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Abstract

We describe open, reproducible pipelines that create an integrated genomic

profile of a cancer and use the profile to find mutations associated with disease

and potentially useful drugs. These pipelines analyze high-throughput cancer

exome and transcriptome sequence data together with public databases to find

relevant mutations and drugs. The three pipelines that we have developed are:

(1) an exome analysis pipeline, which uses whole or targeted tumor exome

sequence data to produce a list of putative variants (no matched normal data

are needed); (2) a transcriptome analysis pipeline that processes whole tumor

transcriptome sequence (RNA-seq) data to compute gene expression and find

potential gene fusions; and (3) an integrated variant analysis pipeline that uses

the tumor variants from the exome pipeline and tumor gene expression from

the transcriptome pipeline to identify deleterious and druggable mutations in

all genes and in highly expressed genes. These pipelines are integrated into the

popular Web platform Galaxy at http://usegalaxy.org/cancer to make them

accessible and reproducible, thereby providing an approach for doing standard-

ized, distributed analyses in clinical studies. We have used our pipeline to iden-

tify similarities and differences between pancreatic adenocarcinoma cancer cell

lines and primary tumors.

Background

A promising path toward personalizing cancer treatment

is using genomic features of tumors to guide treatment.

Tumor features such as gene mutations [1, 2], differential

gene expression [3, 4], and structural variation [5, 6] have

proven useful in predicting and personalizing cancer

treatment. For the majority of tumors, though, finding a

single feature that leads to a definitive treatment with

durable response has been elusive. Therefore, developing

effective treatments for many tumor types requires multi-

ple targeted approaches informed by comprehensive

tumor profiles merged with public and private patient

data to identify precise targets [7].

Comprehensive genomic profiles of tumors derived

from high-throughput sequencing data holds significant

promise for better understanding the biology which drives

their growth and resistance to standard therapies [8, 9].

New information can be derived by combining data from

multiple characteristics. For instance, mutations in over-

expressed genes can be found by combining mutations

from exome resequencing with gene expression computed
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from transcriptome sequencing. Activating mutations in

genes that drive growth and proliferation are often

promising drug targets and many current cancer therapies

have been based on the concept of oncogene addiction

[10–12].
For cancers with poor outcomes, using a multi-faceted

tumor profile to identify better targeted agents or combi-

nations of drugs is required. Large public databases that

include cancer genome information such as COSMIC

[13], the Drug–Gene Interaction (DGI) Database [14],

and the Cancer Cell Line Encyclopedia [15], are making

this task more feasible. Current approaches match a

known genomic aberration to a known drug, such as the

BRAF p.V600E mutation and vemurafenib [16, 17], but

there is an increasing need to test combinations of drugs

in clinical trials. However, many of these trials require

preclinical models for evidence of efficacy, and most of

these models currently fail to account for multiple

somatic events that contribute to therapeutic response.

Because the use of cell lines for personalized oncology

appears to be a more cost effective approach than xeno-

graph models [18], we have chosen to develop a tool that

aligns individual tumor data with available cell lines in an

effort to help accelerate precision investigation of preclini-

cal models of therapeutic response.

Realizing an approach to personalized oncology that

creates an integrated genomic profile of a tumor and then

uses the profile together with large public databases is a

challenging endeavor that requires pipelines with many

steps and tools. Ensuring that these pipelines and their

output are accessible to research-clinicians, especially

those with limited computational skills, is critical. It is

also important that these pipelines yield reproducible

analyses so that their results can be used and also serve as

a foundation for future work [19]. For these reasons, a

pipeline/workflow platform is ideal. Pipeline platforms

such as GenePattern [20], Taverna [21], and Synapse [22]

have been used for cancer genomics but, to the best of

our knowledge, not for personalized oncology.

We have developed three pipelines for personal oncol-

ogy and integrated them into Galaxy, a popular Web-

based genomic workbench that supports pipelines [23–
26]. Collectively, these pipelines—an exome analysis pipe-

line, a transcriptome (RNA-seq) analysis pipeline, and an

integrated variant analysis pipeline—analyze a tumor

sample to identify rare and deleterious mutations, drugga-

ble mutations, and drugs which may be effective for a

tumor. Integrating the pipelines into Galaxy makes the

pipelines and the data produced from them widely acces-

sible, reproducible, and sharable. Galaxy’s Web interface

ensures accessibility and reproducibility of the pipelines

for a wide audience, especially those with limited

programming skills. Galaxy’s collaboration framework

provides a channel for widely sharing the pipelines and

ensuring that others can easily use them. Together, Galaxy

and the pipelines facilitate standardization of a data

analysis platform that can run locally with appropriate

securities but the analyses can be easily shared and col-

lated across sites in multicenter clinical trials.

We have validated our pipelines by analyzing high-

throughput sequencing data from three well-characterized

pancreatic cancer cell lines. Finally, we have used the

pipelines to identify mutational similarities and differ-

ences between the cell lines and six primary pancreatic

adenocarcinoma (PAC) tumors.

Implementation

We have created three general pipelines that work

together (Fig. 1):

• An exome processing pipeline analyzes whole or tar-

geted tumor exome resequencing data and identifies

small variants (SNPs and indels).

• A whole transcriptome (RNA-seq) processing pipeline

analyzes tumor RNA-seq data (a) to find small variants

and gene fusions and (b) computes gene expression.

• An integrated variant analysis pipeline that processes

variants from the exome or transcriptome pipelines,

together with public databases, to identify (i) rare and

deleterious (RD) variants; (ii) druggable RD variants

and associated drugs. When gene expression data are

available from the transcriptome pipeline, an integrated

analysis is performed to identify (iii) RD variants in

highly expressed genes; (iv) druggable RD variants in

highly expressed genes and associated drugs.

The integrated analysis in the final pipeline focuses on

variants in highly expressed mutant transcripts likely to

be druggable targets. The tools chosen for these pipelines

are widely used and well maintained, ensuring that they

perform well on a variety of different data. However,

alternative tools can also be incorporated to these pipe-

lines as required.

Exome pipeline

This pipeline generates a list of small variants (SNPs,

insertions, and deletions) from either whole or targeted

tumor exome resequencing data. In order, reads are

mapped using BWA [27], PCR duplicates are removed

using Picard (http://picard.sourceforge.net/), and variants

are called using VarScan2 [28]. This approach—mapping

reads, remove duplicates, and calling variants—is well

established for obtaining variants from exome data. No

matched normal exome sequencing data are required to

run this pipeline.
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Transcriptome (RNA-seq) pipeline

This pipeline uses RNA-seq data to characterize a tumor

in three ways: small variants, gene fusions, and gene

expression. The first step in the pipeline is mapping

RNA-seq reads using Tophat2 [29]. Obtaining small vari-

ants from mapped reads is done the same way as it is in

exomes: PCR duplicates are removed and variants are

called. This approach for calling variants from RNA-seq

has been validated previously [30]. The pipeline uses the

popular Tophat-Cufflinks protocol [31] produce gene

expression results and Tophat-Fusion [32] to detect

potential fusions.

Integrated variant analysis pipeline

This pipeline analyzes variants from the exome or tran-

scriptome pipeline to identify rare, deleterious (RD) vari-

ants and also druggable RD variants together with

associated drugs. When transcriptome data are available,

variants and drugs in highly expressed genes are com-

puted as well.

The first step in this pipeline is removing variants

resulting from sequencing errors, and this is done by

removing variants with a low allele frequency. The

minimum required allele frequency can be set when the

workflow is run. We found that using a minimum allele

frequency of 10% worked well for variants called from

exome sequencing of a homogenous population of cells,

such as a cultured cell line. Conversely, for variants called

from transcriptome sequencing of a tumor, which has a

mixed population of cells, we found that an allele

frequency of 30% worked well.

Next, ANNOVAR [33] is used to annotate variants

with mutation type (e.g. synonymous, stop-gain, frame-

shift), allele frequencies in common public databases such

as 1000 Genomes [34] and the Exome Sequencing Project

[35], and COSMIC [13] annotations. To obtain rare and

deleterious variants, variants with a minor allele frequency

greater than 0.01% in either 1000 Genomes and the Ex-

ome Sequencing Project data are removed and only non-

synonymous mutations, frameshifts, and stop-gain/losses

are kept. Additional annotations can be added and more

aggressive annotation filtering can be applied as required

by changing the filtering criteria.

Next, the rare and deleterious mutations are annotated

using the DGI database, a meta-database that includes

gene–drug interaction results from many expert-curated

and automatically generated drug databases [14]. For each

gene that has a rare and deleterious mutation, the DGI

Figure 1. Diagram of available pipelines; inputs are gray, steps are brown, and outputs are blue. The exome pipeline processes high-throughput

resequencing data, whether from targeted or whole exome, and produces a list of variants. The transcriptome pipeline processes high-throughput

transcriptome sequencing data to produce gene and transcript expression, potential gene fusions, and a list of variants. The variant analysis

pipeline annotates variants from either the exome or transcriptome pipeline to identify rare, deleterious and druggable (RDD) variants and RDD

variants that occur in highly expressed genes. Variant annotations include functional impact, allele frequency (from 1000 Genomes and the

Exome Sequencing Project), dbSNP id, COSMIC information, and additional information from a variety of public sources. Druggable variants are

annotated with information about their drug interactions. Output from this pipeline is a summary of RDD variants and known drug interactions. If

gene expression information is provided from the transcriptome pipeline, rare and deleterious variants as well as druggable variants and

associated drugs are provided for highly expressed genes. Variants in highly expressed genes are often promising drug targets.
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database provides a list of drugs that are thought to be

effective, along with the database source of the interaction

and, if available, interaction type (e.g., inhibitor). By

default, only expert-curated results are included in the

pipeline’s results.

The final outputs of the pipeline are (a) a list of rare

and deleterious mutations; (b) a list of druggable rare

and deleterious mutations; and (c) a list of potential

drugs associated with the druggable mutations. When

gene expression data are available from the transcriptome

analysis pipeline, variants are annotated with the expres-

sion level for the gene where they occur. Then, variants

with expression greater than 10 FPKM are labeled as

highly expressed and the pipeline identifies rare, deleteri-

ous variants in highly expressed genes, the subset of these

variants that are druggable, and associated drugs. As

noted earlier, variants in expressed genes and drugs tar-

geting variants in expressed genes may be especially inter-

esting to clinician-researchers. The goal is to use these

lists of rare, deleterious and druggable mutations to in

tumors to direct rational preclinical testing of combina-

tion therapies in cell lines and eventually treatment of

patients.

Pipeline separation

Variant analysis and interpretation is a challenging part of

using molecular profiles to personalize cancer treatment,

and we anticipate that investigators may try experiment-

ing with and adapting the variant analysis workflow to

meet their needs. The separation in our pipelines affords

experimentation with the variant analysis workflow. The

exome and transcriptome analysis pipelines perform oper-

ations that are self-contained, resource-intensive, and

slow. Read mapping, variant calling, and quantifying gene

expression are most resource-intensive steps, each requir-

ing two or more hours on typical computing clusters to

complete. On the other hand, the variant analysis pipeline

integrates the outputs of the exome and transcriptome

pipeline with public databases, requires few resources,

and is very fast. Using a personal computer, the whole

pipeline typically finishes in less than 30 min. By placing

the slow steps in the exome and transcriptome analysis

pipelines, it is fast and easy to experiment with the vari-

ant analysis workflow, such as by changing the allele fre-

quency or the databases used.

Advantages of galaxy integration

We have implemented these pipelines as workflows in

Galaxy (http://galaxyproject.org), a Web-based workbench

for doing genomic analyses. Galaxy integration offers

many benefits for investigators using these pipelines.

Galaxy can be accessed in a variety of different ways,

depending on an investigator’s bioinformatics skills.

Investigators with limited bioinformatics experience can

use Galaxy via a graphical Web-based interface for run-

ning workflows and visualizing and sharing data. Only a

Web browser is required to use all of Galaxy’s features

and a novice bioinformatician can easily upload FASTQ

or BAM files, execute workflows, and generate summary

tables and graphics. For investigators with significant bio-

informatics experience, Galaxy’s API can be used to run

workflows from scripts. Using the Galaxy API and Bio-

blend [36], we developed Python scripts to automatically

execute the pipelines on sequencing data from numerous

pancreatic cancer samples, the results of which we discuss

in detail below. We used Galaxy’s Web interface to exper-

iment with different settings for our workflows, visualize

results, and share our workflows and data.

Galaxy records the inputs and parameters used for

workflows and tools, so every pipeline run is recorded

and reproducible. Data produced from our pipelines can

be visualized in Galaxy’s visual analysis framework [37,

38]. Investigators can visualize the very large data sets

produced by the pipelines in their Web browser using a

genome browser, Circos plot [39], and other visualiza-

tions. Investigators can also experiment with and visualize

tool output using different parameter values in order to

choose parameters best suited to their analyses.

We have used Galaxy’s sharing features to make our

pipelines widely available. We created a Galaxy Page

(http://usegalaxy.org/cancer) as an online, interactive sup-

plement for this work. The page briefly describes the

workflows, and embedded in the page are the workflows

themselves, analysis histories generated from the pipelines

using cancer cell line data, and visualizations of data gen-

erated from the pipeline. From the page, investigators can

copy embedded histories, workflows, and visualizations

into their workspace and immediately start using them.

The workflows can also be downloaded and run on a

local Galaxy instance. Because Galaxy workflows are por-

table, investigators in a large, distributed clinical trial can

use the same standardized workflows in multiple loca-

tions. Using the same workflows is advantageous both for

sharing data and for reproducing analyses. In addition,

workflows that have proven successful in previous clinical

trials can be widely disseminated and used in the future.

Finally, our workflows can be copied and modified to

suit individual analysis needs. Using Galaxy’s Web inter-

face, any investigator can edit a workflow, regardless of

their programming experience. Potential workflow edits

include changing parameter settings and substituting a

new tool into a workflow. For example, instead of using

VarScan as a variant caller in, another variant caller could

be used. As better performing tools become available in
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Galaxy, we intend to introduce them into our curated

pipelines to ensure that our pipelines use robust algo-

rithms.

Design philosophy

Our pipeline development approach is motivated by a

few key principles. We used open-source tools to make

our pipelines widely available and transparent. When

available, established and/or best practices are used. We

designed the pipelines to be modular so that different

components could be substituted or added and parame-

ters could be modified. For example, instead of automati-

cally filtering (reducing) variants based on certain criteria

such as minor allele frequency, variants are annotated and

then an explicit filtering operation is applied. This is very

useful within the context of Galaxy because investigators

can easily modify workflows, such as by changing variant

filtering criteria, using its graphical editor. Modularity

ensures that the pipelines can evolve and incorporate new

tools as they become available rather than requiring the

development of new pipelines.

The exome and transcriptome analysis pipelines require

vastly more time and computing resources than the vari-

ant analysis pipeline: the exome/transcriptome processing

pipelines require about a day to complete on a small

computing cluster, while the integrated variant analysis

pipeline can be run in less than an hour. Also, there are

established protocols for exome and transcriptome pro-

cessing but less so for variant analysis. Hence, by splitting

the pipelines up as we have and putting the pipelines in

Galaxy, it is simple and fast to experiment with different

settings in the variant analysis pipeline and find settings

that are most useful for a particular set of samples.

Results

Validation using cell line data

To validate our pipelines, we analyzed targeted exome

and whole transcriptome sequencing data from three

well-characterized pancreatic cancer cell lines: MIA PaCa2

(MP), HPAC, and PANC-1. Exonic regions of 577 genes

that are commonly included in cancer gene panels were

sequenced. All three cell lines are included in the Cancer

Cell Line Encyclopedia (CCLE) [15]; the CCLE includes a

mutational profile for known oncogenes and drug

response information for each cell line. The goal of this

analysis is to use our pipelines to process the cell line

sequence data, compare the output from our pipelines to

CCLE entries, and determine whether our pipelines pro-

duce results that concur with known findings. Concor-

dance with known findings will validate our pipelines’

performance Figure 2A shows an interactive Galaxy-

Circos plot of data generated from analysis of the MIA

PaCa2 cell line.

(A)

(B)

Figure 2. Galaxy Circos plot showing data produced from (A; at top)

exome and transcriptome analysis of Mia PaCa2 cell line and (B; at

bottom) transcriptome analysis of a pancreatic adenocarcinoma

tumor. Starting at the innermost track, the data are: (i) mapped read

coverage; (ii) mapped read coverage after PCR duplicates removed;

(iii) called variants; (iv) rare and deleterious variants; (v) rare,

deleterious, and druggable variants; (vi) rare and deleterious variants

in highly expressed genes; (vii) rare, deleterious, and druggable

variants in highly expressed genes. Read coverage data shown are for

mapped exome reads for cell line and mapped transcriptome reads

for tumor.
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Table S1 summarizes the results obtained from the ex-

ome pipeline for each cell line’s exome sequencing data,

and Table S2 summarize results from the transcriptome

pipeline for each cell line’s transcriptome sequencing data.

Between 6200 and 7000 variants were identified in each

cell line’s targeted exome, and 27-33% of genes in each

cell line were expressed at greater than 10 FPKM, the

threshold for highly expressed genes in the variant analy-

sis pipeline.

Table 1 lists gene fusions found by the transcriptome

analysis pipeline and summarizes the results obtained

from the variant analysis pipelines for each cell line. The

CCLE includes 84 mutations—single-nucleotide polymor-

phisms (SNPs) and small insertions/deletions—in MP

and 2 each for HPAC and PANC-1. 23 MP mutations

and all mutations for the other cell lines fall within our

targeted exome regions. All CCLE mutations, including

SNPs and small insertions and deletions, were found in

our cell lines. About 30 rare, deleterious mutations were

found in each cell line, with 4-6 found in the COSMIC

cancer database for each line. Rare, deleterious, and drug-

gable mutations were reported in many genes associated

with cancer, including ALK, CDKN2A, KRAS, NOTCH1,

TOP1 (topoisomerase 1), and TP53. Reported druggable

mutations in highly expressed genes occurred in

CDKN2A, KRAS, NOTCH1, and TP53.

These mutation results are consistent with the CCLE

data. The CCLE includes drug response data for MP,

HPAC, and for two cell lines that have a mutational profile

similar to PANC-1: KP-1N and KP-1NL. As expected, all

cell lines show deleterious mutations in KRAS [40, 41].

Although KRAS has long be considered an undruggable

Table 1. Results obtained using molecular profiling and drug targeting pipeline on three common pancreatic cancer cell lines.

MIA PaCa2 HPAC PANC-1

Gene fusions CRIM1-IQCA1

BCAR3-GCLM

IRAK3-RBMS1 None

Variants (ts/tv ratio) 6214 (2.14) 6990 (2.13) 6821 (2.15)

Rare and deleterious (RD) variants 31 31 25

RD variants in COSMIC 6: 6: 4:

516 521 521

10656 12479 10660

28763 132780 28763

132780 256119 1133963

256119 1133963

431727 1182405

Genes with RD variants 20 21 18

RD and druggable variants [in COSMIC] 5 [3 in COSMIC] 4 [2] 4 [3]

Druggable genes 5: 4: 4:

BCR CDKN2A ALK

BIRC3 KCNH2 KRAS

KRAS KRAS NOTCH1

NOTCH1 TP53 TP53

TP53

Potential drugs 31 drugs 28 29

RD variants (expression filtered) 8 10 10

RD variants in COSMIC (expression filtered) 3: 3: 3:

516 521 521

10656 12479 10660

28763 1133963

Genes with RD variants (expression filtered) 5 9 8

RD, and druggable variants [in COSMIC]

(expression filtered)

3 [3 in COSMIC] 2 (2) 2 (2)

Druggable genes (expression filtered) 3: 2: 2:

KRAS CDKN2A KRAS

NOTCH1 KRAS TP53

TP53

Potential drugs (expression filtered) 22 drugs 19 18

Molecular profiling includes mutations and gene expression data obtained by analyzing high-throughput sequencing data from targeted exome

(577 genes often included in cancer panels) and whole transcriptome sequencing assays. The ts/tv metric is the ratio between mutation transitions

versus transversions. RD, rare and deleterious.
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target, new strategies that look beyond canonical Ras-Raf-

MEK-ERK pathway signaling to target mutant KRAS are

promising [42–44]. CCLE drug response data indicate that

all cell lines appear responsive to MEK inhibitors, which

are supported by animal models [45]. Curiously, the out-

puts for CDKN2A and TP53, known tumor suppressor

genes, was contrary to the expectation of loss of function

and indication of their druggability highlights the require-

ment for tertiary filtering of actionable changes by knowl-

edgeable end users.

For MIA PaCa2, rare and deleterious variants were

found in five potential druggable genes, with variants in

three expressed genes: KRAS, TP53, and NOTCH1. CCLE

drug response data for MIA PaCa2 indicate that it is also

sensitive to compounds that target MEK. Comparing over-

all drug response profiles, the KP-1N and KP-1NL cell lines

show less response than MIA PaCa2 and HPAC, which

agree with the data in Table 1 showing fewer known drug-

gable mutations and genes in PANC-1 as compared to

MIA PaCa2 and HPAC. Gene fusions were found in MIA

PaCa2, and a single fusion was found in HPAC.

Comparing primary PAC tumors with cell
lines

We have applied our pipelines to compare six primary

PAC tumors with the three cell lines discussed previously.

We sequenced six primary PAC tumors using whole

transcriptome sequencing. Exome sequencing was not

performed for these tumors, which provided an opportu-

nity to use RNA-seq exclusively for characterizing PAC

tumors. Figure 3 shows data generated from the analysis

of one tumor using a Circos plot generated in Galaxy.

Table S2 summarizes results obtained from using the

transcriptome pipeline to analyze tumor sequence data,

including mapped reads, gene expression, and called vari-

ants. Table 2 lists gene fusions found and summarizes

results obtained from the variant analysis pipelines for

each tumor; input to this pipeline was the gene expres-

sion and variant datasets produced from the tumor tran-

scriptome pipeline. Figure 2B shows an interactive

Galaxy-Circos plot of data generated from analysis of

tumor 2.

These results show the challenges inherent in sequenc-

ing PAC tumors. PAC tumors are very difficult to biopsy

or remove cleanly, and sequenced tumor samples nearly

always include significant amounts of stromal (normal)

tissue. Sequence data obtained from a mixed population

of tumor and stromal cells often masks signals, and we

found this to be true for our tumors as well. Although

the majority of PAC tumors show KRAS mutations [46],

we found KRAS mutations in only two tumors analyzed.

This appeared to be due to lack of read coverage for

KRAS in the other tumors sequenced, and we asked for

(c) (d)

(b)(a)

Figure 3. Shared mutations between three pancreatic cancer cell lines—MIA PaCa2, HPAC, and PANC-1—and three primary pancreatic

adenocarcinoma (PAC) tumors. From top to bottom, left to right: (A) all shared rare and deleterious mutations; (B) shared rare, deleterious, and

druggable mutations; (C) shared rare and deleterious mutations in highly expressed genes; and (D) shared rare, deleterious, and druggable

mutations in highly expressed genes. Asterisks (*) indicate that multiple cell lines or tumors showed mutations in the gene. Shared mutations

were found in genes specifically associated with PAC (KRAS, PDE4DIP) and also genes implicated in many cancers (CDKN2A, TP53). Potentially

druggable mutations in highly expressed genes shared between cell lines and tumors reside in two oncogenes: KRAS and TP53. Lastly, druggable

mutations are significantly more limited in the cell lines as compared to tumor mutations.
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re-evaluation of the tumor sections by a certified patholo-

gist. This re-review by a pathologist identified very low

tumor percentage in two of the four KRAS wild-type

samples that we sequenced, which emphasizes the invalu-

able caveat of appropriate sample quality control assess-

ment by a trained pathologist prior to nucleic acid

preparation and sequencing [47]. Finally, false positives

for mutations in homologous genes are common when

using RNA-seq because mapping spliced reads is difficult.

However, the stringent variant filtering in our pipeline is

designed to effectively remove the great majority of these

false positives.

Comparing mutations between cell lines and sequenced

PAC tumors (Fig. 3) shows important similarities and

differences. All three cell lines and two tumors share

KRAS mutations, with the HPAC and PANC-1 cell lines

and two tumors sharing the exact mutation (COS-

MIC521). This observation aligns with general consensus

about the importance of the KRAS pathway in PAC.

Tumors and cell lines also share rare, deleterious muta-

tions in the following genes: AKAP9, CDKN2A, PDE4DIP,

PMS1, TP53, TSC2, and ZMYM2. TP53 mutations

appeared in two cell lines and three tumors, and rare and

deleterious mutations in PDE4DIP were most prevalent,

Table 2. Results obtained using molecular profiling and drug targeting pipeline on RNA-seq data for six primary pancreatic cancer tumors.

T1 T2 T3 T4 T5 T6

Gene fusions KANSL1-ARL17A TRIM2-ANXA2

KANSL1-ARL17A

None None None None

Variants (ts/tv ratio) 57,388 (3.02) 119,188 (2.88) 96,212 (2.91) 54,960 (2.88) 77,385 (2.84) 62,532 (2.87)

Rare and deleterious (RD) variants 454 664 665 516 521 372

RD variants in COSMIC 13 15 12 11 8 8

Genes with RD variants 358 522 513 401 395 292

RD and druggable variants

[in COSMIC]

4 [0] 15 [2] 16 [2] 11 [0] 10 [1] 6 [0]

Druggable genes 4: 14: 15: 9: 8: 6:

CEACAM1 CDH1 ERBB2 CA4 ATM F5

HDAC7 CDKN2A F8 CLCN2 CHEK2 FGF2

MYC CENPE HCAR2 COL1A1 CSF2RA NOTCH3

UGCG COL1A1 JAK2 CSF2RA ITGAL SCNN1D

ERBB2 F8 KRAS FN1 MAPK14 SIRT1

HDAC9 MMP13 HDAC1 SCTR TGFB1

KDR MUC16 HTR2B TP53

KRAS MYC PSENEN XIAP

MUC16 PRKAB1 ZHX2

NOTCH4 PSMC6

PIK3C2B RICTOR

PRKCA SCNN1D

PSMD1 SCTR

TP53

TRPV6

Potential drugs 14 drugs 117 65 31 21 9

RD variants (expression filtered) 149 181 196 175 176 89

RD variants in COSMIC

(expression filtered)

1 2 5 3 6 2

Genes with RD variants

(expression filtered)

126 151 155 141 135 71

RD, and druggable variants

(in COSMIC) (expression filtered)

3 (0) 5 (1) 6 (2) 5 (0) 5 (1) 0 (0)

Druggable genes

(expression filtered)

3: 5: 6: 5: 4: 0

CEACAM CDH1 ERBB2 COL1A1 ITGAL

HDAC7 COL1A1 KRAS FN1 MAPK14

MYC ERBB2 PRKAB1 HDAC1 SCTR

KRAS PSMC6 HTR2B TP53

PSMD1 SCTR PSENEN

Potential drugs (expression filtered) 13 drugs 42 43 24 6 0

The ts/tv metric is the ratio between mutation transitions versus transversions. RD, rare and deleterious.
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appearing in all tumors and MIA PaCa2 and PANC-1 cell

lines. A recent whole-genome sequencing study of PAC

also found evidence of mutations in PDE4DIP [48],

which has been reported as being highly expressed in

esophageal squamous cell carcinoma [49]. Also, an in-

tronic SNP (rs2863344) in PDE4DIP has been associated

with response to capecitabine [50], a common therapy

for gastric and breast cancers, which indicates that expres-

sion and mutation status of this gene may be relevant to

an informed treatment strategy for pancreatic cancer.

Mutations in the genes COL1A1, ERBB2 (aka HER2),

and SCTR were found in two tumors each but not in any

cell lines. ERBB2 mutations may be of particular interest

because the two tumors that include KRAS mutations also

include ERBB2 mutations, and KRAS and ERBB2 are

thought to function jointly to drive tumor growth [51].

Because ERBB2 is a druggable target [52], cell lines that

exhibit only KRAS but not ERBB2 mutations may not be

appropriate models for PAC tumors with both KRAS and

ERBB2 mutations. Two tumors also show evidence of a

KANSL1-ARL17A gene fusion, but there is no evidence of

this fusion in the cell lines. Other gene fusions in cancer

cell lines include ARL17A [32], so the presence of a

KANSL1-ARL17A in PAC tumors may warrant additional

investigation.

Performance and scalability

We analyzed the tumor cell line sequence data using the

public Galaxy server (http://usegalaxy.org). To ensure pri-

vacy of patient sequence data, patient tumor data were

analyzed using Galaxy installed on a local computing

cluster. Galaxy integrates well with many different high-

performance computing clusters and can scale to use all

available computing resources to process very large tumor

sequencing datasets. Given high-performance computing

resources, then, Galaxy and our pipelines can analyze

arbitrarily large tumor sequence data sets.

The main public Galaxy instance (http://usegalaxy.org)

runs jobs on TACC, which is part of the XSEDE national

high-performance computing environment (https://www.

xsede.org). The largest cell line data set is the PANC-1 ex-

ome sequence, which includes ~151 million 100bp paired-

end reads or ~30 billion bases. The exome analysis pipe-

line is perhaps the most time-intensive pipeline with three

long processes—read alignment, duplicate removal, and

variant calling. On the main public server, this pipeline

ran in ~36 h, although 50% of this time was spent wait-

ing for computing resources to become available. Thus,

compute time for exome analysis pipeline was ~18 h. The

largest RNA-seq data set came from Mia PaCa2, which

contains ~31 million 100bp paired-end reads or ~6 billion

bases, and the transcriptome analysis pipeline ran in

~24 h, including waiting time. Compute time for the

transcriptome pipeline, then, is ~12 h. The integrated var-

iant analysis pipeline runs in ~15 min for all cell line data

sets and has no waiting time because analysis steps are

not compute intensive.

Patient tumor RNA-seq data are smaller than the cell

line RNA-seq data, averaging ~28 million 100bp paired-

end reads or ~5.6 billion bases. On two dedicated

compute nodes, each with 24 compute processors, the

transcriptome analysis pipeline and variant calling

completed in ~18 h and the integrated variant analysis

ran in ~15 min.

Discussion

Using Galaxy as a platform for cancer genome analysis

pipelines has important advantages for translational can-

cer research and applications. Galaxy pipelines provide

completely specified analyses that can be used as stan-

dardized analysis protocols to generate uniform data.

Standardized analyses and uniform data can improve clin-

ical studies by making it possible to do reproducible

analyses across different sites and to share and aggregate

data.

Galaxy also provides other features necessary for doing

high-quality cancer genome clinical studies. Galaxy can

serve as an analysis hub for clinical studies, which often

include a mixture of personnel, only some of which have

programming expertize. Bioinformaticians can automate

analyses using Galaxy’s API, while investigators without

programming knowledge can use Galaxy’s Web interface

to view and run pipelines using only a small number of

mouse clicks. Galaxy, then, makes analysis tools and

workflows available to all personnel in a clinical study.

Galaxy pipelines are modular so that investigators can

update pipelines as new tools become available; however,

pipelines are also versioned so that previous iterations are

saved and recoverable. Finally, Galaxy provides infrastruc-

ture for visualizing, reproducing, and sharing analyses, all

of which are essential for clinical studies.

Despite the value of these computational tools, this

investigation also highlights the challenges in interpreting

and using tumor genomic features to guide treatment.

Our pipelines identified KRAS and TP53 as potentially

druggable targets for both the cell lines and tumors,

which can be misleading, particularly in a clinical context.

This emphasizes the critical need to have knowledgeable

end users to interpret the data as well as the necessity for

more robust and comprehensive druggable mutation da-

tabases. However, we are confident that this tool can be

used to find actionable targets as well as identify the most

appropriate cell lines, particularly those that are nontradi-

tional research models, to be used as preclinical models

400 ª 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Reproducible Pipelines for Analyzing Tumor Genomes J. Goecks et al.



that more closely match tumor genotypes. In fact, using

CCLE data with our tumor data and this analysis pipeline

(data not shown), it appeared that the less common KP-

1N and KP-1NL cells, may be better preclinical models

for the tumors that we tested than the more commonly

used MIA PaCa2, HPAC, and PANC-1 cell lines.

Conclusions

There are many computational challenges that arise when

developing translational cancer genomics applications,

particularly those with the goal of personalized oncology.

Multi-tool pipelines are required to analyze and integrate

different types of -omic data and to combine private

patient data with public databases. These pipelines require

appropriate securities to protect patient privacy and need

to be accessible to investigators without programming

experience. Finally, they should be completely reproduc-

ible and transparent so that the pipelines can be used for

standardized analysis and data produced from the pipe-

lines can be readily compared across clinical settings.

The pipelines discussed in this paper are a first attempt

to meet these criteria for tumor variant analysis. Our

pipelines provide end-to-end support for analyzing vari-

ants from high-throughput exome and transcriptome

tumor sequencing. The exome analysis pipeline call vari-

ants, and the transcriptome analysis pipeline call variants,

computes gene expression, and identifies fusion genes.

The variant analysis pipeline annotates and filters variants

to identify rare, deleterious variants that are likely associ-

ated with disease, and further provides lists of rare, dele-

terious variants in expressed genes as well as those that

are druggable. These pipelines are made widely accessible

and reproducible via their integration with Galaxy. Galaxy

also provides useful visualization and sharing features for

pipelines and produced data.

We used these pipelines to analyze sequence data from

six PAC tumors and three common cell lines. We validated

previously published mutational and drug response data

for the cell lines. Our analysis of the tumors showed that

they shared common KRAS mutations with the cell lines.

However, the tumors also exhibited ERBB2 mutations not

found in the MIA PaCa2, HPAC, and PANC-1 cell lines,

indicating the need to re-evaluate preclinical models of

therapeutic response in the context of genomic medicine.

Methods

Cell Line and tumor tissue acquisition and
processing

The MIA PaCa2, HPAC, and PANC-1 cell lines were

obtained as frozen aliquots from ATCC (http://www.atcc.

org/). A total of six de-identified pancreatic tumor frozen

specimens were available for this study through an IRB

approved tissue banking protocol. Genomic DNA and

total RNA were isolated using Omega BioTek (http://

www.omegabiotek.com/) chemistries according to the

manufacturer’s protocols. DNA was quantitated using

NanoDrop and Qubit, and RNA was quantitated using

NanoDrop and Agilent BioAnalyzer.

Library preparation and sequencing

Total RNA from pancreatic cell lines and tumor tissue all

had RIN>8.0 and were prepared using the Illumina Tru-

Seq RNA kit (v1) according to manufacture’s protocols.

Final RNA-Seq libraries were quantitated using qPCR and

Agilent BioAnalyzer and sequenced using 100 bp paired-

end reads at 100,000 reads per sample with an Illumina

HiSeq 2000 instrument.

Custom cancer exome sequencing (WES) was per-

formed using genomic DNA prepared from the three

pancreatic cell lines. Libraries were prepared using a 577

gene cancer exome panel designed and run in duplicate

using Agilent SureSelect and NimbleGen SeqCapEZ

library preparation methods. All three cell lines were run

as SureSelect and SeqCapEZ libraries, for a total of six

libraries that were sequenced in a single lane of a 100 bp

paired-end run on a HiSeq 2000.

FASTQ file generation and initial data QC were

performed using a CASAVA v1.8.1 software (Illumina) for

both the RNA-Seq and cancer exome data sets. Uniformity

of coverage and overall data quality for the cancer exomes

was consistent with what has been reported previously for

Agilent SureSelect and NimbleGen SeqCapEZ whole exome

sequencing kits [52]. FASTQ files were used as the input

data for the Galaxy analysis pipeline. Cell line exome and

transcriptome sequencing data is available in two places:

(a) in the NCBI SRA under accessible numbers

SRX472933 and SRX472980 (Mia PaCa2), SRX472944 and

SRX473000 (HPAC), and SRX472948 and SRX473014

(PANC-1); and (b) in the main public Galaxy instance at

http://usegalaxy.org in a data library named ‘Cancer Cell

Lines.’
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