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This review considers the integration of vestibular and other signals by the central ner-
vous system pathways that participate in balance control and blood pressure regulation, 
with an emphasis on how this integration may modify posture-related responses in 
accordance with behavioral context. Two pathways convey vestibular signals to limb 
motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both path-
ways receive direct inputs from the cerebral cortex and cerebellum, and also integrate 
vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt 
corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the 
responses of vestibular nucleus neurons to particular stimuli. This evidence shows that 
supratentorial regions modify the activity of the vestibular system, but the functional 
importance of descending influences on vestibulospinal reflexes acting on the limbs 
is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal 
systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet 
little is known about the transformation of vestibular signals that occurs in the spinal 
cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also 
produce vestibulosympathetic responses that serve to maintain stable blood pressure. 
Vestibulosympathetic reflexes are mediated, at least in part, through a specialized group 
of reticulospinal neurons in the rostral ventrolateral medulla that project to sympathetic 
preganglionic neurons in the spinal cord. However, other pathways may also contribute 
to these responses, including those that dually participate in motor control and reg-
ulation of sympathetic nervous system activity. Vestibulosympathetic reflexes differ in 
conscious and decerebrate animals, indicating that supratentorial regions alter these 
responses. However, as with vestibular reflexes acting on the limbs, little is known about 
the physiological significance of descending control of vestibulosympathetic pathways.

Keywords: vestibular nuclei, reticular formation, posture, balance, vestibulo-autonomic interactions, sympathetic 
nervous system

iNTRODUCTiON

Historically, vestibular-elicited reflexes were considered to be stereotyped responses to particular 
head movements (1–3). However, recent research has shown that vestibular nucleus neurons 
receive inputs from a variety of sources in addition to the inner ear, such that vestibular-elicited 
reflexes are shaped in accordance with ongoing movements and behaviors. For example, the work of 
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Cullen et al. showed that some vestibular nucleus neurons com-
pare the planned head movement with feedback sensory signals, 
and discharge in accordance with deviations from the intended 
movement (4–6). However, most studies that considered the 
modification of vestibular responses in a behavioral context 
focused on the control of eye movements and gaze (4, 7, 8), but 
not vestibular reflexes acting on the limbs and vestibulosympa-
thetic responses that regulate blood pressure.

This review considers the integration of vestibular and other 
signals by the central nervous system pathways that participate in 
balance control and blood pressure regulation, with an emphasis 
on how this integration may modify posture-related responses in 
accordance with behavioral context. It starts with an overview of 
the pathways that relay vestibular signals to limb motoneurons 
and sympathetic preganglionic neurons, and then considers 
the integration of signals that occurs in these pathways. Next, 
evidence is presented that descending signals modify vestibulo-
spinal reflexes acting on the limbs as well as vestibulosympathetic 
reflexes, presumably to shape the responses in accordance with 
physiological challenges that are present or anticipated, as well 
as behaviors and movements that are planned or being imple-
mented. Finally, directions for future research are discussed. In 
total, the review describes how perspectives on vestibulospinal 
and vestibulosympathetic responses have evolved, such that these 
responses are now considered to be components of a hierarchy of 
systems that are activated to achieve stable movements without 
disturbances in blood pressure.

ORGANiZATiON OF veSTiBULOSPiNAL 
AND veSTiBULOSYMPATHeTiC 
PATHwAYS

vestibulospinal Pathways Acting on the 
Limbs
Two pathways originating in the vestibular nuclei provide inputs 
to spinal cord segments containing limb motoneurons. The 
medial vestibulospinal tract (MVST) originates in the rostral por-
tion of the descending vestibular nucleus as well as the bordering 
areas of the medial and lateral vestibular nuclei (9–11). The main 
influences of this pathway are on upper-body musculature, par-
ticularly neck musculature, although a small fraction of MVST 
projections provide inputs to segments containing forelimb 
motoneurons (10–12). The lateral vestibulospinal tract (LVST) 
originates mainly from the lateral vestibular nucleus, with some 
contribution from the descending nucleus (9–11). This tract 
extends the entire length of the spinal cord and provides exten-
sive inputs to spinal cord segments containing motoneurons that 
innervate forelimb and hindlimb muscles (13, 14). Since the LVST 
provides much more extensive inputs to the spinal cord segments 
containing limb motoneurons than does the MVST (10–12), it 
likely plays a predominant role in controlling postural responses 
of the limbs. Thus, the LVST will be a focus of this article.

The LVST mainly terminates in Rexed’s laminae VII and VIII 
in the forelimb and hindlimb segments of the spinal cord, which 
contain premotor interneurons, and not directly on motoneurons 
(13–16). Electrophysiological studies have confirmed that most 

connections of LVST axons with limb α-motoneurons are poly-
synaptic, although some weak monosynaptic inputs may occur 
to hindlimb motoneurons (17, 18). These observations suggest 
that signals conveyed through the LVST are processed and likely 
modified by spinal interneurons prior to reaching motoneurons. 
The LVST mainly has excitatory effects on extensor motoneu-
rons, with some inhibitory effects on flexor motoneurons (17, 
18). At least in cats, approximately half of LVST axons that 
terminate in lower cervical and upper thoracic spinal segments 
(which contain forelimb motoneurons) also have a branch to the 
lumbar spinal cord, raising the prospect that some LVST neurons 
simultaneously control muscle activity in both the forelimbs and 
hindlimbs (19).

Neurons whose axons project to the spinal cord in the 
pontine and medullary reticulospinal tracts (RST) also receive 
extensive vestibular inputs (20–23). These vestibular inputs are 
polysynaptic, indicating that vestibular nucleus neurons and 
other pathways convey labyrinthine signals to RST neurons, but 
that RST neurons do not receive direct inputs from vestibular 
nerve fibers (20, 21). RST neurons have both excitatory and 
inhibitory effects on flexor and extensor forelimb and hindlimb 
motoneurons (24–28), as opposed to LVST neurons that tend 
to excite extensor motoneurons and inhibit flexor motoneurons 
(17, 18). However, LVST and RST (24, 25, 29) neurons are similar 
in that their effects on the excitability of limb motoneurons are 
mainly polysynaptic, via spinal interneurons, and that the axons 
of both RST (30) and LVST (19) neurons are highly branched. 
Thus, the two major pathways that convey vestibular signals to 
limb motoneurons have some similarities, as well as some major 
differences.

vestibulosympathetic Pathways
The first key study demonstrating that the vestibular system 
contributes to cardiovascular regulation was published by Doba 
and Reis (31). As discussed in detail in a recent review (32), 
considerable evidence from experiments in both human and 
animal subjects has shown that the vestibular system participates 
in regulating sympathetic nervous system activity, to provide for 
adjustments in blood pressure during movement.

A column of reticulospinal neurons located near the ventral 
surface of the rostral medulla plays a predominant role in control-
ling sympathetic nerve activity and blood pressure (33–36). These 
neurons comprise the rostral ventrolateral medulla (RVLM). 
Lesions of the RVLM abolished vestibulosympathetic responses 
(37), suggesting that reticulospinal neurons with cell bodies in the 
RVLM constitute the major pathway through which vestibular 
signals are conveyed to sympathetic preganglionic neurons in 
the thoracic spinal cord. RVLM neurons are components of the 
baroreceptor reflex arc, which also includes neurons in nucleus 
tractus solitarius (NTS) that receive baroreceptor inputs, as 
well as inhibitory neurons in the caudal ventrolateral medulla 
(CVLM) (38–41). The RVLM receives direct inputs from the 
caudal aspects of the vestibular nucleus complex (42–47), as does 
the NTS (42, 48–51) and CVLM (42, 43, 45–47). The connections 
from the caudal portions of the vestibular nuclei to brainstem 
regions that regulate sympathetic nervous system activity are 
shown in Figure  1. In addition, neurons in other areas of the 
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FiGURe 1 | vestibulosympathetic reflex pathway. Neurons in the caudal 
portions of the vestibular nuclei provide both direct and multisynaptic inputs 
to neurons in the rostral ventrolateral medulla (RVLM) with projections to 
sympathetic preganglionic neurons in the thoracic spinal cord. Multisynaptic 
pathways from the vestibular nuclei to the RVLM include relays in nucleus 
tractus solitarius (NTS), caudal ventrolateral medulla (CVLM), and other 
regions of the reticular formation including the medullary lateral tegmental 
field.
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reticular formation that project to the RVLM, including those in 
the lateral tegmental field, receive labyrinthine inputs (52). Thus, 
RVLM neurons that control sympathetic nervous system activ-
ity receive both direct and multisynaptic inputs from vestibular 
nucleus neurons.

Pathways for Dual Control of Sympathetic 
Outflow and Limb Muscle Activity
Although most studies have focused on pathways that inde-
pendently regulate blood pressure and limb movements, 
transneuronal tracing studies demonstrated that neurons in 
the medial medullary reticular formation and adjacent raphe 
nuclei have collateralized projections to both sympathetic 
preganglionic neurons and limb motoneurons, as do some 
brainstem catecholaminergic neurons including those in locus 
coeruleus and nucleus subcoeruleus (53–56). As noted above, 
the activity of many medial medullary reticulospinal neurons is 
modulated by vestibular inputs (20–23). There is also evidence 
that medullary raphespinal neurons (57, 58), as well as spinally 
projecting neurons in locus coeruleus (59–61), receive vestibular 
signals. However, it is not yet known whether the dual-control 
neurons mediate both vestibulosympathetic and vestibulospinal 
responses. Moreover, the physiological role of the dual-control 
pathways is currently unknown, but these pathways should not 
be ignored when considering vestibular control of motor and 
sympathetic nervous system activity.

iNPUTS TO veSTiBULOSPiNAL AND 
veSTiBULOSYMPATHeTiC PATHwAYS

inputs to the vestibular Nuclei
The vestibular nucleus complex on each side of the brainstem 
receives a wide variety of inputs. These inputs include vestibular 

signals from ipsilateral primary vestibular afferents and the 
contralateral vestibular nuclei, somatosensory inputs from the 
spinal cord, and modulatory signals from the cerebellum and 
higher-order brain centers. The convergence of widely dispersed 
inputs likely contributes, at least in part, to controlling the activity 
of vestibulospinal and vestibulosympathetic reflex pathways.

Vestibular Inputs
The central projections of vestibular afferents have been studied 
extensively and delineated in detail in prior reviews and chapters 
(8, 62), and thus will only be briefly described here. Vestibular 
afferents encode information about head tilt, translation, and 
rotations in space and project to the vestibular nuclear complex 
and to other areas of the nervous system that participate in bal-
ance control, such as the cerebellar nodulus and uvula (62–64). 
Vestibular afferents with peripheral processes innervating 
otolith and semicircular canal endorgans terminate ipsilaterally 
in all of the major vestibular nuclei, although projection patterns 
vary across species (62). Furthermore, the vestibular nuclei, 
excepting the lateral vestibular nucleus, are strongly intercon-
nected by commissural projections from the contralateral side, 
and through ipsilateral intrinsic pathways (65, 66). Finally, 
inputs from multiple vestibular receptors, such as from otolith 
and semicircular canal inputs, converge onto single vestibular 
nucleus neurons, producing modulation of neural activity with 
varying spatial and temporal characteristics (termed spatiotem-
poral convergence) (67).

Spinal Inputs
Anatomic studies demonstrated that all levels of the spinal cord 
convey inputs to the vestibular nuclei (68–71). Cervical proprio-
ceptive afferents send collaterals directly to the ipsilateral medial 
and inferior vestibular nuclei (68, 72, 73). Disynaptic pathways 
also carry afferent information from the cervical spinal cord to 
the medial, inferior, and lateral vestibular nuclei (74). Neurons 
within the lumbar enlargement send direct projections to the 
medial and inferior vestibular nuclei, and possibly the lateral 
vestibular nucleus (69, 70). Other indirect pathways, such as 
through the reticular formation and cerebellum, may also convey 
information from the spinal cord to the vestibular nuclei (70). 
Neurophysiologic studies conducted in a variety of species (mice, 
rat, cat, and cynomolgus monkey) and preparations confirmed 
that stimulation of somatosensory afferents from the neck and 
limbs modulates the activity of vestibular nucleus neurons 
(75–81).

Visual Inputs
Many neurons in the vestibular nuclei have activity that is related 
to eye position or eye movements [for reviews, see Ref. (4, 7, 8)]. 
Such neurons are not believed to contribute to vestibulospinal 
responses acting on the limbs and are largely absent from the 
caudal aspects of the vestibular nuclei that mediate vestibulo-
sympathetic responses (82). Thus, these neurons will not be 
discussed further in this article. However, the activities of both 
neurons with eye-position sensitivity and “vestibular only” 
(VO) neurons that may contribute to vestibulospinal reflexes are 
modulated by movement of the visual field (optokinetic stimuli) 
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(83–87). It is well-established that visual inputs contribute to 
postural control (88–95), and there is evidence that visual signals 
modulate vestibulosympathetic responses (96). However, it is 
unknown whether visual contributions to these responses are 
mediated through optokinetic inputs to the vestibular nuclei, or 
via other pathways.

Cerebellar Inputs
Cerebellar outflow to the vestibular nuclei is largely through 
the deep cerebellar nuclei, which are comprised of the fastigial, 
interposed, and dentate nuclei. Purkinje neurons in the cerebellar 
cortex send inhibitory projections to the deep cerebellar nuclei 
(97), which subsequently project to a variety of targets in the 
brainstem. The fastigial nucleus has been shown in a number 
of studies to project heavily to the vestibular nuclear complex 
(98–102); a few studies have also demonstrated projections to 
the vestibular nuclei from the interposed (103, 104) and dentate 
nuclei (105).

Some cerebellar cortical Purkinje neurons, particularly those 
in the vestibulocerebellum, project directly to the vestibular 
nuclei. Immunostaining studies localizing protein kinase C 
(PKC), an enzyme found in Purkinje cells, demonstrated that 
cerebellar Purkinje cells project to the major vestibular nuclei 
(106, 107). Anterograde and retrograde tracing studies showed 
that flocculus Purkinje neurons terminate in all of the major 
vestibular nuclei as well as group y, a cytoarchitecturally distinct 
extension of the vestibular nuclei located dorsocaudal to the 
restiform body (108–110). Tracing data also demonstrated that 
Purkinje cells in the nodulus send axons to the medial, infe-
rior, and superior vestibular nuclei and to group y (111–113). 
Purkinje cells in the uvula were also shown to project to the 
superior and medial vestibular nuclei (112). The delta-isoform 
of PKC, which heavily stains Purkinje cells in the folia of the 
uvula and nodulus as well as the posterior cerebellum, is found 
in the caudal vestibular nuclei (inferior and medial vestibular 
nuclei), indicative of a significant direct cerebellar projection to 
these regions (107, 114).

Cerebral Inputs
Direct corticovestibular projections have been demonstrated in 
a number of animal preparations and are best described in cats 
and non-human primates (115–120), as reviewed by Fukushima 
(121). In the cat, injection of retrograde tracers into the vestibular 
nuclei labeled neurons is widely dispersed in areas of cerebral cor-
tex including areas 6, 2, and 3a (115, 117). Electrical stimulation 
of areas 2 and 3a resulted in excitatory and inhibitory responses 
of vestibular nucleus neurons (115). This study also showed that 
vestibular nucleus neurons with spinal projections were particu-
larly likely to have their activity modulated by cortical stimulation 
(115). Similarly, electrical stimulation of cortical motor areas 
(pericruciate cortex) resulted in short-latency (possibly mono-
synaptic) and long-latency excitation and inhibition of vestibular 
nucleus neurons (116). Studies in a variety of non-human primate 
species showed that widely dispersed cortical areas, including 
parieto-insular vestibular cortex, area 3aV, temporal area T3, 
premotor area 6a, area 7ant in squirrel monkey (corresponding 

to macaque area 2v), and the anterior cingulate cortex, project to 
the vestibular nuclei (119–122).

inputs to Reticulospinal Neurons
As previously discussed, reticulospinal neurons in the pons 
and medulla [pontomedullary reticulospinal tract neurons 
(pmRSTn)] that contribute to postural control receive extensive 
inputs from the vestibular nuclei (20–23). Although all four 
vestibular nuclei provide inputs to pmRSTn, the distribution, and 
extent of the projections from each nucleus are not uniform (21). 
Electrical stimulation of the VIII cranial nerve evoked disynaptic 
and polysynaptic excitation as well as polysynaptic inhibition of 
neurons in the pontomedullary reticular formation, confirming 
anatomical evidence that these cells receive extensive labyrin-
thine inputs (21, 123). A study in decerebrate cats indicated 
that pmRSTn receive extensive inputs from the otolith organs, 
which supports the notion that the RST plays an important role 
in generating gravity-dependent postural reflexes (22). However, 
some pmRSTn did not respond to stimulation of the VIII nerve, 
showing that the function of the RST is not simply to transmit 
vestibular signals to the spinal cord (21).

Extensive spinoreticular projections convey spinal afferent 
inputs to the reticular formation (124–128). As noted above, 
vestibular nucleus neurons receive extensive spinal inputs, 
such that projections from the vestibular nuclei to the reticular 
formation are another potential route for transmitting signals 
from skin and muscle to pmRSTn. Cutaneous inputs to the 
reticular formation are prevalent (124, 125, 128–131). Drew 
and Colleagues (131) reported that the majority of medullary 
RST neurons responded to cutaneous inputs, usually with an 
excitatory response. There is less evidence that pmRSTn receive 
inputs from muscle afferents, although one study in decerebrate 
cats showed that vibration applied to the gastrocnemius–soleus 
muscle complex altered the firing in 27% of neurons located 
within the nucleus gigantocellularis (a region of the medullary 
reticular formation) (132).

Like vestibular nucleus neurons, pmRSTn receive direct inputs 
from cerebral cortex (133–140). Inputs to pmRSTn are mainly 
from motor and premotor cortex, whereas vestibular nucleus 
neurons receive inputs from widespread cortical areas, at least 
in non-human primates (121). RST neurons, like vestibulospinal 
neurons, also receive extensive inputs from the cerebellar fastigial 
nucleus (141–143). However, unlike vestibulospinal neurons, 
pmRSTn receive little direct input from cerebellar Purkinje 
cells. Thus, there is a possibility that RST neurons are subject 
to different cortical and cerebellar control than vestibulospinal 
neurons, although this notion has not been thoroughly examined 
experimentally.

As noted above, some of the inputs to pmRSTn resemble those 
to vestibulospinal neurons. In addition, some reticulospinal neu-
rons receive inputs distinct from those to the vestibular nuclei. 
For example, a population of spinally projecting neurons in the 
ventral and caudal aspect of the pontine reticular formation 
mediates acoustic startle responses (144). Such responses entail 
the stiffening of the dorsal neck, body wall, and limbs to provide 
protection from predatory attack before a defensive action can 
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FiGURe 2 | Pathways that convey vestibular signals to limb motoneurons. Spinal premotor interneurons receive inputs from the vestibulospinal and 
reticulospinal pathways. The vestibulospinal system excites extensor motoneurons and inhibits flexor motoneurons, while the reticulospinal system elicits both 
excitation and inhibition of flexor and extensor motoneurons. Thus, the spinal interneurons that receive inputs from vestibulospinal and reticulospinal pathways must 
be at least partially distinct. The neurons of origin of reticulospinal and vestibulospinal projections integrate vestibular, neck, and limb inputs; this integration is 
modulated by signals from several brain regions, including the cerebral cortex and cerebellum.
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be engaged. The acoustic startle response entails monosynaptic 
inputs from the cochlear nuclei to reticulospinal neurons 
(145–148). Although vestibulospinal neurons may also mediate 
acoustic startle responses (149), the reticulospinal system appears 
to play a dominant role (150).

Shik et  al. discovered in 1966 that electrical stimulation of 
a constrained region at the junction between the midbrain- 
and pons-elicited locomotion in animals (151). This area 
has subsequently been called the “mesencephalic locomotor 
region” (MLR) and has been identified across vertebrate species 
including man (152). The MLR does not project to the spinal 
cord, but provides inputs to pmRSTn (153, 154) that transmit 
locomotor signals to spinal premotor interneurons (155, 156). 
Hence, pmRSTn play a unique and pivotal role in controlling 
locomotion. There is no evidence that vestibulospinal neurons 
receive inputs from the MLR.

Although it is appreciated that a variety of inputs are 
conveyed to the reticular formation, little is known about the 
convergence of these inputs on single neurons (129). Moreover, 
only a few studies have entailed recordings from pmRSTn in 
conscious animals, or attempted to ascertain how the activity of 
these neurons changes during ongoing movements and across 
behavioral states.

Figure 2 summarizes the inputs to and connections of vesti-
bulospinal and reticulospinal neurons.

Processing of vestibulospinal and 
Reticulospinal Signals by Spinal 
interneurons
As discussed above, few vestibulospinal and reticulospinal 
projections provide direct inputs to limb motoneurons, but 
instead mainly terminate on interneurons in Rexed’s laminae 

VII and VIII (24, 25, 29). A variety of identified types of spinal 
interneurons have been reported to receive labyrinthine inputs, 
including Renshaw cells (157, 158), Ia inhibitory interneurons 
(159, 160), propriospinal interneurons (161–163), and com-
missural interneurons (164–166). However, most experiments 
that characterized the responses of spinal interneurons to 
natural vestibular stimulation (whole-body rotations) did 
not identify the physiological role of those interneurons, or 
the convergent spinal and descending inputs they receive 
(167–169).

Considering the extensive projections of muscle spindle affer-
ents to Rexed’s lamina VII (170, 171), it seems likely that there 
is convergence and integration of vestibular and proprioceptive 
signals in the spinal cord. A variety of descending pathways from 
the brain terminate in Rexed’s laminae VIII, including corticospi-
nal, vestibulospinal, and reticulospinal projections [for review, 
see Ref. (172)]. A caveat is that the vestibulospinal system excites 
extensor motoneurons and inhibits flexor motoneurons (17, 
18), while the reticulospinal system elicits both excitation and 
inhibition of flexor and extensor motoneurons (24–28). Thus, the 
spinal interneurons that receive inputs from the vestibulospinal 
and reticulospinal pathways must be at least partially distinct. 
Unfortunately, little is known about the convergence of signals 
from descending pathways in the spinal cord, and how the inte-
gration of the descending motor commands shapes ongoing and 
planned movements. Thus, the significance and physiological role 
of the processing of vestibular signals by spinal cord interneurons 
remain unclear. One role of the signal integration may be to adjust 
muscle activity when body orientation changes during locomo-
tion, as while walking uphill (173–175).

It has also been suggested that the vestibulospinal and retic-
ulospinal pathways provide inputs to gamma motoneurons, 
thereby affecting the gain of the myotatic reflex (176–178). 
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However, some studies in animals (179), as well as recent 
experiments in humans (180, 181), indicated that vestibular 
signals do not affect the fusimotor system. Further experiments 
are needed to address the discrepancies in the conclusions of 
these studies.

inputs to vestibulosympathetic Neurons
Neurons in the RVLM that control sympathetic nervous system 
activity receive vestibular inputs through a variety of pathways 
(32), as illustrated in Figure  1. Since many of the relays from 
the vestibular nuclei to the RVLM are polysynaptic, it is difficult 
to identify “vestibulosympathetic neurons” during neuro-
physiologic experiments. Thus, much of what is known about 
convergence of signals in the vestibulosympathetic pathways 
was ascertained by determining inputs and behavioral states 
that modulate sympathetic nerve activity elicited by vestibular 
stimulation.

Baroreceptors provide a dominant input to sympathetic 
nervous system neurons that control blood pressure, such that 
an increase in blood pressure results in a decrease in the activ-
ity of RVLM neurons as well as the sympathetic preganglionic 
neurons they provide inputs to (38–41). It is thus not surprising 
that stimulation of baroreceptors by increasing blood pressure 
resulted in an attenuation of vestibulosympathetic responses 
(182). A number of studies demonstrated the convergence of ves-
tibular and baroreceptor inputs onto RVLM neurons, including 
putative presympathetic neurons with projections to the thoracic 
spinal cord (183, 184).

Rostral ventrolateral medulla neurons receive inputs from 
a variety of brain regions, either directly or indirectly through 
connections in the baroreceptor reflex pathway. These brain 
regions include the periaqueductal gray (185), parabrachial 
nucleus (186–193), several hypothalamic nuclei (190, 194–215), 
the amygdala (195, 212, 216–219), and prefrontal and insular 
cortices (206, 212, 220–225). Thus, engagement of a wide variety 
of descending pathways could potentially modulate vestibulo-
sympathetic responses.

TRANSFORMATiON OF veSTiBULAR 
ReFLeXeS BY DeSCeNDiNG PATHwAYS

Transformation of vestibulospinal and 
Reticulospinal Reflexes: evidence from 
Animal Studies
The present body of knowledge regarding descending control of 
vestibulospinal reflexes largely stems from one of two experimental 
designs: comparing vestibular nucleus neuronal responses during 
active and passive movement in intact animals and comparing 
vestibular nucleus neural responses between decerebrate and 
intact preparations. While additional studies are clearly needed, 
in particular to discriminate which higher centers are responsible 
for modulating vestibulospinal reflexes, some insights can be 
gained from the present body of knowledge.

A subset of vestibular nucleus neurons identified in non-
human primates, termed VO neurons, are thought to mediate 
vestibulospinal reflexes (226–229). The activity of VO neurons, 

like other vestibular nucleus neurons and primary vestibular 
afferents, is modulated by passive (externally applied) head 
movement with respect to space. However, unlike other classes 
of vestibular nucleus neurons, the firing rate of VO neurons does 
not change during eye movements (230, 231). During active 
(self-generated) head movement, responses of VO neurons are 
dramatically attenuated (227, 231, 232). Furthermore, proprio-
ceptive feedback must match that signaled by the active motor 
command (efference copy) to suppress VO neuronal activity 
during self-motion (233, 234). While the locations of the circuits 
that compare efference copy with proprioceptive feedback during 
a movement have not yet been fully elucidated, descending inputs 
from higher brain centers must play a key role since volitional 
movement is triggered from cerebral cortex. In addition, it is 
unknown whether VO neurons responsible for reflex posturing of 
the limbs respond differently to active and passive (unexpected) 
limb movements.

Decerebration results in a disconnection of brainstem centers, 
including the vestibular nuclei and reticular formation, from 
higher brain centers. In decerebrate animals, the neural circuitry 
of vestibulospinal pathways is simplified by removing descending 
cortical influences, permitting investigations in a reduced prepa-
ration. The interruption of supratentorial inputs to the lateral 
vestibular nucleus is thought to produce unsuppressed activation 
of extensor motoneurons by the LVST, resulting in decerebrate 
extensor posturing (235–237).

As previously discussed, there is widespread convergence of 
afferent inputs from multiple sources, including vestibular, soma-
tosensory, and visual signals, in the vestibular nuclei. The effects 
of hindlimb somatosensory inputs on the activity of vestibular 
nucleus neurons have been studied in both decerebrate and con-
scious cats by the same investigators, using the same equipment 
and methodology during experiments in both preparations, thus 
permitting comparisons (75, 78, 238, 239). Comparisons in decer-
ebrate and conscious cats of the effects of electrical stimulation of 
hindlimb nerves on vestibular nucleus neuronal activity revealed 
some similarities, as well as differences (238, 239). Similarities 
across preparations include the following: the majority of ves-
tibular nucleus neurons received convergent limb inputs from 
multiple nerves; response latencies were ~20 ms suggesting that 
polysynaptic pathways conveyed limb inputs to vestibular nucleus 
neurons; most responses were excitatory; and the proportion of 
neurons activated by hindlimb nerve stimulation increased after 
bilateral labyrinthectomy (238, 239). By contrast, low-intensity 
stimuli [<twice threshold (T) for eliciting a compound action 
potential in the stimulated nerve] elicited changes in activity of 
many vestibular nucleus neurons in decerebrate animals, but such 
low-intensity stimuli were ineffective in conscious animals. Only 
high-threshold stimuli (≥3  T) altered the activity of vestibular 
nucleus neurons in conscious animals. This finding suggests that 
supratentorial brain regions may suppress the transmission of 
inputs from large diameter hindlimb afferent fibers (i.e., group Ia 
and II afferents) to the vestibular nuclei in the conscious animal, 
or may block the responses of vestibular nucleus neurons to these 
signals.

Modulation of vestibular nucleus neuronal activity in 
response to hindlimb movement has also been compared 
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FiGURe 3 | vestibular nucleus neurons responded to hindlimb movement in decerebrate (A) and conscious (B) cats, but the responses had different 
characteristics in the two preparations. Vestibular nucleus neuronal responses to hindlimb movement in the decerebrate cat typically included encoding the 
direction of hindlimb movement and encoding hindlimb position signals. For example, the firing rate of the vestibular nucleus neuron depicted in panel (A) increased 
with hindlimb movements toward extension and decreased with hindlimb movements toward flexion. Furthermore, when the hindlimb was held in extension, 
neuronal firing remained elevated. While neurons with such response characteristics were also present in conscious cats, they were much less common than in 
decerebrate cats. By contrast, the activities of most vestibular nucleus neurons in conscious cats with responses to hindlimb movement were modulated in a similar 
fashion during all tested directions of hindlimb movement. For example, the activity of the vestibular nucleus neuron depicted in panel (B) increased with each 
hindlimb movement (midline to extension; extension to midline; midline to flexion; and flexion to midline). In both panels (A,B), hindlimb movements were passively 
generated (externally applied) at 60°/s, lasted for a duration of 1 s, and were isolated to movements about the hip and knee joints. The hindlimb was held in each 
position for 7 s in panel (A) and 6 s in panel (B). Unit activity was binned in 0.1 s intervals and averaged over four repetitions in panel (A) and eight repetitions in 
panel (B). Panel (A) was adapted from Ref. (78); panel (B) was adapted from Ref. (75). Both panels were used with permission of the American Physiological 
Society.
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in decerebrate and conscious cats (75, 78). While vestibular 
nucleus neurons responded to hindlimb movement in both 
preparations, some important differences were notable (see 
Figure 3). In decerebrate cats, the majority of vestibular nucleus 
neurons whose activity was modulated by hindlimb movement 
encoded the direction of hindlimb movement, and most also 
encoded hindlimb position signals (78). By contrast, most ves-
tibular nucleus neurons in conscious cats encoded limb move-
ment irrespective of the direction of the movement and did 
not encode hindlimb position (75). These findings suggest an 
interesting parallel with that noted above for experiments that 
made use of electrical nerve stimulation. If large-fiber afferents, 
such as those from muscle spindles, are responsible for the 
directional and position-related responses noted in decerebrate 
animals, the near complete lack of such responses in conscious 
animals suggests that higher brain centers selectively suppress 
this afferent feedback.

Similar comparisons of responses to limb movement in 
decerebrate and conscious cats have been performed for reticular 
formation neurons (240). In both preparations, the majority of 
responsive reticular formation neurons encoded limb movement 
irrespective of the direction of the movement; few encoded limb 
position or the direction of limb movement. In other words, the 
responses of reticular formation neurons to limb movement 
in both decerebrate and conscious animals resembled those of 
vestibular nucleus neurons in conscious animals. No suppres-
sion of limb position signals to reticular formation neurons by 
supratentorial brain regions was observed (240), as noted for ves-
tibular nucleus neurons (75). These findings raise the possibility 
that higher brain areas such as cerebral cortex play fundamentally 
different roles in regulating the activity of the vestibulospinal 

and reticulospinal systems, although there is no experimental 
evidence to suggest the nature of the differences in regulation of 
the two systems.

Transformation of vestibulospinal and 
Reticulospinal Reflexes: evidence from 
Studies in Human Subjects
As discussed above, transecting the midbrain in animals produces 
unsuppressed activation of extensor motoneurons, resulting in 
decerebrate extensor posturing (235–237). In humans, strokes 
affecting the internal capsule, which damage corticobulbar 
projections, produce an analogous condition: muscle spasticity 
(241, 242). Spasticity manifests as a sharply lateralized increase 
in muscle tone with enhanced tendon jerks (243). Several studies 
suggested that spasticity in patients, like decerebrate rigidity in ani-
mals, results from increased activity of vestibulospinal pathways 
(244–246). This is in contrast to one study in cats, which provided 
evidence that spasticity and decerebrate rigidity are differentially 
mediated through vestibulospinal and reticulospinal projections 
(247). A recent study in hemispheric stroke subjects supports the 
notion that spasticity results from disinhibition of vestibulospinal 
projections. Responses of neck muscles to vestibular stimulation 
(cervical vestibular-evoked myogenic potentials) were compared 
on the intact and lesioned sides in stroke survivors with spasticity. 
The differences on the two sides were proportional to the severity 
of the spasticity (248); the responses on the lesioned side were 
amplified, as illustrated in Figure  4. In combination with data 
from animals discussed previously, these data support the notion 
that supratentorial regions of the brain regulate the excitability of 
vestibulospinal neurons.
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FiGURe 4 | Representative vestibular-evoked reflex responses from 
four subjects rank ordered as a function of increasing severity of 
spasticity. Cervical vestibular-evoked myogenic potentials (VEMPs) were 
measured from the sternocleidomastoid muscles. In most subjects, the 
VEMP responses on the spastic-paretic side (thick line) were larger than on 
the contralateral side (thin line). As the degree of spasticity increased, so did 
the asymmetry in response amplitude between the two sides. Adapted from 
Ref. (248); used with permission of Elsevier.
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Transformation of vestibulosympathetic 
Reflexes
Evidence that supratentorial brain regions affect the gain of 
vestibulosympathetic reflexes comes from a comparison of these 
responses in conscious and decerebrate animals (184). Whereas 
about half of RVLM neurons responded to 10–15° tilts in vertical 
planes in decerebrate felines, the activity of <1% of RVLM neurons 
was modulated by similar rotations in conscious cats (184). Large 
rotations are required to generate vestibulosympathetic responses 
in conscious animals, presumably because small-amplitude tilts 
(<40%) do not produce peripheral blood pooling that necessitates 
an increase in sympathetic nervous system activity (249, 250). It 
has been suggested that higher brain areas adjust the responsive-
ness of neurons in the vestibulosympathetic reflex pathway to 
vestibular inputs, so that the gain of the vestibulosympathetic 
reflex is appropriate for the ensuing movement or postural 
change (32). Recordings from conscious animals also provided 
evidence that following a bilateral labyrinthectomy, the gain of 
the baroreceptor reflex is adjusted by descending signals from 
supratentorial brain regions (251). As noted above, a number of 
supratentorial regions provide inputs to neurons that comprise 
the vestibulosympathetic reflex pathway, and it is unclear which 
of these regions participates in adjusting the response gain, and 
where along the pathway (vestibular nuclei, NTS, CVLM, RVLM) 
the gain adjustments occur.

The notion that sympathetic nerve activity is regulated by higher 
brain centers during movement is not new. In both animals and 
humans, adjustments in sympathetic nerve activity and alterations 
in the set point of the baroreceptor reflex are initiated when exer-
cise begins (252, 253). The changes in the baroreceptor set point 
are needed to allow blood pressure to increase during exercise. The 
term “central command,” which was coined by Goodwin et  al., 
refers to the parallel changes in autonomic nervous system activity 
that accompanies muscle contraction (254). Perhaps the best evi-
dence for feedforward cardiovascular responses during movement 
comes from a study in paralyzed human subjects, who exhibited 
increases in blood pressure and heart rate that were graded to the 
intensity of imagined activity (255). In decerebrate or anesthetized 
cats, stimulation of regions of the lateral and caudal hypothalamus, 
fields of Forel, MLR, and midbrain ventral tegmental area elicit 
parallel changes in motor activity and cardiovascular responses 
(253, 256, 257). However, little is known about signal processing 
in these regions that leads to changes in sympathetic nerve activity 
and the baroreceptor reflex set point.

CONCLUSiON AND DiReCTiONS FOR 
FUTURe ReSeARCH

Although there is a considerable body of data regarding vestibu-
lar system contributions to maintenance of stable eye position, 
much less is known about vestibular reflexes that ensure postural 
stability and constant blood pressure during movement. This 
is likely because vestibulospinal pathways that act on the limbs 
and vestibulosympathetic pathways that affect the cardiovascular 
system are much more complicated than the three and four 
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neuron arcs that mediate vestibulo-ocular reflexes (3, 8). An 
often-overlooked aspect of vestibulospinal reflexes acting on the 
limbs is that they are mediated through premotor interneurons 
in the spinal cord (24, 25, 29), and not via direct connections 
of vestibulospinal and reticulospinal neurons with motoneurons. 
Virtually nothing is known about the convergence of descending 
motor signals with proprioceptive inputs in the spinal cord, and 
the role that spinal interneurons play in transforming the motor 
commands (11). Since there is a potential for spinal interneurons 
to integrate signals from a variety of descending motor pathways, 
the interneurons could potentially play an appreciable role in 
recovery of function if one of the pathways (or inputs to the path-
ways) is eliminated. Thus, a research focus is certainly warranted 
on the spinal interneurons that are components of vestibulospinal 
reflexes that act on the limbs.

Although it has been recognized for decades that both reticu-
lospinal and vestibulospinal neurons convey vestibular signals to 
the spinal cord, and that these pathways receive somewhat differ-
ent inputs, it is not yet clear if there is a distinct functional dif-
ference between the two pathways. As noted above, it is possible 
that signals conveyed through reticulospinal and vestibulospinal 
pathways converge on the same premotor spinal interneurons 
(11), although this is presently unknown. The reticulospinal 
pathway may be comprised of a number of parallel pathways 
with distinct functional roles such as mediating locomotion (153, 
154), startle responses (144), and postural stability. Thus, it may 
be misleading to consider the reticulospinal pathway as a single 
functional pathway. Moreover, there is a paucity of data regarding 
the activity of vestibulospinal and reticulospinal neurons in awake, 
behaving animals, and the lack of this information complicates 
the determination of the physiologic roles of the pathways.

An experimental hurdle that complicates experiments in con-
scious animals on vestibulospinal and reticulospinal pathways is 
the difficulty in identifying neurons that are components of these 
pathways. Experiments entailing microstimulation in the spinal 
cord to ascertain the projections of vestibulospinal and reticu-
lospinal neurons are tedious in paralyzed decerebrate or anes-
thetized animals (19), and even more complicated in conscious 
animals, since spinal stimulation can induce movement and 
extraneous inputs to the central nervous system. Consequently, 
there is a tendency to consider “VO neurons,” which are known 
to have a projection to the spinal cord, as a single class of neurons 
with uniform properties (227–230). Yet it is known from experi-
ments in paralyzed animals that the branching pattern of indi-
vidual vestibulospinal neurons can vary considerably (15, 16, 19). 
Vestibulospinal neurons that affect neck muscle activity may have 

dramatically different inputs and changes in activity across behav-
ioral states than those that affect limb extensor activity. Thus, it is 
crucial to develop new methodology to ascertain the projection 
patterns of vestibulospinal neurons whose activity is monitored 
during neurophysiologic experiments, and to discontinue the 
practice of assuming that all vestibulospinal neurons must have 
the same properties. The same considerations should be applied 
to experiments on reticulospinal neurons.

Neurophysiologic experiments on neurons that constitute 
vestibulosympathetic pathways are in their infancy, and just two 
studies (184, 251) have monitored in conscious animals the activ-
ity of RVLM neurons that play a key role in regulating sympathetic 
nervous system activity. Little attention has been paid to the con-
tributions of other pathways to vestibulosympathetic responses, 
including those originating in the medial reticular formation, 
raphe nuclei, and locus coeruleus that provide monosynaptic or 
polysynaptic inputs to both limb motoneurons and sympathetic 
preganglionic neurons (53–56). These pathways were identified in 
transneuronal tracing studies in rodents, and it is unclear whether 
they exist in other species, and what their role is in autonomic 
and motor control. In addition, it is critical that neurophysiologic 
studies on these neurons include an identification of their projec-
tion patterns, to ascertain which outputs they control.

In conclusion, it is now well-demonstrated that vestibulospinal 
and reticulospinal neurons that contribute to postural stability, 
and brainstem neurons that adjust blood pressure during postural 
alterations, receive converging inputs from a variety of sources, 
including cerebral cortex. Accordingly, the activity and responses 
to stimuli of the neurons can vary tremendously in conscious and 
“reduced” preparations, such as anesthetized and decerebrate 
animal models. In the ongoing efforts of the scientific community 
to foster the reproducibility of experiments and their translation 
to treatments for patients, the differences in responses between 
preparations must be fully considered.
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