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A B S T R A C T   

Background: Drug resistance is the primary obstacle to advanced tumor therapy and the key risk 
factor for tumor recurrence and death. 5-Fluorouracil (5-FU) chemotherapy is the most common 
chemotherapy for individuals with colorectal cancer, despite numerous options. 
Methods: The Gene Expression Omnibus database was utilized to extract expression profile data of 
HCT-8 human colorectal cancer wild-type cells and their 5-FU-induced drug resistance cell line. 
These data were used to identify 5-FU resistance-related differentially expressed genes 
(5FRRDEGs), which intersected with the colorectal adenocarcinoma (COAD) transcriptome data 
provided by the Cancer Genome Atlas Program database. A prognostic signature containing five 
5FRRDEGs (GOLGA8A, KLC3, TIGD1, NBPF1, and SERPINE1) was established after conducting a 
Cox regression analysis. We conducted nomogram development, drug sensitivity analysis, tumor 
immune microenvironment analysis, and mutation analysis to assess the therapeutic value of the 
prognostic qualities. 
Results: We identified 166 5FRRDEGs in patients with COAD. Subsequently, we created a prog-
nostic model consisting of five 5FRRDEGs using Cox regression analysis. The patients with COAD 
were divided into different risk groups by risk score; the high-risk group demonstrated a worse 
prognosis than the low-risk group. 
Conclusion: In summary, the 5FRRDEG-based prognostic model is an effective tool for targeted 
therapy and chemotherapy in patients with COAD. It can accurately predict the survival prognosis 
of these patients as well as to provide the direction for exploring the resistance mechanism un-
derlying COAD.   

1. Introduction 

Colorectal cancer (CRC) is one of the most common human malignancies; it is associated with high morbidity and mortality [1]. Its 
early symptoms are only noticeable in its late stages; thus, CRC incidence previously increased with age. However, the incidence in 
young adults has increased rapidly. Its primary treatment options—surgery, radiotherapy, and chemotherapy—can improve life 
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expectancy [2,3]. Approximately 80 % of patients with CRC are suitable for surgery; nonetheless, the prognosis is not excellent and 
only 40 % of the patients can be cured [4]. Colorectal adenocarcinoma (COAD) is the most prevalent histological subtype of CRC; it is 
highly aggressive and primarily affects the intestinal mucosa [5]. Researchers have achieved substantial progress in its diagnosis and 
treatment; however, the majority of cases are identified in the late stages. Moreover, patients with COAD demonstrate a dismal survival 
rate (only 14 %) [6,7]. The majority of terminal patients receive treatment primarily through chemotherapy and targeted therapy, 
which can only marginally prolong their overall survival because of drug resistance during the therapies [8]. Drug resistance develops 
over a complicated process that is primarily mediated by genetic abnormalities. Therefore, to explore novel treatment hypotheses and 
techniques to overcome drug resistance, researchers should identify the differentially expressed genes (DEGs) associated with drug 
resistance and investigate their association with drug sensitivity. 

In patients with CRC, 5-FU is a crucial part of systemic chemotherapy. Despite encouraging developments in CRC treatment, the 
patients demonstrate low response rates. Additionally, the emergence of chemical resistance frequently undermines the advantages of 
5-FU-based therapy [9]. Cancer cells exhibit two types of resistance to 5-FU-based therapies as follows: (i) primary resistance (innate) 
and (ii) secondary resistance (acquired). Both primary and secondary drug resistances include numerous molecular pathways [10]. 
Thymidylate synthases (TS) are the fundamental enzymes in 5-FU metabolism. Similar to other enzymes involved in 5-FU metabolism, 

Fig. 1. The flow chart of this article.  
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TS is frequently modified to enhance 5-FU resistance [11]. Additionally, the expression of long non-coding RNAs affects 5-FU drug 
resistance [11]. High programmed cell death 4 (PDCD4) can prevent the CRC cells from proliferating and increase their susceptibility 
to 5-FU, whereas low PDCD4 can promote their apoptosis [12,13]. Few researchers have examined the function of 5FRRDEGs in 
predicting prognosis and clinicopathology in patients with COAD, despite numerous studies on the mechanism underlying 5-FU 
resistance. 

Tumor immunotherapy is being increasingly considered as a viable treatment strategy; nevertheless, the tumor immune milieu is 
central to the antitumor effects of immunotherapy. Therefore, the anatomical immune microenvironment is relevant for tumor 
therapy. Through the secretion of several cytokines, chemokines, and other substances, cancer cells can functionally modify their 
microenvironment [14]. Thoroughly examining the complexity of the tumor immune microenvironment (TIME) may facilitate 
determining sophisticated biomarkers useful in identifying novel targets for therapeutic modulation [14,15]. Targeting TIME has 
advantages over cancer cells because of the instability of the cancer cell genome, which can lower immunological surveillance and 
reduce drug resistance recurrence [16–18]. To discover more effective treatment options, researchers should establish the association 
between TIME and 5-FU resistance in patients with COAD. 

Progress in genomics has facilitated assessing numerous samples at a lower cost, in less time, and with fewer efforts [19–21]. Thus, 
we identified the DEGs between human colorectal cancer wild-type cells (HCT8/WT cells) and their 5-FU-induced drug resistance cell 
line (HCT8/5-FU cells) using bioinformatics, i.e., 5FRRDEGs.The HCT8/5-FU cells are 5-FU resistant cells induced by 5-FU to HCT/WT 
cells. Moreover, we examined their association with the prognosis and TIME and investigated novel therapeutic strategies. 

In this study, 5FRRDEGs were identified, and their functional enrichment analysis was conducted using the Genomic Spatial Event 
(GSE) gene chip (GSE81008) expression data of both HCT8/WT cells and HCT8/5-FU cells from the Gene Expression Omnibus (GEO) 
database. Regression analysis was conducted to develop a predictive gene model after intersecting with DEGs of the patients with 
COAD from The Cancer Genome Atlas Program (TCGA). We confirmed the association of the 5FRRDEGs with immune infiltration and 
immunological checkpoints. Fig. 1 illustrates the study process. Our findings will offer diagnostic and treatment options for individuals 
resistant to 5-FU therapy. 

2. Materials and methods 

2.1. 5FRRDEG screening 

The GEO database (https://www.ncbi.nlm.nih.gov/geo/) was accessed to collect the expression profile data of GSE81008 for both 
HCT8/WT cells and HCT8/5-FU cells. The DEGs were identified using “limma” (version 3.54.2), with a threshold of log2-fold change 
(FC) ≥1 and an adjusted P-value <0.05. We aimed to discover 5FRRDEGs that exhibit significantly different expressions across these 
two types of cells. 

2.2. Functional enrichment analysis 

To determine the potential function of 5FRRDEGs, Gene Set Enrichment Analysis (GSEA) was conducted using the “clusterProfiler” 
package. The first 12 substantial signaling pathways were selected for display, and the threshold of the pathway was set to a P-value 
<0.05. 

2.3. Identifying DEGs in patients with COAD 

After downloading the gene expression profile data and associated clinical information from TCGA (https://portal.gdc.cancer.gov/ 
), 474 COAD samples and 41 healthy tissue samples were utilized for a differential analysis using the “DEseq2” software. An absolute 
FC ≥ 1 and an adjusted P-value <0.05 were used to define the DEG threshold. TCGA data are publicly accessible, and the study adhered 
closely to its access policies and publication standards. Therefore, no ethical review or committee permission was required for this 
research. 

2.4. Establishing and validating a prognostic predictive signature 

First, to identify the DEGs related to drug resistance in COAD, the “ggvenDiagram” used the intersection of DEGs in COAD and 
5FRRDEGs. Genes with a P-value <0.05 were considered statistically significant. Second, a univariate Cox regression analysis was 
conducted using the “survival” package to determine the overall survival (OS)-related genes in patients with COAD. Establishing a 
prognostic model involved a multivariate Cox regression analysis of the selected genes. To calculate the risk score, the gene expression 
level (Expi) and regression coefficient (coei) of the model were combined linearly based on the genes screened by cox regression 
analysis. The risk score of each patient was calculated as follows [22,23]: 

Risk score=
∑N

I=1
(Expi ∗ coei)

Based on a median risk score, the patients were split into two groups as follows: high- and low-risk groups [24]. The prediction 
power of the prognostic characteristics for OS was assessed using the Kaplan–Meier survival curve [25] and time-dependent receptor 
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operating characteristic (ROC) curve [26]. 

2.5. Constructing and evaluating a predictive nomogram 

Univariate and multivariate Cox analyses were conducted to compare the five genetic features with other clinical traits, such as the 
Tumor, Node, Metastasis stage, age, and sex, to confirm their independence in predicting the OS in patients with COAD [27]. A P-value 
<0.05 indicated statistical significance [28]. We obtained the 95 % confidence interval and hazard ratio for each factor. Utilizing the 
risk score and clinical data, we created a predictive nomogram as a quantitative analysis tool to estimate the survival risk of patients 
with COAD [29]. 

2.6. Mutation data processing 

The “TCGAmutations” R package was used to obtain the mutation data from TCGA. The “maftools” R package was used to analyze 
the data and create a waterfall map. Tumor mutational burden (TMB) difference and survival analyses were conducted to examine the 
accuracy of the prognostic model and determine the impact of TMB. 

2.7. Predicting chemotherapeutic response 

Chemotherapy response was evaluated in high- and low-risk patients with COAD using the R package “oncoPredict”. Based on a 50 
% inhibiting concentration (IC50) for each patient, the results were determined using the Genomics of Drug Sensitivity in Cancer 
(GDSC) website (https://www.cancerrxgene.org/). 

2.8. Assessing immune cell infiltration 

“ssGSEA” was used to measure the immune cells in the two risk groups and observe the distinct immune-related function between 
the high and low-risk groups. We estimated immune cell infiltration in the patients with COAD based on the risk ratings using different 
R packages to investigate its association with the five gene characteristics. Additionally, we computed the correlation between the 
immune cell subtype infiltration levels and 5FRRDEGs using the Data mining of the Tumor Immune Estimation Resource (TIMER) 
database (http://cistrome.org/TIMER/). 

Fig. 2. (A) Volcano figure of difference analysis of 5-FU resistant and non-resistant cells. (B) Bubble diagram of the GSEA of 5FRRDEGs. (C) 
Gsearank plot of the activated pathway. (D) Gsearank plot of the suppressed pathway. 
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2.9. Single cell data analysis 

To identify the expression of 5FRRDEGs in single-cell data, we acquired the CRC single-cell data GSE161277 from the GEO 
database. 

3. Results 

3.1. Identification and functional enrichment analysis of 5FRRDEGs 

Using the GSE81008 dataset from the GEO database, DEGs in gene expression profiles between the HCT8/WT cells and HCT8/5-FU 
cells were examined. Using P < 0.05 and |log2 FC|≥1 as the threshold, 693 5FRRDEGs were examined. Of them, 508 were upregulated, 
whereas 185 were downregulated. The colors black, red, blue, and green denote undifferentiated, upregulated genes, downregulated, 
and downregulated genes with high difference multiples. The dashed line denotes the boundary between DEGs and undifferentiated 
genes (Fig. 2A, Supplemental Table 1). Utilizing the GSEA enrichment pathway analysis, we investigated the application of 5FRRDEGs. 
5FRRDEGs are active in tumor-related protein secretion, G2M checkpoint, mitotic spindle, E2F targets, and ultraviolet response in DNA 
pathways. The larger the circle, the more genes are enriched in this pathway; the redder the color, the greater the enrichment. The 
percentage of DEGs in the reference genes is indicated by GeneRatio (Fig. 2B, C, and D). The G2/M checkpoint is used by cancer cells to 
evade genotoxic anti-cancer therapy by repairing DNA before cell division [30]. Tumor therapy-induced medication resistance can be 

Fig. 3. (A) Bubble diagram of the GSEA of DEGs in COAD. (B)Venn diagram of the 5FRRDEGs and DEGs of COAD. (C) 5FRRDEGs in COAD 
associated with prognosis are predicted using the univariate Cox regression analysis. (D) Prediction models are constructed using the multivariate 
Cox regression analysis. Forest plot of the 5FRRDEGs with prognostic effect. (E) Corrplot of the 5FRRDEGs with prognostic effect. (F) Prognosis of 
the risk signature for patients with COAD. Distribution of the survival risk scores, survival condition, and survival time in the high-low risk groups. 
(G) Heatmaps of the expression of five 5FRRDEGs. (H) Overall survival curve; the OS of the high-risk group is low. P-value <0.05 indicates statistical 
significance. (I) KM curve of PFS in the high- and low-risk groups. (J) The ROC curve confirms the ability of the model to predict the 1- to 3-year 
survival rate. AUC values are >0.05, indicating a highly accurate signature. 

Fig. 4. Verifying the feasibility of predicting the OS and independent prognosis using the risk model related to 5FRRDEGs. (A) Univariate and 
multivariate Cox regression analyses. The risk score and stage can estimate the OS. The risk score can independently predict the OS of patients with 
statistical significance. (B) Nomogram model to forecast the survival probability of a patient based on clinical factors. (C) Comparison of time- 
dependent ROC curves of the nomograms for the 1-year OS in patients with COAD. (D) Time-dependent C-index of the prognostic model. 
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overcome by focusing on the mitotic regulators [31]. Targeting the genes associated with the E2F pathway can help overcome drug 
resistance to radiation and chemotherapy. This is because pathway activation causes drug resistance [32,33]. Some of the genes in 
5FRRDEGs have been studied in relation to drug resistance in tumors, such as metastasis associated with colon cancer 1(MACC1), AXL 
and so on. The increased expression of MACC1 facilitated the growth and strengthened the resistance of CRC cells to irinotecan [34]. 
According to recent research, AXL may be a viable target for anti-cancer medication therapy since it can reduce drug resistance in 
cancer cells [35]. Thus, 5FRRDEGs are crucial to the development of malignant transformation in COAD. 

Fig. 5. (A) Mutations in the patients with COAD from the TCGA cohort and a mutation landscape map of the patients. (B) TMB in the high- and low- 
risk groups. (C) Somatic mutation characteristics of the five genes in patients with COAD. (D) KM curves of the four groups divided by the TMB 
combined risk (P < 0.05). (E, F) Somatic mutation characteristics in the high- and low-risk categories are depicted in a waterfall diagram. 

H. Yan et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e34535

8

Fig. 6. Drug sensitivity concerning the risk group for (A) erlotinib, (B) cytarabine, (C) olaparib, (D) afatinib, (E) afuresertib, (F) AGI-5198, (G) 
alpelisib, (H) AZD1208, (I) AZD8186, (J) buparlisib, (K) cediranib, and (L) gefitib. 
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3.2. Constructing and validating prognostic features using 5FRRDEGs 

TCGA was used to identify DEGs between COAD and healthy tissue samples; subsequently, GSEA enrichment analysis was con-
ducted. The MYC targets, E2F targets, and G2M checkpoint pathways were activated, whereas some metabolism-related pathways 
were inhibited (Fig. 3A). A total of 166 genes intersected with the DEGs in COAD (Fig. 3B). We conducted a univariate Cox regression 
analysis, selected genes with P-values <0.05, and identified eight 5FRRDEGs with prognostic values (Fig. 3C–Supplementary Table 2). 
Additionally, we identified the 5FRRDEGs with the highest prognostic value using a progressive multivariate Cox regression analysis 
for these eight genes and their association with OS in patients with COAD. Of the 166 intersecting genes, GOLGA8A, KLC3, TIGD1, 
NBPF1, and SERPINE1 were finally selected (Fig. 3D). Subsequently, we assessed the association between each gene in the model. 
NBPF1 was negatively correlated with both TIGD1 and KLC3, whereas GOLGA8A was positively correlated with TIGD1 (Fig. 3E). We 
developed a risk score model using the expression of these five genes as follows: Risk score = (0.1814*GOLGA8A expression) +
(0.3320*KLC3 expression) + (0.5887*TIGD1 expression) + (− 0.5092*NBPF1 expression) + (0.2559*SERPINE1 expression) (Sup-
plementary Table 3). The patients with COAD were split into two groups—high- and low-risk groups—using the median as the critical 
value. The risk score of the patients who died from COAD was higher than that of the patients who survived (Fig. 3F). A heatmap was 
used to display the expressions of the five 5FRRDEGs. The high-risk group demonstrated high GOLGA8A, KLC3, TIGD1, and SERPINE1 
expressions and low NBPF1 expression (Fig. 3G). The Kaplan–Meier curves demonstrated a substantial association of the risk with the 
OS time and progression-free survival (PFS). The low-risk group demonstrated a longer OS time than the high-risk group (Fig. 3H and 
I). The area under the ROC (AUC) values for 1, 3, and 5 years were 0.708, 0.723, and 0.707, respectively, indicating good model 
performance in predicting the survival time (Fig. 3J). 

Fig. 7. (A–C) PCA in the high- and low-risk groups. (A) PCA of DEGs between COAD and healthy tissue samples. (B) PCA of 5FRRDEGs. (C) PCA of 
model genes. 
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Fig. 8. (A) “ssGSEA” scores for the immunological cell and function in the high- and low-risk groups. (B) Heatmap of immune cell infiltration in the 
high- and low-risk groups. Correlation scatter plots of (C) KLC3 and B7H3. (D) KLC3 and PDL1. (E) NBPF1 and B7H3. (F) NBPF1 and PDL2. (G) 
TIGD1 and PDL2. (H) SERPINE1 and B7H3. (I) SERPINE1 and PDL1. (J) SERPINE1 and PDL2. 
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3.3. Constructing OS prediction nomogram in the TCGA cohort 

The age, sex, risk score, and T (the condition of the primary tumor), N (the condition of regional lymph node), and M (the condition 
of metastasis) stages for Cox proportional risk regression were used to demonstrate that the risk model is an independent marker. The 
M stage (P = 0.0477, hazard ratio (HR) = 1.44, 95%CI = 1–2.06) and risk score (P < 0.001, HR = 1.34, 95%CI = 1.22–1.46) were 
associated with the OS in patients with COAD. Thus, the risk score is a prognostic factor for patients with COAD (Fig. 4A). We used the 
significant variables identified in the multivariate analysis to construct a prognosis nomogram that predicted patient survival reliably. 
The total scores of the M stage and risk score can be used to determine the survival rate for each patient at 1, 3, and 5 years (Fig. 4B). 
The model accuracy was assessed using the time-independent ROC curve. The prognostic model demonstrated a higher AUC value 
(0.708) than other clinical parameters (Typically, AUC values are between 0.5 and 1.0, with a larger AUC representing better per-
formance.), demonstrating its strong predictive ability and its predictive power is superior to other clinical features (Fig. 4C). 
Furthermore, we assessed its accuracy using the C-index. The dotted line denoted 0.5, which was inconsistent and suggested no 
predictive power. These results indicated the superiority of our model over other medical variables (Fig. 4D). 

3.4. Mutation in patients with COAD 

We assessed the overall state of mutations by analyzing the COAD mutation data. The key types of COAD mutations identified were 
missense mutation and single nucleotide polymorphisms (SNP). C for T mutation demonstrated the highest frequency of base sub-
stitution than other base substitution types. Moreover, TTN and APC demonstrated the highest mutation frequency (Fig. 5A). We 
estimated the TMB of the patients to understand the included genetic mutations. The TMB of the high-risk group was greater than that 
of the low-risk group (Fig. 5B). The mutation frequency of these five genes was examined to comprehend their stability. These genes 
were largely stable (Fig. 5C). To explore the combined effects of the risk score and TMB, the median segmentation method was used. 
The patients were divided into high-TMB (H-TMB) and low-TMB (L-TMB) groups, patients as follows: H-TMB + high risk, H-TMB + low 
risk, L-TMB + high risk, and L-TMB + low risk. The H-TMB + high risk group demonstrated the lowest OS (Fig. 5D). We compared the 
leading 10 genes for the mutation frequency; the high-risk demonstrated had a greater mutation frequency than the low-risk group 
(Fig. 5E and F). 

3.5. Predicting chemotherapeutic response 

The “oncopredict” R package was used to investigate the effects of targeted treatment and chemotherapy on the high- and low-risk 
groups. Regardless of targeted medications or chemotherapy, the higher the risk score, the higher the IC50. Therefore, patients with 
low-risk scores benefited more than those with high-risk scores (P < 0.05). Analysis of the correlation between the risk score and the 
drug’s IC50 was done. The correlation curve is shown by the blue line, and its confidence interval is indicated by the gray area 
(Fig. 6A–L). 

3.6. Immunophenotypic traits of patients with COAD in the high- and low-risk groups 

Principal component analysis (PCA) was conducted to examine the distributions of immunophenotypic differences in the high- and 
low-risk groups. Our prognostic model accurately identified the patients. We observed no discernible difference between the distri-
bution of 5FRRDEGs and DEGs between COAD and healthy tissue samples (Fig. 7A and B). However, the 5FRRDEG risk model 
effectively differentiated between the high- and low-risk groups based on the phenotypic differences (Fig. 7C). 

3.7. Immune landscapes of the low- and high-risk groups 

“ssGSEA” was utilized to depict the distributions of immune-related functions and risk ratings. The immune-related functions, such 
as inflammation− promotion, CC chemokine receptor (CCR), antigen-presenting cells (APC)_co_stimulation, check− point, human 
leukocyte antigen (HLA), and parainflammation, were significantly different between the high- and low-risk groups (Fig. 8A). Para-
inflammation is central to disease progression [36,37]. CRC is substantially influenced by the gut microbiota. Moreover, endogenous 
mutations, epigenetic modifications, and increased pluripotency in the intestinal epithelial cells are supposedly caused by microbial 
parainflammation [38]. We examined the fraction of tumor immune cell types using multiple algorithms to examine the variations in 
immune cell infiltration between the high- and low-risk groups. The high-risk group demonstrated high T follicular helper cell and 
native CD8+ cell infiltration levels. The low-risk group demonstrated a higher percentage of CD8+ cells, macrophages, and natural 
killer (NK) cell infiltration (Fig. 8B). The checkpoints differ between the high- and low-risk groups. Thus, the common immunological 
checkpoints, namely programmed cell death ligand 1 (PDL1), programmed cell death ligand 2 (PDL2), and B7 homolog 3 protein 
(B7H3), were examined using the Gene Expression Profiling Interactive Analysis database (http://gepia2.cancer-pku.cn). SERPINE1 
was positively correlated with B7H3, PDL1, and PDL2. KLC3 was positively correlated with B7H3 and PDL1. NBPF1 and TIGD1 were 
positively correlated with PDL2. Additionally, NBPF1 was negatively correlated with B7H3 (P < 0.05) (Fig. 8C–J). Thus, the genetic 
signature may affect COAD prognosis through immune system interference. 
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3.8. Single-cell RNA-seq analysis 

The uniform manifold approximation and projection approach, a method for reducing nonlinear dimensionality, was used to 
categorize various tumor-infiltrating cells (Fig. 9A). Moreover, the image displayed expressions of 5FRRDEGs in seven types of cells 
was displayed. NBPF1 expressions were lower in the T cells and B cells (Fig. 9B), whereas GOLGA8A and TIGD1 expressions were 
higher in the tumor-infiltrating cells (Fig. 9C and D). SERPINE1 and KLC3 expressions remained unchanged (Fig. 9E and F). Thus, 
5FRRDEGs can affect the tumor microenvironment, which could influence tumor progression. These findings provide direction for the 
treatment of COAD. 

3.9. Validating the prognostic potential internally and externally 

We assessed the expression of these five genes between the tumor and normal intestinal tissues in a publicly accessible database to 
confirm the validity of our gene model (https://ualcan.path.uab.edu). Tumor tissues demonstrated substantially high mRNA levels of 

Fig. 9. Single-cell RNA-seq analysis displays numerous cell types in COAD and healthy tissue samples. (A) UMAP displays the key cell types (right). 
Representative markers across the major cell types are displayed in the bubble diagram (left). (B–F) Expressions of five genes (NBPF1, GOLGA8A, 
TIGD1, SERPINE1, and KLC3) in the model. 
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Fig. 10. Validating the expression of 5FRRDEGs in COAD. (A–E) Expressions of each gene in the TCGA cohort with 286 COAD and 41 healthy 
samples. (F) Expression of GOGLA8A, TIGD1, and NBPF1 in COAD and healthy colon tissues. 
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GOLGA8A, KLC3, TIGD1, and SERPINE1 and low levels of only NBPF1, compared with healthy intestinal tissues (Fig. 10A–E). Addi-
tionally, we examined the GOLGA8A, TIGD1, and NBPF1 gene protein levels in clinical COAD and healthy specimens using the Human 
Protein Atlas (https://www.proteinatlas.org/). The results were in agreement with our findings of the mRNA study (Fig. 10F). Sub-
sequently, we assessed the correlation between these gene expression and immune cell infiltration. NBPF was positively correlated 
with the B cells, CD8 T cells, CD4 T cells, macrophages, and neutrophils. By contrast, SERPINE1 was positively correlated with B cells 
and negatively correlated with others (Figure S1A-E, http://cistrome.org/TIMER/). 

4. Discussion 

Antimetabolic medications halt the production of substances required for cell division. 5-FU is utilized in the initial stages of 
treatment as an antimetabolic drug for several tumors. It is a traditional chemotherapy medication used to treat CRC [39,40]. 
However, after 5-FU chemotherapy, the patients frequently present with signs of acquired or primary resistance [41]. 5-FU resistance is 
a complex phenomenon that includes mismatch repair problems, aberrant enzyme metabolism, transport issues, cell cycle disruptions, 
and apoptotic resistance. The molecular mechanisms underlying 5-FU resistance remain unclear, despite progress in biological 
research approaches [42]. Numerous gene models predict the prognosis of COAD after treatment. However, researchers have not 
explored the genes associated with 5-FU resistance and their implications for immunological prognosis. Thus, researchers should 
construct a gene model associated with 5-FU resistance that can accurately identify the patients at a high risk of developing 5-FU 
resistance [43]. This step will help patients with COAD gain benefits from effective therapies. 

In this study, we conducted a gene chip analysis from the GEO database to identify 5FRRDEGs. After obtaining 693 5FRRDEGs, we 
conducted a GSEA enrichment analysis. They primarily activated the tumor cycle-related pathways, consistent with previous findings 
[44]. The DEGs of 5FRRDEGs and patients with COAD intersected. Subsequently, we conducted univariate and multivariate Cox 
regression analyses to determine their prognostic value. We focused on the five most relevant genes (GOLGA8A, KLC3, TIGD1, NBPF1, 
and SERPINE1) to construct the prognostic model. Based on the median risk score, we separated the patients into low- and high-risk 
groups. The patients who died demonstrated greater risk ratings than those who survived, according to the distinct survival stages. 
Additionally, compared with the low-risk group, the high-risk group demonstrated shorter PFS and OS. Furthermore, we confirmed a 
good prognostic potential of this gene signature in patients with COAD. The five gene characteristics were the independent predictive 
models for the patients, according to the univariate and multivariate Cox regression analysis, which included a range of clinically 
relevant covariates. We used the ROC curve, C-index model, and nomogram to validate the good prognostic value and accuracy of the 
model. 

Based on GOLGA8A, KLC3, TIGD1, NBPF1, and SERPINE1, the prognostic model was developed. Except for NBPF1, which displays 
low expression in patients with COAD, other proteins were substantially expressed in tumor tissues and associated with a bad prog-
nosis. TIGD1 is a human-specific gene [45]. Some bioinformatic analyses have associated TIGD1 with a poor prognosis in patients with 
CRC; nonetheless, further research is necessary to confirm the underlying mechanism [45,46]. Additionally, an increase in TIGD1 can 
lead to CRC proliferation or metastasis (46,48). High SERPINE1 expression increases CRC migration and invasion and increases the 
degree of malignancy [47–49]. Its mechanism of action involves facilitating the spread of cancer cells to neighboring healthy tissues, 
therefore advancing cancer [50]. This phenomenon is a risk factor for people with CRC [49]. Furthermore, it is involved in treating 
drug-resistant cancers [51,52]. Research has demonstrated that NBPF1 deficiency causes colorectal cancer and poor survival [53], 
which appears to corroborate the finding that tumor expression in the findings is lower than in normal tissues. 

First, we conducted a mutation correlation analysis on these five gene signatures to investigate their possible biological roles. We 
observed low mutation frequency, indicating stable gene signatures. Second, we examined the immune function of the model using the 
“ssGSEA” algorithm. The difference between the high- and low-risk groups was primarily attributed to inflammation-promotion, CCR, 
APC co-stimulation, check-point, HLA, and parainflammation. The CCR family is a novel target for cancer immunotherapy and 
immunotherapy [54]. Both cancer cells and stromal cells express homologous receptors for this broad family of cytokines, which have 
chemotactic action. During the disease, their changed expression in malignant tumors controls angiogenesis, metastasis, leukocyte 
recruitment, and activation [55,56]. The CCR family can be associated with several signaling pathways, particularly those related to 
chemotherapeutic resistance and tumor spread [57]. The immunological microenvironment and its associated components are 
resistant to chemotherapy in tumors [58,59]. Numerous novel therapeutic targets can be used to alleviate tumor immune tolerance 
because of factors, including the extracellular matrix stress, altered phenotypic and metabolic states of innate immune cells (such as 
mast cells and neutrophils), and emerging immune tolerance mechanisms mediated by adaptive immune cells in the tumor micro-
environment [60]. However, the impact of resistance on the immune microenvironment is unclear. We determined the association 
between the TIME and 5FRRDEG-based genetic models. The characteristics of immune cell infiltration in patients with COAD were 
studied using a risk model-based grouping. The low-risk group demonstrated a higher percentage of CD8+ cells, macrophages, and NK 
cell infiltration. This finding was consistent with the examination of immune-related functions, which suggested a stronger association 
between inflammatory and parainflammatory functions in the low-risk group. 

Our model was correlated with immunological checkpoints; immune escape from tumors was enhanced by its expression, ac-
cording to an immune-related functional study. Subsequently, we examined the correlations between five genes and the immuno-
logical checkpoints B7H3, PDL1, and PDL2. Positive correlations between KLC3, SERPINE1 and PDL1, NBPF1, SERPINE1 and PDL2, 
KLC3, SERPINE1 and B7H3 are discovered. This finding was consistent with higher expression of immunosuppressive genes, which 
enhance the resistance of tumor cells to host immunosuppression [61,62]. Consequently, the immunological checkpoints were 
associated with the prognostic model, which may facilitate patient screening, appropriate treatments, and customized care. 
Furthermore, we assessed the medications frequently prescribed to the patients for targeted therapy and chemotherapy. The low-risk 
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group was more responsive to the chemo-targeted therapy. In conclusion, this gene model affects the clinical management of patients 
with COAD. 

5. Conclusion 

We used a prognostic model based on five 5FRRDEGs to predict the tumor immune state, chemotherapy response, and immuno-
therapy response in patients with COAD. The model offered a reference value and guided the individualization of therapy in clinical 
settings. Our findings will offer a direction for future research to examine the mechanism underlying medication resistance in CRC. 
Furthermore, the signature association with the TIME indicates its use to accurately predict the effectiveness of immunotherapy. 
However, this study has several limitations. The sample size was insufficient, and the sample type was restricted to patients with 
COAD. Moreover, we only explored the function from the existing data. Additionally, relevant experiments were absent to confirm the 
applicable functions. 
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[51] M.A. Pavón, I. Arroyo-Solera, M.V. Céspedes, I. Casanova, X. León, R. Mangues, uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, 
metastasis, prognosis and therapy, Oncotarget 7 (2016) 57351–57366, https://doi.org/10.18632/oncotarget.10344. 

[52] Q. Zhang, L. Lei, D. Jing, Knockdown of SERPINE1 reverses resistance of triple-negative breast cancer to paclitaxel via suppression of VEGFA, Oncol. Rep. 44 
(2020) 1875–1884, https://doi.org/10.3892/or.2020.7770. 

[53] R. Ma, C. Jing, Y. Zhang, H. Cao, S. Liu, Z. Wang, D. Chen, J. Zhang, Y. Wu, J. Wu, J. Feng, The somatic mutation landscape of Chinese Colorectal Cancer, 
J. Cancer 11 (2020) 1038–1046, https://doi.org/10.7150/jca.37017. 

[54] S. Raza, S. Rajak, A. Tewari, P. Gupta, N. Chattopadhyay, R.A. Sinha, B. Chakravarti, Multifaceted role of chemokines in solid tumors: from biology to therapy, 
Semin. Cancer Biol. 86 (2022) 1105–1121, https://doi.org/10.1016/j.semcancer.2021.12.011. 

[55] J. Korbecki, S. Grochans, I. Gutowska, K. Barczak, I. Baranowska-Bosiacka, CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of 
receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands, Int. J. Mol. Sci. 21 (2020) 7619, https://doi.org/10.3390/ijms21207619. 

[56] V. Mollica Poeta, M. Massara, A. Capucetti, R. Bonecchi, Chemokines and chemokine receptors: new targets for cancer immunotherapy, Front. Immunol. 10 
(2019) 379, https://doi.org/10.3389/fimmu.2019.00379. 

[57] Z. Tu, R. Xiao, J. Xiong, K.M. Tembo, X. Deng, M. Xiong, P. Liu, M. Wang, Q. Zhang, CCR9 in cancer: oncogenic role and therapeutic targeting, J. Hematol. 
Oncol. 9 (2016) 10, https://doi.org/10.1186/s13045-016-0236-7. 

[58] F. Exposito, M. Redrado, M. Houry, K. Hastings, M. Molero-Abraham, T. Lozano, J.L. Solorzano, J. Sanz-Ortega, V. Adradas, R. Amat, E. Redin, S. Leon, 
N. Legarra, J. Garcia, D. Serrano, K. Valencia, C. Robles-Oteiza, G. Foggetti, N. Otegui, E. Felip, J.J. Lasarte, L. Paz-Ares, J. Zugazagoitia, K. Politi, L. Montuenga, 
A. Calvo, PTEN loss confers resistance to anti-PD-1 therapy in non-small cell lung cancer by increasing tumor infiltration of regulatory T cells, Cancer Res. 83 
(2023) 2513–2526, https://doi.org/10.1158/0008-5472.CAN-22-3023. 

[59] N. Han, H. Wada, T. Kobayashi, R. Otsuka, K.-I. Seino, A mechanism of IL-34-induced resistance against cytotoxic anti-cancer therapies such as radiation by X- 
ray and chemotherapy by Oxaliplatin, OncoImmunology 12 (2023) 2238499, https://doi.org/10.1080/2162402X.2023.2238499. 

[60] Y. Liu, C. Li, Y. Lu, C. Liu, W. Yang, Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer, Front. Immunol. 13 
(2022) 1016817, https://doi.org/10.3389/fimmu.2022.1016817. 

[61] H.O. Alsaab, S. Sau, R. Alzhrani, K. Tatiparti, K. Bhise, S.K. Kashaw, A.K. Iyer, PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: 
mechanism, combinations, and clinical outcome, Front. Pharmacol. 8 (2017) 561, https://doi.org/10.3389/fphar.2017.00561. 

[62] Y. Diesendruck, I. Benhar, Novel immune check point inhibiting antibodies in cancer therapy-Opportunities and challenges, Drug Resist Updat 30 (2017) 39–47, 
https://doi.org/10.1016/j.drup.2017.02.001. 

H. Yan et al.                                                                                                                                                                                                            

https://doi.org/10.1089/cbr.2022.0052
https://doi.org/10.18632/aging.204859
https://doi.org/10.3390/ijms23179596
https://doi.org/10.3390/ijms23179596
https://doi.org/10.1007/s12094-011-0728-4
https://doi.org/10.1007/s00432-011-1126-6
https://doi.org/10.1186/s12876-022-02625-y
https://doi.org/10.18632/oncotarget.10344
https://doi.org/10.3892/or.2020.7770
https://doi.org/10.7150/jca.37017
https://doi.org/10.1016/j.semcancer.2021.12.011
https://doi.org/10.3390/ijms21207619
https://doi.org/10.3389/fimmu.2019.00379
https://doi.org/10.1186/s13045-016-0236-7
https://doi.org/10.1158/0008-5472.CAN-22-3023
https://doi.org/10.1080/2162402X.2023.2238499
https://doi.org/10.3389/fimmu.2022.1016817
https://doi.org/10.3389/fphar.2017.00561
https://doi.org/10.1016/j.drup.2017.02.001

	5-Fluorouracil resistance-based immune-related gene signature for COAD prognosis
	1 Introduction
	2 Materials and methods
	2.1 5FRRDEG screening
	2.2 Functional enrichment analysis
	2.3 Identifying DEGs in patients with COAD
	2.4 Establishing and validating a prognostic predictive signature
	2.5 Constructing and evaluating a predictive nomogram
	2.6 Mutation data processing
	2.7 Predicting chemotherapeutic response
	2.8 Assessing immune cell infiltration
	2.9 Single cell data analysis

	3 Results
	3.1 Identification and functional enrichment analysis of 5FRRDEGs
	3.2 Constructing and validating prognostic features using 5FRRDEGs
	3.3 Constructing OS prediction nomogram in the TCGA cohort
	3.4 Mutation in patients with COAD
	3.5 Predicting chemotherapeutic response
	3.6 Immunophenotypic traits of patients with COAD in the high- and low-risk groups
	3.7 Immune landscapes of the low- and high-risk groups
	3.8 Single-cell RNA-seq analysis
	3.9 Validating the prognostic potential internally and externally

	4 Discussion
	5 Conclusion
	Data availability statement
	Funding statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


