HOMER
(Heinz et al. 2010)—using default parameters on these data sets.
The recovery of a planted motif was evaluated using TOMTOM
(Gupta et al. 2007), also from the MEME suite (Methods). Figure
2B shows that cisDIVERSITY performs better in terms of both pre-
cision and recall. Overall, of the total 2400 planted motifs across
the 320 sets, cisDIVERSITY missed ∼12.5%, MEME missed 15.2%,
andHOMERmissed 15.1%. The difference is more stark in the spe-
cificity: Both MEME and HOMER falsely identified 23.5% and
27.8% additional incorrect motifs compared with the 4.5% addi-
tional motifs identified by cisDIVERSITY. We admit that this is
not a fair comparison, because the data contain modules and no
motif discovery method accounts for this fact. That said, when
diverse modules are not a feature of the data, that is, all data sets
where there is a single plantedmodule (r=1) or when the modules
are close to being indistinguishable (β=10), cisDIVERSITY still is
highly competitive (Supplemental Fig. S1A), with similar precision
and recall rates. This shows that even if the data do not contain dis-
tinguishablemodules, cisDIVERSITY is capable of findingmotifs at
an accuracy comparable to state-of-the-art methods. Similarly, we
also tested the false-positive rate of the methods in randomly cho-
sen 1000 nonrepetitive regions of the human genome, containing
no planted module or motif. cisDIVERSITY again identifies fewer
motifs, that is, has a lower false-positive rate than either of the
two motif discovery methods (Supplemental Fig. S1B). All pro-

grams were run in their serial mode, using a single core on an
Intel Xeon CPU E5-2630 v3 machine. HOMER is by far the fastest,
with there being not much difference between MEME and
cisDIVERSITY (Fig. 2C).

In the next sections, we apply cisDIVERSITY to data sets aris-
ing from a range of different types of high-throughput assays
(Methods). We start with modules discovered in core promoters
and then investigate various ChIP-seq data sets, followed by
diverse assays targeting enhancers and accessible regions.

Core promoter architectures retrieved from genome-wide

TSS maps

cisDIVERSITY was first run on core promoters to see if it can recov-
er established promoter architectures and elements. A 200-bp
neighborhood around 4159 TSSs identified using paired-end anal-
ysis in fly embryos (Ni et al. 2010) was used as input. Motif discov-
ery was restricted to the given strand (Methods), because TSS data
are inherently strandoriented. A total of eightmodules and 24mo-
tifs were identified (Supplemental Fig. S2). The ninemotifs that oc-
cur in at least a fifth of somemodule are displayed here (Fig. 3A,B).
Most of thesemotifs, their combinations in terms of modules, and
their positional preferences with respect to the TSS (Fig. 3D) have
been identified before (Ohler et al. 2002): TATA box is present ≈30
bases upstream, the initiator (INR) is at the TSS, and the down-
stream promoter element (DPE) is 20 bases downstream. Ni et al.
(2010) classified TSSs as narrow (reads map within a small window
of 25 bases with a clear peak), broad (reads map to a larger window
but still have a peak), or weak (all other promoters) and analyzed
each set separately for differential enrichment of established fly
promoter motifs. Here we have treated all regions together and
note that the detected modules encode information about both
motif enrichment and transcriptional activity. Modules character-
ized by the TATA box, INR, andDPE are significantly enrichedwith
narrow promoters, whereas modules 1, 3, 5, and 7 are significantly
depleted of them (P<10−10). Motif 5, which has a weak AT-rich se-
quence, is more prominent in thesemodules and has not been cat-
egorized as a promoter element earlier. It is, however, visible in the
representative modules 1 and 3 shown in Figure 3C, specifically
downstream from the TSS. Module 6 is characterized largely by
the INR-DPE motif but has a small number of promoters with a
TATA box as well. The TATA box is enriched in promoters in which
the INR-DPE is shifted downstream from the TSS.We are unsure of
the significance of this observation.

Module 4 is not significantly enriched or depleted of narrow
promoters. It is also the onlymodule with a significantly lower tag

BA C

Figure 2. Performance on 320 simulated data sets. (A) Recovery of modules. Low values of beta result into modules with more extreme (zero or one)
probability distributions of motifs. This is where cisDIVERSITY does better in recovering the planted modules. For beta = 10, the performance with respect
to recovery of modules is similar to what a random clustering approach would do. (B) Recovery of motifs. Precision, recall, and F-score of recovered motifs
across the 320 data sets for three different programs. (C) Time taken. All programs were run on a single core (Methods).

Biswas and Narlikar

1648 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.274563.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.274563.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.274563.120/-/DC1


E F

B

A

C D

Figure 3. Promotermodules in fly and human. (A) cisDIVERSITY identifies 24motifs in fly promoter data, but only the nine that contribute to at least 20%
of some module are shown here. Core motifs are numbered according to the method of Ohler et al. (2002). (B) Eight modules are learned. The fraction of
sequences in each module that are focused promoters, namely, have a narrow peak are shown in green. (C) Three representative modules are shown as
sequence heat maps sorted based on the position of the most frequently occurring motif. Module 1 contains DRE, which is visible owing to the manner in
which the sequences were ordered, but Core 7, which is present in >40% of the sequences, is not visible because it has no clear positional relationship with
DRE or the TSS. The weak presence of the AT-rich motif downstream from the TSS is, however, visible. In contrast, module 3 displays a clear relationship
between Core 1 and Core 6: Core 6 is present about 20 bases upstream of Core 1 and is especially prominent when Core 1 is close to the TSS. Module 6 is
largely composed of INR +DPE but also contains the TATA box specifically when the INR +DPE is a few bases downstream from the TSS. (D) Eachmotif has a
distinct distribution about the TSS. (E) cisDIVERSITY identifies 25 motifs in pooled human promoter data, with motifs 21–25 contributing on one module
with TSSs of 37 zinc finger genes. All the other motifs are strand invariant, except for motif 2 (TATA) and motif 6 (unknown). (F ) Each motif here too has a
distinct distribution about the TSS.
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count, implying that it comprises primarily of weak promoters.We
suspect that is why cisDIVERSITY finds nomotifs in these regions.

We next ran cisDIVERSITY on 14,408 nonoverlapping hu-
man core promoters determined by pooling CAGE tags across tis-
sues (Frith and The FANTOM Consortium 2014) in the same
strand-specificmanner. A total of 25motifs and 13modules are de-
tected (Fig. 3E; Supplemental Fig. S3). The last five motifs (21–25)
are part of the smallest module comprising TSSs of a family of zinc
finger proteins with near-identical promoters. We omit these spe-
cial motifs and module from the subsequent analysis.

In contrast to the fly motifs, almost all motifs appear in both
orientations or the motif itself is palindromic. Motifs 8, 10, 13, 14,
and 16 are examples of the latter. On the other hand, motifs 1 & 4,
motifs 3& 17,motifs 5 & 7,motifs 9 & 20,motifs 11& 12, andmo-
tifs 15, 18, & 19 are copies of the same motif in both orientations.
Their position with respect to the TSS does not differ (Fig. 3F), sug-
gesting these motifs function in a strand-invariant way, although
two motifs (3 & 9) do occur more frequently than their reverse
complements (17 & 20). The TATA box, present 29–35 bp up-
stream, and motif 6, present downstream, are the only motifs dis-
covered in a single orientation.Whereas the TATA box appears in a
single module enriched with narrow promoters, motif 6 is scat-
tered across modules (Supplemental Fig. S3). It does not resemble
the fly DPE, nor could we find evidence in literature supporting
its existence as a human promoter element. The closest match is
to the human donor splice site consensus sequence, but we do
not see how that might play a role here.

Similar to fly promoters, the detected modules have distinct
characteristics in terms of enrichment or depletion of narrow pro-
moters (Supplemental Fig. S3). Here, too, we note that modules
with few binding sites have a significantly lower tag density.

CTCF-bound regions display remarkable sequence-level diversity

We next investigated ChIP-seq data sets. CTCF is a highly con-
served TF, known to play different critical roles in regulation
from binding insulators to forming chromatin loops in different
contexts (Phillips and Corces 2009; Matthews and White 2019).
Here we apply cisDIVERSITY to see if these roles can be character-
ized in terms of modules from ChIP-seq data targeting CTCF. We
used data from Drosophilia melanogaster in the white prepupa
developmental stage (Ni et al. 2012). We also looked at the ChIP
signal and the distance from the closest TSS at the sequences to
see if the identified modules had specific properties/activities. Ni
et al. (2012) had identified a 9-bp motif, AGSKGGCGC, using
MEME in the set, which resembles the canonical fly CTCF motif
(Khan et al. 2018). This motif was present in approximately half
of the regions. cisDIVERSITY reports 17 motifs spread across 13
modules (Fig. 4A–C). The top module—with the most sequences
—is dominated by the first motif, which matches the reported
CTCF motif. This module also has a significantly higher (P<
10−10) ChIP signal, which is expected if we assume this is where
the binding of CTCF is strongest. Motif 1 contributes partially
(27%) tomodule 4, where it co-occurs withmotif 5. Motif 5 resem-
bles the motif of another insulator binding protein suppressor of
hairy wing, Su(Hw) (Khan et al. 2018). This module also has the
maximum overlap with the ChIP-seq regions bound by Su(Hw)
in the same developmental stage (Nègre et al. 2011), suggesting
that sequences in this module may be bound by Su(Hw) directly.

Multiple studies (Smith et al. 2009; Ni et al. 2012) have shown
that in fly, the highest proportions of CTCF binding regions are in
promoters. Indeed, if we look at this data set as awhole, over half of

the bound regions are within 1 kb of some TSS. However, whenwe
look at themodules individually,wenote that the twomodules de-
scribed above, which contain the CTCF motif, in fact have fewer
promoters (P<10−5 for both). In contrast, modules 5–8 largely
overlap promoters (<100 bp from a TSS) and, except for module
8, do not containCTCFmotifs. All of them are enrichedwithmotif
3, that is, promoter element Core 3 (Ohler et al. 2002), but with
diverse cofactors. These are in fact different core-promoter archi-
tectures, which we have seen in the earlier section. Taken with
the fact that ChIP signal is also low at these modules, CTCF prob-
ably makes indirect contacts here. Module 2 has no motif and has
the lowest ChIP signal, which is also significantly lower than the
other modules (P<10−5), again suggesting nonspecific or weak
binding of CTCF.

Motifs 2 and 4 are highly similar and resemble the motif of
the zinc finger TF Pita (Maksimenko et al. 2015). Both occur in
modules 3 and 7. This implies that sequences in these modules
have two copies of the Pita motif, and therefore, both are required
to describe the data set. Now cisDIVERSITY does not take into ac-
count the spatial distribution of the motifs in its model. However,
in over two-thirds of the sequences, the distance between the two
copies is <50 bp, suggesting cooperative binding.

Unlike vertebrates, there is no evidence to support cohesin-
CTCF-mediated chromatin loop formations in the fly (Matthews
and White 2019). Instead, it is believed that looping may be medi-
ated by interactions of CTCF with other insulator binding proteins
like Su(Hw), BEAF-32, Ibf1/2, and Trl (Cuartero et al. 2014), all of
which are identified by cisDIVERSITY (Fig. 4A, motifs 5, 6, 9, and
13).Wewere unable to find strongmatches for the other discovered
motifs to any known TF motif in literature. However, sites at many
of these motifs are conserved across flies (Supplemental Fig. S4),
which suggests they may play a role in CTCF-related regulation.

These results aremuch in contrastwith those obtained onhu-
man CTCF. cisDIVERSITY was run on approximately 35,000
ENCODE CTCF ChIP-seq regions from human H1 embryonic
stem cells (ESCs). Although the number of bound sequences is
far greater than in the fly, cisDIVERSITY reports only six modules
and six motifs (Fig. 4D–F). The top motif is the canonical CTCF
motif, and four are variants with some parts of the motif missing
or displaying nucleotide dependencies. These variants possibly
correspond to the variable usage of CTCF zinc fingers (Phillips
and Corces 2009); however, although nucleotide dependencies
within vertebrate CTCF have been well documented (Narlikar
2013; Eggeling et al. 2014), we have not previously seen variants
that are missing parts of the motif. Furthermore, these five motifs
almost always occur in separate modules and together explain
>85% of the sequences. The only non-CTCF motif matches that
of ZNF143, a transcriptional activator that binds at promoters, as-
sociated with CTCF (Heidari et al. 2014), and in loop formations
(Ye et al. 2020). Of the sequences that contain ZNF143, ∼90%
also contain a CTCF variant, implying that interaction at these se-
quences with CTCF is not necessarily indirect/via ZNF143.
Compared with fly CTCF, there is far more variability in the hu-
man CTCFmotif itself, and it does not appear to make as many in-
direct or nonspecific interactions with DNA. However, the ChIP
signal is significantly higher at themodule with the canonicalmo-
tif, suggesting that the modules with the variants are less strongly
occupied by CTCF. CTCF is known to form loops and topological
domains inmammals (Phillips and Corces 2009). It is possible that
the various zinc fingers of CTCF interact at different chromosomal
locations, thereby facilitating loops between them, but more ex-
periments would be required to definitively establish this.
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Figure 4. CTCF displays contrasting diversity in fly and human. (A–C) cisDIVERSITY identifies 17 motifs and 13 modules in the fly CTCF data. Motif 1
shown in a red box is the canonical fly CTCF motif. (D–F) cisDIVERSITY identifies only six motifs and six modules in the human CTCF data. Again, motif
1 in the red boxmatches the canonical vertebrate CTCFmotif. Motifs 2–5 resemble the vertebrate CTCF but differ at one of three parts denotedwith dotted
lines. These motifs are shown with 10-bp flanks to ensure that they are genuine variants of the motif.
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GR binds to diverse regions after activation

The human glucocorticoid receptor (GR; encoded by NR3C1)
binds to thousands of sites in response to exposure to the glucocor-
ticoid (GC) hormone cortisol. GR is understood to bind primarily
to DNase I hypersensitive sites (DHSs) (John et al. 2011) and often
with other pioneer factors (Biddie et al. 2011; Grøntved et al.
2013).McDowell et al. (2018) have probed binding ofmultiple fac-
tors, including GR, before and after treating A549 cells with the
synthetic GC dexamethasone (dex).

Figure 5A shows the results of applying cisDIVERSITY on
6694 GR-bound 200-bp regions identified 1 h after dex treatment.
Sixmodules and fivemotifs are identified. The largestmodule con-
tainsmotif 1 thatmatches theGRmotif.Modules 2–5 are dominat-
ed by the other four motifs, which match motifs of TFs that are
known to play a role in recruiting GR to its binding sites (Biddie
et al. 2011; Grøntved et al. 2013).

We looked at the ChIP-seq signal of profiled TFs at thesemod-
ules both before and 1 h after dex treatment. As expected, GR sig-
nal is nonexistent before dex treatment at any module (no GR-
bound regions were reported in this stage) and goes up at all
modules after treatment (Fig. 5B) but significantly more at module
1 (P< 10−10). ChIP-seq signal of JUNB and CEBPA (previously

known as CEBP) is also higher at modules with their cognate sites.
However, they appear to occupy those modules even before dex
treatment, albeit with lower intensity. Their signal at all modules,
including module 1, goes up after dex treatment, suggesting GR
contributes to some sort of cooperative binding at all modules.

As has been noted before (John et al. 2011), all modules have
some DNase hypersensitivity signal before treatment, but the dif-
ference before and after treatment is the most at the module with
the GR motif. This difference is even more pronounced when we
look at the enhancer mark: EP300 binding signal. McDowell
et al. (2018) used the GR motif to scan the GR-bound regions
and observed that regions with initial EP300 binding (before treat-
ment) had a weaker median GR motif strength than did those
without initial EP300 binding. Our results are consistent with
this, but in addition, they show that not only is the GR motif ab-
sent in regions with initial EP300 binding but also those regions
can be explained by the presence of other specific motifs. When
cisDIVERSITY is run on the EP300 ChIP-seq regions separately, it
identifies near identicalmotifs, butwith differentmodule distribu-
tions; the module with GR motif is the fourth largest
(Supplemental Fig. S5). CTCF ChIP-seq signal is plotted as a nega-
tive control: There is no difference before and after dex treatment
of CTCF occupancy at these modules.

The total number of detected mo-
tifs and the number contributing to
each module are both lower than the
fly CTCF data examined earlier. To in-
vestigate whether more signal of coop-
erativity exists in a larger window
around the summit, we reran cisDIVER-
SITY on a twice-as-long, 400-bp neigh-
borhood (Supplemental Fig. S6).
Indeed, more than twice as many mo-
tifs (13) and nine modules are detected.
The GR motif continues to be the most
abundant. Motifs resembling FOX, JUN,
CEBP, and CREB1 are also discovered
but with an additional copy of CEBP:
Both copies co-occur. Together these
motifs continue to explain most of the
regions. Three of the remaining seven
motifs resemble TFs active in the lung:
HNF4A, HNF1A, and MAF::NFE2. How-
ever, they are dispersed across multiple
modules, not contributing in a signifi-
cant manner to any specific module.
The remaining four motifs are low com-
plexity di- or trinucleotide repeats and
unlike the other motifs, which are con-
centrated near the summit, occur even-
ly across the 400-bp regions. These are
likely structural features of the DNA
(Yanez-Cuna et al. 2014). Increasing
the region length further to 1000 bp,
yields 21 motifs. Although all the earlier
motifs continue to be identified, GR is
no longer the most abundant motif. In-
stead, several more FOX and JUN motifs
along with lung-specific TF binding
sites and multiple low-complexity
DNA motifs are discovered (Supplemen-
tal Fig. S7), suggesting the diminishing

B

A

Figure 5. Diverse signals discovered in GR-bound ChIP-seq regions. (A) cisDIVERSITY identifies six
modes and five motifs in the GR ChIP-seq regions. (B) The average DNase hypersensitivity signal and in-
put-subtracted ChIP-seq signal in reads per million (RPM) of five TFs—GR, JUNB, CEBPA, EP300, and
CTCF—before and after treatment at the GR-bound regions are shown for each module.
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influence of GR motifs over the regions away from the ChIP
summit.

Enhancers have a different structure based on the detection assay

Enhancers play critical roles in activating gene transcription while
often being distant from the target gene. Although certain TF bind-
ing sites are enriched at enhancers, there is no consensus se-
quence-based rule that can explain or characterize these regions.
Over the last few years, several new high-throughput assays have
been developed that measure a biochemical activity that is indica-
tive of enhancers, either directly or indirectly. For example, short,
bidirectional, and largely unstable transcripts have been shown
to originate at active enhancers (Andersson et al. 2014). The
function(s) of these enhancer RNAs (eRNAs) are as yetnot complete-
ly understood, but active TF binding at enhancers has been shown
to increase corresponding eRNA levels (Danko et al. 2015). We ap-
plied cisDIVERSITY to 14,300 distal eRNAs (Azofeifa et al. 2018) de-
tected in the GRO-cap data set from the K562 erythroid cell line
(Core et al. 2014). Figure 6A shows nine motifs and eight modules
learned in this data. There are actually five more motifs, which to-
gether explain the ninth module of 32 sequences (Supplemental
Fig. S8). The UCSC Genome Browser marks these sequences as seg-
mental duplications (Haeussler et al. 2019). Indeed, clear conserved
structures were identified by the multiple sequence alignment tool
CLUSTAL (Madeira et al. 2019) when module 9 was given as input
(Supplemental Fig. S9). For clarity, we have removed this module
and the corresponding motifs here.

In contrast to the models obtained from ChIP-seq regions,
here the largest module, composed of over half the data set, is
largely empty, with no significant occurrences of any motifs. All
other modules have one dominant motif, which matches a motif
of a TF active in K562. We therefore assessed overlaps between
modules and ChIP-seq regions of all these TFs. As expected, the
overlap is significant (hypergeometric P<10−4) for the correspond-
ing TF, although the overall overlap with the complete set is, for
most TFs, small. Overlapwith the enhancermark EP300 and active
chromatin marks is higher (Supplemental Fig. S10), but there too,
we see differences in the degree of overlap across the modules.

The largely empty module in the distal eRNAs has no signifi-
cant overlapwith any of the external data sets. In fact, the overlaps
are significantly less than that expected by chance (hypergeomet-
ric P< 10−4) with EP300 and other active chromatin marks. This,
taken together with the fact that no significant sequence motif is
detected in this module, suggests that perhaps these regions do
not conform to the standard definition of enhancers, that is, en-
riched with TF binding and active chromatin marks.

Azofeifa et al. (2018) had removed bidirectional transcripts
that overlapped with annotated promoters to get the distal set of
eRNAs.We applied cisDIVERSITY to these 8324 excluded proximal
transcripts and retrieved a starkly differentmodel with 10modules
and a much larger set of 25 motifs (Supplemental Fig. S11). Some
motifs such as those matching SP1, NFYA/B, and ZNF143 are com-
mon between both sets, but proximal eRNAs are enriched with
many other promoter motifs such as YY1, RFX1, CREB1, and
NRF1, etc. Contrary to the distal modules, there are more motifs
per module, implying more cooperative binding at these regions,
which is a hallmark of promoters (Maston et al. 2006). The enrich-
ment of active chromatin marks is also different across these mod-
ules. These regions are more often accessible and have more
overlaps with all active marks, except for H3K4me1, which is asso-
ciatedwith enhancers (Heintzman et al. 2009) and less sowith pro-

moters (Cheng et al. 2014). This is consistent with the data set
being separated based on overlaps with annotated promoters.
However, even within the modules in both data sets, there are dif-
ferences across the marks, implying that not all eRNAs have the
same chromatin signatures, even after separating them as distal
and proximal. But more importantly, these differences can be par-
tially explained with modules and motifs.

We next ran cisDIVERSITY on four other data sets, which also
report enhancer activity in K562. The first is the EP300-bound se-
quences in K562, where we again get nine motifs, almost identical
to ones in distal eRNAs but present in different fractions of the se-
quences (Fig. 6B). In contrast to the distal eRNA set but similar to
the other TF ChIP-seq data sets, a large majority of sequences con-
tain some motif in the EP300 set. We next looked at STARR-seq
data. In a STARR-seq assay, random genomic fragments are placed
in the 3′ UTR of a reporter gene with a minimal promoter, and
the resulting plasmids are transfected into the cells of interest,
K562 here. The enhancer activity of these fragments is then mea-
sured by sequencing the 3′ UTR of the reporter gene transcripts.
Unlike the other methods, this assay considers regions outside of
their chromatin context so it can report regions that are inaccessible
but have a potential for enhancer activity (Liu et al. 2017).We used
the peaks reported by Lee et al. (2020), using their STARRPeaker
method, which resulted in a little over 9000 sequences (Fig. 6C).
In spite of very few sequences overlapping between the STARR-seq
regions and the eRNAs or EP300-bound regions (Supplemental
Fig. S12), many motifs are common between the three sets. Only
YY1 is discovered additionally in the STARR-seq regions (module
4), whereas NFYA/NFYB and CTCF are absent. Because STARR-seq
assays consider regions outside of chromatin context, we looked
at whether the modules had accessibility profiles distinct from the
first two data sets. Indeed,modules 2 (devoid ofmotifs) and 4 (dom-
inated by YY1) are significantly (P<10−5) depleted of DHSs. This
suggests that thesemodules are suppressed by endogenous chroma-
tin in K562. On the other hand, modules 1 (AP1-dominated) and 6
(GATA-dominated) are significantly enriched with DHSs: These
structures were also identified in the eRNA and EP300 assays.

The last two data sets are from ENCODE phase III, where The
ENCODE Project Consortium et al. (2020) have published a registry
of candidate cis-regulatory elements based on results from multiple
high-throughput experiments. They report two disjoint subsets,
which they propose have distal enhancer-like signatures (dELSs)
and proximal enhancer-like signatures (pELSs), respectively. The cri-
teria for a sequence to be included in either of these sets is that it
should have high DNase and H3K27ac signals. pELSs are within
2000 bp of an annotated TSS, whereas dELSs are away. pELSs addi-
tionally must have low relative H3K4me3 signal to ensure they are
notactivepromoters.Other thananSP1/SP2motif, therearenocom-
monmotifs in the two sets (Fig. 6D,E).CTCF is found in thedELSand
ZNF143 in pELS, which is expected, because these TFs’ binding sites
are enriched in regions distal andproximal toTSSs, respectively (Kim
et al. 2007; Bailey et al. 2015). In contrast to the first three enhancer
data sets, cisDIVERSITY finds no motifs matching SPI1, CEBP, or
NFYA/B. No GATA motif is found in the pELS set, possibly because
GATA proteins primarily bind to distal enhancers (Romano and
Miccio 2020). Overall, fewer signatures that look like TF-motifs are
identified in these enhancer-like regions from ENCODE III.

Modules in open regions have differing future fates

We next looked at data from ATAC-seq and DNase-seq, two differ-
ent technologies that measure chromatin accessibility.
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Cusanovich et al. (2018) used single-cell ATAC-seq on Drosophila
embryos at three different stages after egg laying. Here we report
cisDIVERSITY results on the earliest stage: 2–4 h after egg laying.
We considered regions that were open in at least 10% of the cells
assayed at that stage. This resulted in 9963 unique peaks.

cisDIVERSITY finds 28 motifs and 13 modules (Supplemental
Fig. S13). For clarity, Figure 7A shows only those motifs that con-
tribute to at least a quarter of the sequences in some module.
Without any additional information, cisDIVERSITY largely parti-
tions the data into modules that are significantly enriched with

E

BA

C D

Figure 6. cisDIVERSITY run on putative enhancers in K562. (A) On distant eRNAs, overlap with ChIP-seq data is significant (hypergeometric P<10−4;
shown in bold) inmodules that contain thematching TFmotif. Note that in some cases the overlap looks large but does not show up as significant, because
the hypergeometric test corrects for the sizes of the overlaps and themodules. (B) Similar motifs are found in EP300 ChIP-seq data. (C ) In STARR-seq peaks,
YY1 is additionally discovered. CTCF andNFYA/NFYB are not enriched. (D,E) Distant (D) and proximal enhancer-like sequences (E) deduced from chromatin
signatures have fewer motif-like signatures. cisDIVERSITY run on putative enhancers in K562.
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Figure 7. cisDIVERSITY run on open regions. (A) Thirteen modules and 28 motifs (Supplemental Fig. S13) are learned on ATAC-seq regions, which are
open in at least 10% of the cells probed 2–4 h after egg laying. Only the 19motifs that contribute to at least a quarter of the sequences in somemodule are
shown here for clarity. Modules are reordered: The red and green modules are significantly (hypergeometric P<10−4) enriched with promoters and de-
pleted of them, respectively. (B) Gray indicates there are only a fewdifferences in the fraction of cells openwithin eachmodule. Orange indicatesmodules 2,
3, 7, 8, 4, and 6 are significantly more open in the cells 6–8 h after egg-laying, whereas modules 12, 1, and 9 are closing at that time point. (C) Eighteen
modules and 21motifs (Supplemental Fig. S14) are learned on DNase-seq regions in H1 ESCs. Again, only themotifs appearing in a quarter of sequences of
somemodule are shown here. Red and greenmodules are as in A. (D) Gray indicates promotermodules have a higher DNase signal in general, but there are
variations among them. Blue indicates the fraction of eachmodule (and total below) that is also open in trophoblast, mesenchymal, and neuronal stem cells
(all derived from H1 ESCs), and GM12878 shows considerable variation across modules and cell types.
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promoters (within 500 bp of an annotated gene) and those that are
significantly depleted (P<10−4).Most of themotifs that contribute
to the promoter-enriched modules are well-established core-pro-
moter motifs. The two Pita motifs from fly CTCF data (Fig. 4A,B)
are recovered here as well, in module 10. Modules distant from
TSSs are potentially enhancers and/or insulators. Indeed, enrich-
ment of CTCF and Su(Hw) in module 11 suggests this module har-
bors insulators. Similarly, dinucleotide repeats of GA (bound by
GAGA binding factor Trl) and CA are known to be features of fly
enhancers (Yanez-Cuna et al. 2014). One of the promotermodules
is comprised of tRNAs, and cisDIVERSITY captures the highly con-
served hair-loop structure of tRNAs as a “motif” (module 12).

There is little difference in the fraction of cells open at the re-
gions across the modules: Only modules 4 and 6 (distal regions
with dinucleotide repeats) are significantly more open. However,
when we compare the fraction of cells open at these regions with
the fraction open 4 h later (6–8 h after egg laying), we see several
modules significantly changing their accessibility (Fig. 7B).
Almost all promoter modules are opening up, except for the
tRNAs. We found no evidence of tRNA gene expression going
down during these stages of development. However, tRNA genes
are known to play a role in remodeling chromatin and act as insu-
lators or harbor origins of replication in other organisms (Su et al.
2020; Sreekumar et al. 2021). Modules 1 and 9 are the only other
modules that are significantly closing. Module 1 has very few pre-
dicted binding sites, with no motif that occurs in even 10% of the
sequences. This is in concordance with recent results that suggest
two classes of enhancers are active during earlyDrosophila embryo-
genesis, one of which has significantly lower TF occupancy, in ge-
neral (Arbel et al. 2019). All sequences in module 9, however,
contain amotif matching that of the TF zelda (zld). zld is a pioneer
TF that is critical formaternal to zygotic transition,which happens
during this stage (HammandHarrison 2018). cisDIVERSITY results
suggest that these zld-enriched regions are less accessible in the
subsequent stages.

cisDIVERSITY was next run on 47,279 DNase hypersensitive
regions of H1 ESCs (Fig. 7C; Supplemental Fig. S14). The original
option of r=15 resulted in 15modules, so cisDIVERSITY was rerun
with r=20, reporting a total of 18modules. As in fly data, here too,
themodules are significantly enriched with promoters or depleted
of them. All promoter modules have high DNase accessibility, but
there are significant differences between them. For example, al-
though modules 3 and 6 are both enriched with promoters and
with the SP1/SP2 motif, module 6, which also contains an NFYA/
NFYBmotif, has a significantly (P<10−10) higher DNase hypersen-
sitivity signal. Module 16 also contains SP1/SP2 and NFYA/NFYB
but comprises primarily of core-promoters of a KRAB family of
zinc fingers. This similarity is captured as a distinct long motif, re-
sulting in a module distinct from module 6. Modules depleted of
promoters are characterized with motifs of H1 ESC-specific TFs
(SOX2andPOU5F1::SOX2), alongwithmotifs of otherpioneer fac-
tors (AP1, REST, and CTCF).

We looked at the DNase accessibility at these regions in stem
cells derived from H1 ESCs available in ENCODE: trophoblast,
mesenchymal, and neuronal stem cells (Fig. 7D). Although the
overall fraction of regions overlapping with DHSs in these stem
cells is similar (0.76 for trophoblast, 0.71 for mesenchymal, and
neuronal), the overlap fraction within modules ranges from 0.42
to 1.0. Indeed, >90% of sequences of modules 8, 12, 14, 16, and
17 are accessible in these three stem cells. In contrast, modules
dominated by motifs of pioneering ES TFs (SOX2, POU5F1, and
KLF4) are less accessible, which is expected.Module 11, containing

the RESTmotif, has a high accessibility in all the stem cells. The ca-
nonical CTCFmotif (module 2) is significantly more often accessi-
ble than the variant (module 4) in the other cells, although in H1
ESCs, the variant has a higher accessibility signal (P<10−5). DHSs
in the lymphoblastoid GM12878 cell-line (derived fromblood) are
used as control. Overall, the overlap is lower for allmodules, butwe
see the same trend of higher overlaps at promoters and lesser ones
at distal modules.

Tissue-specific modules discovered in open regions

We then analyzed ATAC-seq data in 20 different murine tissues
(Liu et al. 2019). The investigators report regions with normalized
read counts in each tissue. They also compute an entropy value for
each region, based on these read counts: a lower entropy value im-
plies that the regulatory region is open in a tissue-specific manner.
We considered all those regions with at least 10 normalized reads
and took a longer, 400-bp region around the center to account
for the fact that these regions were merged across experiments.
cisDIVERSITY was run on every tissue separately. Figure 8A shows
the motifs and modules obtained in the brown fat tissue, ordered
according to the median entropy value. The first six modules have
a median entropy lower than 4.0; that is, they are specifically re-
ported in the brown fat tissue. These modules are characterized
by motifs that match those of TFs known to be expressed in the
fat tissue (Pradhan et al. 2017; Lee et al. 2019). These modules
also have lower reads on average, implying that although they
are tissue specific, they are also relatively less accessible than the
other modules. They are also more likely to be distal elements. In
contrast, the modules characterized by constitutively active TFs
such as ZFP263, SP1, etc., indeed have a higher entropy, are pro-
moter proximal, and are more open than the other modules.
This trend largely persists across the other 19 tissues as well (Fig.
8B). Modules that have a significantly lower entropy value, that
is, are specifically reported in the respective tissues, are character-
izedwithmotifs of corresponding tissue-specific TFs and have low-
er accessibility in general. They are also likely to be distal from any
TSS. In contrast, modules with the highest accessibility are pro-
moter proximal, are accessible across tissues, and, barring a few ex-
ceptions, are largely characterized by motifs of TFs that are
constitutively active (Baldarelli et al. 2021). As expected, a com-
mon set of TFs is present in these modules. MYF6 and HNF4a are
additionally present in livermodules andGABPA in the lung; these
TFs are known to be overexpressed in the respective tissues
(Baldarelli et al. 2021). We stress that cisDIVERSITY
cannot determine identity of the TFs, because it only detects se-
quence signatures associated with each module. These results are
therefore based on the matches to TF motifs as determined by
TOMTOM.

We note that ATAC-seq data are usually not analyzed in this
manner. Especially if multiple tissues have been profiled, as in
this case, motif discovery is typically targeted in regions preidenti-
fied to have high tissue specificity or be distal to any TSS. Indeed,
Liu et al. (2019) use HOMER to detect motifs in tissue-specific ac-
cessible regions. cisDIVERSITY finds those motifs in spite of not
being supplied information about tissue specificity: Instead, it au-
tomatically identifies modules that are tissue specific.

Discussion

The importance of combinatorial binding of TFs in gene regulation
is well established (Reiter et al. 2017) as is the fact that most high-
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Figure 8. cisDIVERSITY run on accessible regions inmouse tissues. (A) Thirteenmodules are learned in ATAC-seq regions from the brown fat tissue, sorted
according tomedian entropy (most brown fat–specific on top). The 15 discoveredmotifs can be split into two sets: those that are enriched in tissue-specific
regions, that is, those with median entropy value less than 4.0, and those that are constitutively active. Boxplots on the right indicate the relationship be-
tween tissue specificity, accessibility, and proximity to TSSs. (B) Left panel showsmodules with the lowestmedian entropy for each tissue.Many tissues have
multiplemodules with lower than 4.0median values: All suchmodules are shown.Motifs that are present in at least 10%of the sequences in anymodule are
shown. The right panel shows the top two modules based on highest median RPM values per tissue. Median entropy, RPM, and distance to closest TSS are
displayed on the right for each module. TOMTOMmatches were used to assign putative TF identities to motifs and combined across the cisDIVERSITY in-
dividual runs.
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throughput experiments report regions with diverse sequence
characteristics. Several attempts have been made to detect regula-
tory modules from high-throughput data. One of the earliest mo-
tif-module detection programs was CisModule (Zhou and Wong
2004), where the goal was to learn the location of a module in
each sequence along with motifs. The module, however, was of a
single kind. Self-organizing maps (Xie et al. 2013), nonnegative
matrix factorization (Giannopoulou and Elemento 2013), and top-
ic models (Guo and Gifford 2017) have been subsequently used to
cluster regions based onmultiple ChIP-seq data sets, with the goal
of identifying differentmodules. Thesemethods have been used to
predict complexes forming along the chromatin and colocaliza-
tion of TFs. However, they explicitly require regulatory informa-
tion in terms of other high-throughput experiments for each
region, which act as features for clustering. They do not incorpo-
rate sequence information or motifs as part of the model.
cisDIVERSITY is the first attempt to cluster regions based onmotifs
that are themselves learned during the process, requiring no addi-
tional experimental or TF binding information. The discovered
modules indeed correlate with experimental binding data of TFs
with matching motifs, showing that regions contain sequence in-
formation that can characterize functionalmodules. On simulated
sets, as a motif discoverymethod, it performs better than standard
approaches, especially in terms of precision or false-positive pre-
dictions. We believe this is because of its model-based approach,
in which the goal is to learn a model that explains the full data
set and not to learn motifs that individually explain a portion of
the sequences.

Regulatory modules are typically studied in accessible re-
gions or putative enhancers, assuming cooperativity of TFs there.
However, cisDIVERSITY gives new insights even in the ChIP-seq
data sets investigated here. Take, for example, the heavily studied
CTCF protein. The original study also mentioned that many se-
quences did not contribute to the overrepresented CTCF motif
in the fly data, but all subsequent location and evolution analysis
was performed considering all ChIP regions equally. However,
cisDIVERSITY clearly shows that some sequences are core-pro-
moters with no CTCF motif, whereas some are enriched with oth-
er insulator-binding TF motifs. The evolutionary profile of the
motifs is also diverse in the data set. On the other hand, the hu-
man CTCF behaves differently, with ZNF143 being the only non-
CTCF motif that is discovered. Instead, several individual variants
of the CTCF motif are enriched in different modules, suggesting a
possibility of differential usage of its zinc fingers while binding
DNA.

Putative enhancers have been detected using multiple high-
throughput assays in the same cell type or context. The data sets
arising from these assays differ in terms of their cardinality, length
distributions, and evolutionary features (Benton et al. 2019).
cisDIVERSITY shows the differences in terms of motifs and mod-
ules. No motif is common across all the enhancer-detection strat-
egies, at least in the cell type assessed here. It is important to note
that each data set used here comes from an assay that measures
a different biochemical activity or combination of activities.
cisDIVERSITY can be used to further tease out the differences be-
tween the sequences reported by these strategies in terms ofmotifs
and their combinations.

The strength of cisDIVERSITY is in its lack of reliance on
known PWMs or modules, making it general enough to be
used on any set of DNA sequences. The only assumption it makes
is that the sequences arise from one cellular context, implying
that (1) a finite set of TFs is active during the experiment, and

(2) binding sites for those TFs are the underlying cause for the re-
gions to be reported. It does not need to be given a focused set
such as distal regions or preprocessed tissue-specific regions.
Instead, it recognizes that the data—even when it is from a single
high-throughput experiment—can be a diverse set. cisDIVERSITY
automatically clusters accessible regions into promoters and TSS-
distal regions. This is not surprising because the sequence archi-
tecture of promoters is different. However, even within promot-
ers and putative insulators/enhancers, it captures considerable
sequence-level diversity as well as tissue specificity. Although
the modules in Figure 7 are reordered based on their propensity
to have more or less promoters, no module is completely com-
posed or devoid of promoters. Distal sequences in a promoter-en-
riched module should be further studied for potential promoter
activity and vice versa.

cisDIVERSITY does not explicitlymodelmultiplicity ofmotifs
or distance between them. These aspects can be studied from the
learned parameters. For example, cisDIVERSITY identifies homo-
typic binding if it appears in a significant fraction of sequences,
by learning more than one copy of the same motif. See, for exam-
ple, the pair of Pita motifs in the fly (Figs. 4A and 7A) and the mul-
tiplicity of CEBP motifs in mammals (Fig. 8A; Supplemental Fig.
S6). The distance between motifs and relative orientation can be
assessed aswell. Similarly, the distance of eachmotif from the sum-
mit of the peak can give insights into the likelihood of direct bind-
ing of the profiled TF in case of ChIP experiments (Bailey and
Machanick 2012). cisDIVERSITY can be restricted to look for mo-
tifs on a given strand especially when dealing with data sets like
5′ CAGE TSSs or UTRs, which contain inherent directionality.

In all results described here, we have reported the top-scoring
model, treating it as a hard clustering method. However, we note
that cisDIVERSITY learns a probability distribution over the mod-
ules for each sequence, and multiple module usage can also be ex-
plored (Guo andGifford 2017). Currently cisDIVERSITY reports no
significance value or false-discovery rate for a learned model.
However, it does report the posterior probability associated with
the learnedmodel. These values are far lower in data sets with ran-
dom regions with no planted modules/modules (Supplemental
Fig. S15). Such distributions can be learned to report an associated
empirical “P-value.” In terms of run-time, cisDIVERSITY is compa-
rable to MEME but is much slower than HOMER. In principle, we
can initialize the model with at least some user-defined motifs,
which could potentially speed up the model discovery.

Across the data sets investigated here, far fewer TF-binding
sites characterize modules in mammalian regions compared with
the fly. Cooperativity between TFs can arise frommultiple mecha-
nisms. The simplest situation is of DNAmediating it by harboring
respective binding siteswithin a short linear region. Thismost like-
ly explains cases in which multiple motifs characterize discovered
modules. However, we see increasing evidence of interplay be-
tween 3D genome architecture and TF activity, which affects TF
cooperativity, especially in higher eukaryotes (Ma et al. 2018).
TF-driven loops and condensates aremechanisms of cooperativity,
which do not require the presence of multiple binding sites in
a linear genomic neighborhood (Kim and Shendure 2019).
Similarly, the presence of clusters of low-affinity binding sites—
which may not be captured by cisDIVERSITY’s motif models—
has also been suggested to influence TF cooperativity (Malin
et al. 2015). The extent to which these mechanisms play roles in
control of gene expression is still unclear. More experiments and
analyses will help determine whether the sparse modules identi-
fied by cisDIVERSITY are indicative of these mechanisms.
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Methods

Model framework

The goal of most high-throughput experiments is to identify all
regulatory regions with a certain biochemical property in a specific
context. These regions might display that owing to r different
mechanisms, and we assume one of these mechanisms is encoded
in the DNA sequence of each region. A “mechanism” is represent-
ed aswhat is commonly known as a regulatorymodule. Each of the
r modules is characterized by the presence or absence of mmotifs.
Each level of the model M, characterized by r and m, is described
below in a bottom-up manner:

1. Motif level. We assume at most m motifs are present and con-
tribute to modules, across the complete set of reported regions.
Motif k is modeled as a PWM with width wk; that is, it is repre-
sented as a product of wk categorical distributions over the four
bases. ϕk is used to denote these distributions, where fu

k(B) is the
probability of finding base B at position uwithin motif k,B∈ {A,
C, G, T}. Given any wk length DNA sequence d1d2 . . . dwk , the
likelihood of it being an instance of motif k is

∏wk
u=1 f

u
k(d

u).
2. Module level. We assume at most r modules are present across

the complete set of reported regions. Each module is modeled
as a product of Bernoulli distributions over the m motifs:
Module j has a probability, fjk, of containingmotif k and a prob-
ability (1− fjk) of not containing it.

3. Region level. The experiment reports a total of n genomic
regions X1, X2…, Xn. Region Xi is a DNA sequence of length
li:Xt

i [ {A, C, G, T}, where 1≤ t≤ li. Parts of each sequence are
instances of a subset of the m motifs; other parts, namely, the
“background,” are modeled using a second-order Markov chain
over the nucleotides, whose parameters are denoted by ϕ0. Zik

denotes the position within Xi, where motif k is present; name-
ly, 1≤Zik≤ li−wk+1.Zik=−1 in cases inwhich there is nomotif
k in sequence Xi. Motif occurrences are not allowed to overlap,
and each motif can have at most one occurrence in each se-
quence. Sequence Xi has a module identity Ii that is modeled
with a categorical distribution g over the r modules: γj is the
probability of a sequence having a module identity j.

The set of regions X is all we are given, which we use first to com-
pute the backgroundMarkovmodel as well as the lengths l. We are
also toldwhethermotifs can occur on either strand or on the given
strand only. The default is the former, in which case the sequences
are appended to their reverse complements and their lengths are
effectively doubled. In case of core promoters, we use the strand-
specific option, that is, searching only on the given strand. We as-
sume we know the structure of the model; that is, an upper bound
on the r and m is given. The unknown parameters Θ are therefore
ϕ1…m, w, Z, f, g, and I. The likelihood of region Xi, based on these
assumptions can be computed as

P(Xi|Q) =
∏m

k=1
Zik=−1

∏wk − 1

u=0

fu
k(X

Zik+u
i )

×
∏li

t = 1
Xt

i � any
motif

f0(X
t
i |Xt−1

i , Xt−2
i ). (1)

The first term denotes the probability associated with all the
motifs that are present in Xi, whereas the other explains the se-
quence not overlapping with any of the motifs, using the back-
ground Markov model. cisDIVERSITY uses the second-order
Markov model as default, where each sequence has a background

model built only from its 3-mers, to accommodate the vast hetero-
geneity in eukaryotic sequences (Narlikar 2013). But this can be
changed by the user if required.

The complete likelihood is simply

P(X|Q) =
∏n

i=1

P(Xi|Q). (2)

Given a setX, the goal is to find theΘ thatmaximizes the posterior
distribution, which can be computed as

P(Q|X)/P(X|Q)P(Q)

= P(X|Q)P(Z|I, g, f ,f,w)P(I|g, f ,f,w)P(g)P(f )P(f)P(w)

(3)

= P(X|Q)P(Z|I, f )P(I|g)P(g)P(f )P(f)P(w) (4)

=
∏n

i=1

P(Xi|Q)
∏m

k=1

P(Zik|fIik)
( )

P(Ii|g)
( )

P(g)P(f )P(f)P(w) (5)

=
∏n

i=1

P(Xi|Q)
∏m

k=1

fIikd[Zik = −1]+ (1− fIik)d[Zik = −1]

( )

gIi

( )

,

× P(g)P(f )P(f)

(6)

where δ[condition] = 1 only when condition is satisfied and zero
otherwise. The simplification in Equation 4 arises from the struc-
ture of the model: The site positions Z are independent of γ, ϕ, w
when conditional on themodule identity I and its associated prob-
abilities f; I is independent of f, ϕ,w, when its categorical distribu-
tion γ is known. The second term in Equation 5 is the product of
Bernoulli probabilities, which are assumed to be independent.
The third term is simply the categorical probability of the module
identity. The rest are independent priors over γ, f, and ϕ, which are
discussed in the next section. The prior over the widths is consid-
ered uniform.

Model learning

To find the value of Θ that maximizes Equation 6, we need to de-
sign appropriate priors over the parameters. We assume conju-
gate symmetric Dirichlet priors over all categorical parameters:
(1) prior over γ, which characterizes the distribution of module
identity I, has r equal hyperparameters defined by αmodule (1 by
default); (2) prior over each fjk, which characterizes the distribu-
tion of presence or absence of motif k in module j, has hyperpara-
meters, defined by αYES and αNO (both set to 0.1 by default); and
(3) prior over each fu

k , which characterizes the distribution over
the four nucleotides at position u in motif k, has four equal
hyperparameters defined by αPWM for all u and k (all set to 0.1
by default). Hyperparameters less than one assume extreme final
distributions: We expect motifs to be informative; namely, nucle-
otide probabilities will be close to zero or one. Similarly, we ex-
pect modules to be specifically described with the presence or
absence of motifs. However, we do not know the number of non-
empty modules, in other words, the inherent diversity in the
data. Therefore, we set αmodule to one by default, which assumes
all distributions are equally likely a priori. However, all these val-
ues can be changed by the user.

We use Gibbs sampling to draw samples from the posterior
distribution with the aim of learning the parameter values that
maximize it. To reduce the search space and speed up the sam-
pling, we use collapsed Gibbs sampling (Liu 1994), marginalizing
over f, ϕ, and γ while sampling only the other unknowns. The
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objective function then reduces to

P(Z, I, w|X) / P(X|Z, I, w)P(Z|I, w)P(I|w)P(w)
= P(X|Z, w)P(Z|I)P(I)P(w)

. (7)

We therefore need to iteratively sample Zik, Ii, wk for each i
and k. If we assume a binding site is equally likely to be anywhere
within a sequence, after dividing the posterior distribution by the
background for each sequence, we can compute the sampling ex-
pressions for Zik as

P(Zik = t|X,Zik, I,w)/ f̂Iik×
1
li

∏wk−1

u=0

f̂ u
k (X

t+u
i )

f0(X
t+u
i |Xt+u−1

i ,Xt+u−2
i )

0, t ≤ li
(i.e. the probability a site of motif k is present at position t inXi)

(8)
P(Zik = −1|X, Zik, I, w)/ 1− f̂Iik

(i.e. the probability that no site of motif k is present in Xi).

(9)

f̂kand f̂Iik are the posterior probabilities after marginalizing, name-
ly, integrating out ϕk and fIik from Equation 7 when sampling
P(Zik|X, Q\Zik), assuming Dirichlet priors over both:

f̂ u
k (B) =

aPWM + ∑n

p=1
p=i

d[Zp = −1] · d[XZp+u
p = B]

4 · aPWM + ∑n

p=1
p=i

d[Zp = −1]
1 ≤ u ≤ wk,

and similarly,

f̂Iik =

aYES +
∑n

p=1
p=i

d[Zpk = −1] · d[Ip = Ii]

aYES + aNO + ∑n

p=1
p=i

d[Ip = Ii]

We note that the first term of Equation 8 is similar to standard col-
lapsed Gibbs sampling applied to motif discovery, except that the
counts are computed only from those Xp that contain a motif k at
the current iteration, whereas the second term arises from the con-
tribution motif k makes to the current module Ii.

The sampling expression for Ii can be similarly derived by col-
lapsing γ and f from Equation 7:

P(Ii = j|X, Z, I i, w)/ ĝj
∏m

k=1

d[Zik = −1]f̂ jk

+ d[Zik = −1](1− f̂ jk), (10)

where ĝ is the posterior probability distribution after integrating
out g

ĝj =

amodule +
∑n

p=1
p=i

d[Ip = j]

r · amodule + n− 1
.

The width wk of motif k is sampled a little differently. Instead
of looking at all possiblewidths at one time, thewidth is allowed to
increase or decrease by one on either side or stay the same as per-
formed before (Mitra et al. 2018).

Each of Zik, Ii, andwk are sampled iteratively using the expres-
sions as described. The full posterior probability (Equation 7) is
computed after each sampling step and stored if found to be the
best thus far. If the probability does not increase for a predeter-

mined number of iterations (500 by default), the sampling stops
and a hill climbing approach (Mitra et al. 2018) starting from the
samplewith highest probability is taken until the probability stops
increasing. The final model is cleaned up: All motifs that are com-
posed of fewer than aminimumnumber of sites (20 by default, can
be changed by the user) are emptied out, and allmoduleswith few-
er thanminimumnumber of sequences (20 by default, can also be
changed by the user) are combined into one. By default,
cisDIVERSITY starts from 10 different initializations and reports
the model that scores the best across the 10 trials.

Simulated data sets

A total of 320 data sets were simulated for testing the efficacy of
cisDIVERSITY. The JASPAR2018 CORE vertebrate motifs were
used for this purpose, regardless of their information content.
However, many of these motifs are similar to each other. To create
a nonredundant set, going serially, we removed all motifs that had
a match with any earlier one according to the motif comparison
tool TOMTOM (Gupta et al. 2007). This resulted in a total of 189
JASPAR motifs. Each simulated data set had 1000 DNA sequences
of length 200 bp each, sampled randomly from the nonrepetitive
part of the human genome. Each data set was constructed as an in-
stance of the model described earlier. At the motif level, m motifs
were drawn at random from the set of nonredundantmotifs. At the
module level, the Bernoulli parameters fjk were sampled from beta
distributions with two symmetric (equal) parameters (αYES, αNO).
At the sequence level, the categorical distribution γ was first sam-
pled using the uniform parameter value of αmodule = 1 and set for
that model instance. For each sequence, this γ was used to first
sample themodule j. Then, the fjkwas used to samplewhethermo-
tif kwas to be included in the sequence or not. If yes, a sitewas sam-
pled from the PWM k and randomly planted in the sequence, on
either strandwith equal chance, ensuringno overlapwith any oth-
er planted site.Multiple data sets were created:mwas one of {5,10},
rwas one of {1,2,3,5}, and αYES was one of {0.01,0.1,1.0,10.0}. There
were 10 data set instances of each parameter set of {m, r, αYES},
resulting in a total of 320 different data sets on which
cisDIVERSITY and other programs were tested.

Wenote that twomodules canhave very similar Bernoulli dis-
tributions, making them less separable, but the models were not
screened for this possibility because (1) that would be rare with
m≥5 and (2) this would only mean we are underestimating
cisDIVERSITY’s performance.

cisDIVERSITYwas runwithm=20 and r=10. All other param-
eters were set to default values. MEME (Bailey and Elkan 1994) was
run on these data sets using the command line options: -nmotifs
20 -maxsize 100000000 -revcomp -dna -evt 10. MEME was
run with background Markov models of orders zero through five
separately, learned on the nonrepetitive human DNA sequences
used to create the data sets. Markov order of three gave the best
F-scores; those results are reported here. HOMER (Heinz et al.
2010) was run using the command line options: -noknown

-nogo -basic. HOMER was also given the background file of
the nonrepetitive human DNA sequences. TOMTOM was used to
compare the learned motifs with the JASPAR planted motifs. An
E-value of 0.01 was considered a match.

Biological data sets

All data sets were processed in the following manner. A 200-bp (or
400-bp, where stated) neighborhood of the summits (if reported,
else themidpoint) of the regionswas extracted. If two regions over-
lapped, only the first one in the list was kept. This was to ensure
that the model would not identify the same site in the genome
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twice. Only those regions with at least 100 bp of nonrepetitive bas-
es in themwere retained and used as input to cisDIVERSITY. All re-
petitive bases were replaced with Ns; cisDIVERSITY skips over all
such bases. All data sets with their accession numbers are listed
in Supplemental Table S1. cisDIVERSITY was run on each data
set with the default values of m= 30 and r=15. Only in the case
of CAGE data, it was run by using the option that searches for mo-
tifs only on the given strand, because the data are strand specific
and the background Markov order was set to one. Reported mod-
ules were assessed for enrichment with promoters, assay signal,
etc., with either aWilcoxon test or a hypergeometric test. All P-val-
ues in the text have been reported after Bonferroni multiple hy-
pothesis correction. Sequence conservation plots were computed
from phastCons scores (Haeussler et al. 2019).

Software availability

The code is freely available at GitHub (https://github.com/
NarlikarLab/cisDIVERSITY), and as Supplemental Code S1.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

We thank Rahul Siddharthan and Uwe Ohler for useful sugges-
tions and discussions. This study was supported by grants from
Department of Biotechnology (DBT), Ministry of Science and
Technology, Government of India BT/PR16240/BID/7/575/2016
and BT/IN/BMBF-BioHr/32/LN/2018-19.

References

Agrawal A, Sambare SV, Narlikar L, Siddharthan R. 2018. THiCweed: fast,
sensitive detection of sequence features by clustering big datasets.
Nucleic Acids Res 46: e29. doi:10.1093/nar/gkx1251

Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M,
Chen Y, Zhao X, Schmidl C, Suzuki T, et al. 2014. An atlas of active en-
hancers across human cell types and tissues. Nature 507: 455–461.
doi:10.1038/nature12787

Arbel H, Basu S, FisherWW,Hammonds AS,WanKH, Park S,Weiszmann R,
Booth BW, Keranen SV, Henriquez C, et al. 2019. Exploiting regulatory
heterogeneity to systematically identify enhancers with high accuracy.
Proc Natl Acad Sci 116: 900–908. doi:10.1073/pnas.1808833115

Azofeifa JG, Allen MA, Hendrix JR, Read T, Rubin JD, Dowell RD. 2018.
Enhancer RNA profiling predicts transcription factor activity. Genome
Res 28: 334–344. doi:10.1101/gr.225755.117

Bailey TL, Elkan C. 1994. Fitting amixturemodel by expectationmaximiza-
tion to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol
2: 28–36.

Bailey TL, Machanick P. 2012. Inferring direct DNA binding fromChIP-seq.
Nucleic Acids Res 40: e128. doi:10.1093/nar/gks433

Bailey SD, Zhang X, Desai K, Aid M, Corradin O, Cowper-Sal Lari R, Akhtar-
Zaidi B, Scacheri PC, Haibe-Kains B, Lupien M. 2015. ZNF143 provides
sequence specificity to secure chromatin interactions at gene promoters.
Nat Commun 6: 6186. doi:10.1038/ncomms7186

Baldarelli RM, Smith CM, Finger JH, Hayamizu TF, McCright IJ, Xu J, Shaw
DR, Beal JS, Blodgett O, Campbell J, et al. 2021. The mouse gene expres-
sion database (GXD): 2021 update. Nucleic Acids Res 49: D924–D931.
doi:10.1093/nar/gkaa914

Benton ML, Talipineni SC, Kostka D, Capra JA. 2019. Genome-wide en-
hancer annotations differ significantly in genomic distribution, evolu-
tion, and function. BMC Genomics 20: 511. doi:10.1186/s12864-019-
5779-x

Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, Miranda
TB, Sung MH, Trump S, Lightman SL, et al. 2011. Transcription factor
AP1 potentiates chromatin accessibility and glucocorticoid receptor
binding. Mol Cell 43: 145–155. doi:10.1016/j.molcel.2011.06.016

Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS,
Crawford GE. 2008. High-resolution mapping and characterization of

open chromatin across the genome. Cell 132: 311–322. doi:10.1016/j
.cell.2007.12.014

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013.
Transposition of native chromatin for fast and sensitive epigenomic
profiling of open chromatin, DNA-binding proteins and nucleosome
position. Nat Methods 10: 1213–1218. doi:10.1038/nmeth.2688

Cheng J, Blum R, Bowman C, Hu D, Shilatifard A, Shen S, Dynlacht BD.
2014. A role for H3K4 monomethylation in gene repression and parti-
tioning of chromatin readers. Mol Cell 53: 979–992. doi:10.1016/j
.molcel.2014.02.032

Core LJ,Martins AL, DankoCG,Waters CT, Siepel A, Lis JT. 2014. Analysis of
nascent RNA identifies a unified architecture of initiation regions at
mammalian promoters and enhancers. Nat Genet 46: 1311–1320.
doi:10.1038/ng.3142

Cuartero S, Fresán U, Reina O, Planet E, Espinàs ML. 2014. Ibf1 and Ibf2 are
novel CP190-interacting proteins required for insulator function. EMBO
J 33: 637–647. doi:10.1002/embj.201386001

Cusanovich DA, Reddington JP, Garfield DA, Daza RM, Aghamirzaie D,
Marco-Ferreres R, Pliner HA, Christiansen L, Qiu X, Steemers FJ, et al.
2018. The cis-regulatory dynamics of embryonic development at sin-
gle-cell resolution. Nature 555: 538–542. doi:10.1038/nature25981

Danko CG, Hyland SL, Core LJ, Martins AL, Waters CT, Lee HW, Cheung
VG, Kraus WL, Lis JT, Siepel A. 2015. Identification of active transcrip-
tional regulatory elements from GRO-seq data. Nat Methods 12: 433–
438. doi:10.1038/nmeth.3329

Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA,
Jain K, BaymuradovUK, Narayanan AK, et al. 2018. The Encyclopedia of
DNA Elements (ENCODE): data portal update. Nucleic Acids Res 46:
D794–D801. doi:10.1093/nar/gkx1081

Eggeling R, Gohr A, Keilwagen J,MohrM, Posch S, SmithAD,Grosse I. 2014.
On the value of intra-motif dependencies of human insulator protein
CTCF. PLoS One 9: e85629. doi:10.1371/journal.pone.0085629

Eggeling R, Grosse I, Grau J. 2017. InMoDe: tools for learning and visualiz-
ing intra-motif dependencies of DNA binding sites. Bioinformatics 33:
580–582. doi:10.1093/bioinformatics/btw689

The ENCODE Project Consortium, Moore JE, Purcaro MJ, Pratt HE, Epstein
CB, Shoresh N, Adrian J, Kawli T, Davis CA, Dobin A, et al. 2020.
Expanded encyclopaedias of DNA elements in the human and mouse
genomes. Nature 583: 699–710. doi:10.1038/s41586-020-2493-4

Farnham PJ. 2009. Insights from genomic profiling of transcription factors.
Nat Rev Genet 10: 605–616. doi:10.1038/nrg2636

Frith MC, the FANTOM consortium. 2014. Explaining the correlations
among properties of mammalian promoters. Nucleic Acids Res 42:
4823–4832. doi:10.1093/nar/gku115

FullwoodMJ, LiuMH, PanYF, Liu J, XuH,Mohamed YB,Orlov YL, Velkov S,
Ho A, Mei PH, et al. 2009. An oestrogen-receptor-α-bound human chro-
matin interactome. Nature 462: 58–64. doi:10.1038/nature08497

Giannopoulou EG, Elemento O. 2013. Inferring chromatin-bound protein
complexes from genome-wide binding assays. Genome Res 23: 1295–
1306. doi:10.1101/gr.149419.112

Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. 2007. FAIRE (formalde-
hyde-assisted isolation of regulatory elements) isolates active regulatory
elements from human chromatin. Genome Res 17: 877–885. doi:10
.1101/gr.5533506

Grøntved L, John S, Baek S, Liu Y, Buckley JR, Vinson C, Aguilera G, Hager
GL. 2013. C/EBP maintains chromatin accessibility in liver and facili-
tates glucocorticoid receptor recruitment to steroid response elements.
EMBO J 32: 1568–1583. doi:10.1038/emboj.2013.106

Guo Y, Gifford DK. 2017. Modular combinatorial binding among human
trans-acting factors reveals direct and indirect factor binding. BMC
Genomics 18: 45. doi:10.1186/s12864-016-3434-3

Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. 2007. Quantifying
similarity between motifs. Genome Biol 8: R24. doi:10.1186/gb-2007-8-
2-r24

Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee
CM, Lee BT, Hinrichs AS, Gonzalez JN, et al. 2019. The UCSC
Genome Browser database: 2019 update. Nucleic Acids Res 47: D853–
D858. doi:10.1093/nar/gky1095

HammDC, HarrisonMM. 2018. Regulatory principles governing themater-
nal-to-zygotic transition: insights from Drosophila melanogaster. Open
Biol 8: 180183. doi:10.1098/rsob.180183

Heidari N, Phanstiel DH, He C, Grubert F, Jahanbani F, Kasowski M, Zhang
MQ, Snyder MP. 2014. Genome-wide map of regulatory interactions in
the human genome. Genome Res 24: 1905–1917. doi:10.1101/gr
.176586.114

HeintzmanND,HonGC,Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z,
Lee LK, Stuart RK, Ching CW, et al. 2009. Histone modifications at hu-
man enhancers reflect global cell-type-specific gene expression. Nature
459: 108–112. doi:10.1038/nature07829

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre
C, Singh H, Glass CK. 2010. Simple combinations of lineage-

cisDIVERSITY in DNA regions

Genome Research 1661
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.274563.120/-/DC1
https://github.com/NarlikarLab/cisDIVERSITY
https://github.com/NarlikarLab/cisDIVERSITY
https://github.com/NarlikarLab/cisDIVERSITY
https://github.com/NarlikarLab/cisDIVERSITY
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.274563.120/-/DC1


determining transcription factors prime cis-regulatory elements re-
quired for macrophage and B cell identities. Mol Cell 38: 576–589.
doi:10.1016/j.molcel.2010.05.004

John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL,
Stamatoyannopoulos JA. 2011. Chromatin accessibility pre-determines
glucocorticoid receptor binding patterns.Nat Genet 43: 264–268. doi:10
.1038/ng.759

JohnsonDS,Mortazavi A,Myers RM,Wold B. 2007. Genome-widemapping
of in vivo protein-DNA interactions. Science 316: 1497–1502. doi:10
.1126/science.1141319

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der
Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G, et al. 2018. JASPAR 2018:
update of the open-access database of transcription factor binding pro-
files and its web framework. Nucleic Acids Res 46: D260–D266. doi:10
.1093/nar/gkx1126

Kim S, Shendure J. 2019. Mechanisms of interplay between transcription
factors and the 3D genome. Mol Cell 76: 306–319. doi:10.1016/j
.molcel.2019.08.010

KimTH, Abdullaev ZK, SmithAD, Ching KA, LoukinovDI, Green RD, Zhang
MQ, Lobanenkov VV, Ren B. 2007. Analysis of the vertebrate insulator
protein CTCF-binding sites in the human genome. Cell 128: 1231–
1245. doi:10.1016/j.cell.2006.12.048

Lee JE, Schmidt H, Lai B, Ge K. 2019. Transcriptional and epigenomic regu-
lation of adipogenesis. Mol Cell Biol 39: e00601-18. doi:10.1128/MCB
.00601-18

Lee D, Shi M, Moran J, Wall M, Zhang J, Liu J, Fitzgerald D, Kyono Y, Ma L,
White KP, et al. 2020. STARRPeaker: uniform processing and accurate
identification of STARR-seq active regions. Genome Biol 21: 298.
doi:10.1186/s13059-020-02194-x

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. 2009.
Comprehensive mapping of long-range interactions reveals folding
principles of the human genome. Science 326: 289–293. doi:10.1126/sci
ence.1181369

Liu J. 1994. The collapsed Gibbs sampler in Bayesian computations with ap-
plications to a gene regulation problem. J Am Stat Assoc 89: 958–966.
doi:10.1080/01621459.1994.10476829

Liu Y, Yu S, Dhiman VK, Brunetti T, Eckart H, White KP. 2017. Functional
assessment of human enhancer activities using whole-genome STARR-
sequencing. Genome Biol 18: 219. doi:10.1186/s13059-017-1345-5

Liu C,WangM,Wei X,Wu L, Xu J, Dai X, Xia J, ChengM, Yuan Y, Zhang P,
et al. 2019. An ATAC-seq atlas of chromatin accessibility in mouse tis-
sues. Sci Data 6: 65. doi:10.1038/s41597-019-0071-0

Ma X, Ezer D, Adryan B, Stevens TJ. 2018. Canonical and single-cell Hi-C re-
veal distinct chromatin interaction sub-networks of mammalian tran-
scription factors. Genome Biol 19: 174. doi:10.1186/s13059-018-1558-2

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P,
Tivey ARN, Potter SC, Finn RD, et al. 2019. The EMBL-EBI search and se-
quence analysis tools APIs in 2019. Nucleic Acids Res 47: W636–W641.
doi:10.1093/nar/gkz268

Maksimenko O, BartkuhnM, Stakhov V, HeroldM, Zolotarev N, Jox T, Buxa
MK, Kirsch R, Bonchuk A, Fedotova A, et al. 2015. Two new insulator
proteins, pita and ZIPIC, target CP190 to chromatin. Genome Res 25:
89–99. doi:10.1101/gr.174169.114

Malin J, Ezer D,MaX,Mount S, Karathia H, Park SG, Adryan B, Hannenhalli
S. 2015. Crowdsourcing: spatial clustering of low-affinity binding sites
amplifies in vivo transcription factor occupancy. bioRxiv doi:10.1101/
024398

MastonGA, Evans SK, GreenMR. 2006. Transcriptional regulatory elements
in the human genome. Annu Rev Genomics Hum Genet 7: 29–59. doi:10
.1146/annurev.genom.7.080505.115623

MatthewsNE,White R. 2019. Chromatin architecture in the fly: livingwith-
out CTCF/cohesin loop extrusion? Alternating chromatin states provide
a basis for domain architecture in Drosophila. Bioessays 41: 1900048.
doi:10.1002/bies.201900048

McDowell IC, Barrera A, D’Ippolito AM, VockleyCM,Hong LK, Leichter SM,
Bartelt LC, Majoros WH, Song L, Safi A, et al. 2018. Glucocorticoid re-
ceptor recruits to enhancers and drives activation by motif-directed
binding. Genome Res 28: 1272–1284. doi:10.1101/gr.233346.117

Mitra S, Biswas A, Narlikar L. 2018. DIVERSITY in binding, regulation, and
evolution revealed from high-throughput ChIP. PLoS Comput Biol 14:
e1006090. doi:10.1371/journal.pcbi.1006090

Narlikar L. 2013. MuMoD: a Bayesian approach to detect multiple modes of
protein–DNA binding from genome-wide ChIP data. Nucleic Acids Res
41: 21–32. doi:10.1093/nar/gks950

Nègre N, Brown CD,Ma L, BristowCA,Miller SW,Wagner U, Kheradpour P,
Eaton ML, Loriaux P, Sealfon R, et al. 2011. A cis-regulatory map of the
Drosophila genome. Nature 471: 527–531. doi:10.1038/nature09990

Ni T, Corcoran DL, Rach EA, Song S, Spana EP, Gao Y, Ohler U, Zhu J. 2010.
A paired-end sequencing strategy tomap the complex landscape of tran-
scription initiation. Nat Methods 7: 521–527. doi:10.1038/nmeth.1464

Ni X, Zhang YE, Nègre N, Chen S, Long M, White KP. 2012. Adaptive evo-
lution and the birth of CTCF binding sites in the Drosophila genome.
PLoS Biol 10: e1001420. doi:10.1371/journal.pbio.1001420

Ohler U, Liao GC, NiemannH, Rubin GM. 2002. Computational analysis of
core promoters in the Drosophila genome. Genome Biol 3: re-
search0087.1. doi:10.1186/gb-2002-3-12-research0087

Phillips JE, Corces VG. 2009. CTCF: master weaver of the genome. Cell 137:
1194–1211. doi:10.1016/j.cell.2009.06.001

Pradhan RN, Bues JJ, Gardeux V, Schwalie PC, Alpern D, ChenW, Russeil J,
Raghav SK, Deplancke B. 2017. Dissecting the brown adipogenic regula-
tory network using integrative genomics. Sci Rep 7: 42130. doi:10.1038/
srep42130

Reiter F, Wienerroither S, Stark A. 2017. Combinatorial function of tran-
scription factors and cofactors. Curr Opin Genet Dev 43: 73–81. doi:10
.1016/j.gde.2016.12.007

Romano O, Miccio A. 2020. GATA factor transcriptional activity: insights
from genome-wide binding profiles. IUBMB Life 72: 10–26. doi:10
.1002/iub.2169

Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R,
Watahiki A, Nakamura M, Arakawa T, et al. 2003. Cap analysis gene ex-
pression for high-throughput analysis of transcriptional starting point
and identification of promoter usage. Proc Natl Acad Sci 100: 15776–
15781. doi:10.1073/pnas.2136655100

Smith ST, Wickramasinghe P, Olson A, Loukinov D, Lin L, Deng J, Xiong Y,
Rux J, Sachidanandam R, Sun H, et al. 2009. Genome wide ChIP-chip
analyses reveal important roles for CTCF in Drosophila genome organi-
zation. Dev Biol 328: 518–528. doi:10.1016/j.ydbio.2008.12.039

Sreekumar L, Kumari K, Guin K, Bakshi A, Varshney N, Thimmappa BC,
Narlikar L, Padinhateeri R, Siddharthan R, Sanyal K. 2021. Orc4 spatio-
temporally stabilizes centromeric chromatin. Genome Res 31: 607–621.
doi:10.1101/gr.265900.120

Staden R. 1984. Computer methods to locate signals in nucleic acid se-
quences. Nucleic Acids Res 12: 505–519. doi:10.1093/nar/12.1Part2.505

Su Z,Wilson B, Kumar P, Dutta A. 2020. Noncanonical roles of tRNAs: tRNA
fragments and beyond.Annu Rev Genet 54:47–69. doi:10.1146/annurev-
genet-022620-101840

Vogel MJ, Peric-Hupkes D, van Steensel B. 2007. Detection of in vivo pro-
tein–DNA interactions using DamID in mammalian cells. Nat Protoc 2:
1467–1478. doi:10.1038/nprot.2007.148

Xie D, Boyle AP, Wu L, Zhai J, Kawli T, Snyder M. 2013. Dynamic trans-act-
ing factor colocalization in human cells. Cell 155: 713–724. doi:10
.1016/j.cell.2013.09.043

Yanez-Cuna JO, Arnold CD, Stampfel G, Bory LM, Gerlach D, RathM, Stark
A. 2014. Dissection of thousands of cell type-specific enhancers identi-
fies dinucleotide repeat motifs as general enhancer features. Genome Res
24: 1147–1156. doi:10.1101/gr.169243.113

Ye B, Yang G, Li Y, Zhang C, Wang Q, Yu G. 2020. ZNF143 in chromatin
looping and gene regulation. Front Genet 11: 338. doi:10.3389/fgene
.2020.00338

Zhou Q, Wong WH. 2004. CisModule: de novo discovery of cis-regulatory
modules by hierarchical mixture modeling. Proc Natl Acad Sci 101:
12114–12119. doi:10.1073/pnas.0402858101

Received November 22, 2020; accepted in revised form July 9, 2021.

Biswas and Narlikar

1662 Genome Research
www.genome.org


