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Abstract: The use of biological drugs has improved outcomes in pediatric inflammatory bowel
disease (IBD). Prediction of the response to biological drugs would be extremely useful in IBD, and
even more so in children, who are still growing physically and psychologically. Specific clinical,
biochemical, and genetic parameters are considered predictive of response to biological drugs,
although few studies have been carried out in children with IBD. In this review, we present current
evidence on biological treatments used in pediatric IBD and the available biomarkers of response.
We examine demographics, clinical characteristics, biomarkers (genetic, genomic, and cellular), and
microbiota.

Keywords: biomarkers; pharmacogenomics; personalized medicine; inflammatory bowel disease;
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1. Introduction

Inflammatory bowel disease (IBD) is a chronic immune-mediated condition that affects
the gastrointestinal tract. Almost 25% of cases are diagnosed before the age of 18 years [1],
20% before the age of 10 years [2], and 5% before the age of 6 years [3]. The incidence
of the disease in children is increasing [4]. However, most clinical trials in this disease
have been carried out in adults, and the results have been extrapolated with minimal
changes to determine treatment in children. Pediatric IBD (pIBD) is characterized by
various factors, including a more severe phenotype than adult disease [5,6]. Since IBD is a
chronic autoimmune disease, patients diagnosed during childhood live longer with the
illness and consequently need treatment for longer.

Biological drugs and, more specifically, anti-TNF drugs such as infliximab and adali-
mumab have proven efficient for treatment of IBD in adults and in children [7]. However,
the use of biological drugs differs between children and adults with IBD [8]. For instance,
the time between diagnosis and initiation of biological treatment is shorter in children
than in adults [9,10]. In addition, not all the biological drugs approved for adult IBD are
approved for children. Therefore, treatment with biological drugs should be personalized
as much as possible in pIBD in order to avoid early non-response and maximize duration
of response in children.

There is an urgent unmet need for predicting response prior to treatment initiation
to reduce healthcare costs and avoid unnecessary treatment, allowing a more rational use
of resources. While identification of biomarkers for response to biologics in IBD has been
a priority in the last 15 years, results have only been partially positive. Unfortunately,
most biomarkers have been identified in adults or in populations combining adults and
children [11]. Very few studies have been performed exclusively in children with IBD,
although the results do point to common biomarkers for both populations and to others
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that are specific for children. Since susceptibility to IBD differs between the two popula-
tions [12,13], there may also be differences in their response to the biological drugs used to
treat the disease. Separate searches were performed for each part of the review and once
the manuscripts were analyzed, they led to other articles not detected in the searches. Some
manuscripts mentioned in the review were included because of a thorough and regular
reading of manuscripts over the years on this topic by the authors.

In this review, we summarize clinical, biochemical, genetic, genomic, and cellular
biomarkers of response to biological drugs in pIBD.

2. Pediatric Inflammatory Bowel Disease. Differences with Adults
2.1. Clinical Differences

The natural history of pIBD is characterized by a more severe phenotype than in
adults. Regarding extension, intestinal involvement is more relevant in childhood, with
more rapid and aggressive disease progression [14–16]. A study comparing IBD patients
(21,200 adults and 846 children) confirmed this evidence and demonstrated that childhood-
onset IBD was associated with an higher risk of immunomodulator use [17]. In children,
the most common symptoms include diarrhea with or without blood, abdominal pain, and
malnutrition [18].

Approximately 50% of patients experience extraintestinal disorders, which are usually
the initial manifestations of the disease [19]. In children, these are associated with more
severe disease course [20] and include weight loss, growth failure, late pubertal devel-
opment, and psychosocial problems [21,22], all of which are particularly relevant in this
population. Extraintestinal manifestations are very frequent in pediatric Crohn’s disease
(pCD), affecting 10–30% of cases [21,23,24].

Differences in CD and ulcerative colitis (UC) between adults and children have led
to the modification of the adult Montreal classification, which has been adapted to the
pediatric population, and to the creation of a new classification, the Paris classification,
which reflects changes that may occur during childhood and also allows for growth
abnormalities, which, as previously mentioned, are very relevant in this population [2,25].

In summary, developing pediatric IBD, an incurable inflammatory intestinal disease
that influences growth and puberty in patients at a vulnerable psychosocial age is even
more challenging than when it is diagnosed in adults.

2.2. Treatment of Pediatric IBD

The goal of the treatment of pediatric IBD is to induce and maintain clinical remission,
achieve normal growth, provide optimal quality of life, promote psychological health, and
reduce toxicity as much as possible. Additionally, the gold standard of optimal therapy
is endoscopic mucosal healing, which makes it possible to modify the natural history of
the disease and prevent complications of progressive bowel destruction. In observational
adult studies, younger age at onset is repeatedly considered high-risk for poor prognosis,
thus underlining the need for a highly effective treatment approach in children [26].

Treatment is selected based on the location, type of disease, severity of symptoms, and
the goal of therapy (induction therapy or maintenance of remission). The pharmacological
arsenal for pIBD treatment includes anti-inflammatory drugs such as aminosalicylates, cor-
ticosteroids, and immunomodulatory drugs (for example, thiopurines and methotrexate),
which are used as maintenance therapy, and biologic drugs, which are used for induction
and maintenance of remission. The doses and treatment guidelines for biologic drugs
are very similar to those of adults, even though the metabolism and immune system of
children may differ from those of adults [27–29].

The introduction of monoclonal antibodies against tumor necrosis factor (anti-TNF)
revolutionized the treatment of IBD. Infliximab and adalimumab are the two anti-TNF
agents approved by the United States Food and Drug Administration (FDA) and the
European Medicines Agency for use in children, although adalimumab is not approved in
perianal pCD [30]. Infliximab is administered as an intravenous infusion and adalimumab
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is administered subcutaneously for induction and maintenance therapy. Studies have
shown that early use of anti-TNF drugs in children with CD is associated with increased
rates of remission and mucosal healing, as well as with modest improvement in linear
growth [15,30–32].

Recently, the European Crohn’s and Colitis Organization (ECCO) and the Paediatric
IBD Porto group of the European Society of Paediatric Gastroenterology, Hepatology, and
Nutrition (ESPGHAN) updated their recommendations for the medical management of
pCD [33]. According to their guidelines, patients with perianal disease, penetrating type,
or severe growth retardation should be considered for up-front anti-TNF treatment in
combination with an immunomodulator.

Advances in the understanding of the etiology and pathogenesis of IBD in recent
years have led to the development of new drugs based on inhibition of immune cells [34]
or inhibition of cytokine signaling [35–37]. New categories of biologic drugs that have
been shown to be effective and safe in adults are the new horizon for IBD treatment
in children [30]. Some biological drugs that are currently approved in adults, such as
vedolizumab or ustekinumab, are used off-label in children when treatment with infliximab
or adalimumab fails [38].

Despite advances in medical treatment, surgery may still be warranted in refractory
pIBD [26]. In pCD, the median time to first surgery is longer than in patients who debut in
adulthood, although the need for surgery in pUC is earlier than in adults. Consequently, the
risk of surgical resection before the age of 30 years is higher in children than in adults [39].

3. Clinical and Biochemical Biomarkers of Response to Anti-TNFs in pIBD

Anti-TNFα drugs have proven to be effective and safe for pIBD [14], although approx-
imately one third of patients who initially respond to anti-TNF therapy lose that response
over time [40,41]; and while various clinical and biochemical characteristics predict re-
sponse to anti-TNF therapy, these are mainly based on studies in adult populations [42].
The characteristics include disease-related factors (such as disease phenotype, behavior, lo-
cation, and severity), biochemical parameters (such as C-reactive protein, fecal calprotectin,
and albumin levels) and drug-related characteristics (such as pharmacokinetic, pharma-
codynamic, and immunogenic factors) [43–47]. The ECCO-ESPGHAN guideline update
on management of CD in children recommends monitoring of fecal calprotectin or small
bowel imaging as the best markers of treatment response [33].

The PANTS study is one of the few studies to evaluate the response to anti-TNFs in
a population including children and adolescents over 6 years of age, although to date,
no subanalysis of pediatric patients has been performed. Obesity, smoking, low albumin
concentrations, higher baseline markers of disease activity, and development of immuno-
genicity were associated with low drug concentrations during induction, resulting in
non-remission at week 54 after initiation of anti-TNF treatment [48].

The level of anti-TNF agent immediately before the following administration, known
as the trough level, is increasingly used as a non-invasive biomarker. It is well known
that serum levels of infliximab and adalimumab correlate with treatment response in
patients with IBD [49,50] and pIBD [51–54]. Furthermore, these levels are associated with
histological and endoscopic disease remission in both populations [55–58].

The therapeutic range of these drugs varies considerably, especially in pIBD. Most
guidelines indicate that to achieve clinical remission of IBD, infliximab and adalimumab
concentrations in the range of 3–7 and 5–12 µg/mL, respectively, are considered ade-
quate [43,59–62]. The therapeutic ranges of both anti-TNF drugs may vary depending on
the disease phenotype or on the treatment goals [48,58,63]. Further studies are needed to
define optimal levels.

Anti-TNF drugs are antibodies against TNF that can induce the immune response and
generate anti-drug antibodies (ADAs). ADAs bind to the anti-TNF drug, thus reducing
free functional drug levels, neutralizing the therapeutic effect, and resulting in a loss of
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response [64]. ADA levels inversely correlate with drug levels and treatment response in
adults [45,65], as well as in children [66–69].

For this reason, therapeutic drug monitoring (TDM) has been proposed as a means
of optimizing biological therapies in both adults [70–73] and children [52,74–76] with IBD.
This approach appears to be more advantageous in pediatric patients, since fluctuations in
pharmacokinetic variables tend to be more pronounced in children than in adults, possibly
owing to physiological differences, such as volume of distribution, and immaturity of
enzyme systems and of clearance mechanisms [52]. In fact, Jongsma MME et al. reported
that, over one year of treatment with infliximab, patients under 10 years of age require
a more intensive treatment regimen than older patients and that these patients are more
likely to develop antibodies to infliximab [77].

Data on the optimal timing of TDM are conflicting, since some professionals use
reactive monitoring, i.e., measuring drug levels in the case of loss of response, whereas
others use proactive monitoring, i.e., measuring them at preset time points [78]. Proactive
monitoring has been shown to achieve clinical improvement and endoscopic remission in
IBD patients treated with anti-TNFs [79–81], as well as in children [82,83]. However, this
issue is quite controversial and, in fact, the recommendations form the ECCO for adults are
indecisive [33].

The current recommendation in pIBD is to measure drug levels and ADA titers after
the induction period, even though studies in this population are insufficient and data
are conflicting [30,54,84]. The use of TDM in pIBD is increasing in clinical practice, and
efficacy similar to that of adults has been demonstrated in children, with loss of response
to anti-TNF therapy [51].

Considering the high cost and potentially severe side effects of anti-TNF biologics, the
identification of underlying factors involved in the individual responses is sorely needed.
The usefulness of TDM is therefore limited, as monitoring helps physicians to modify
the existing treatment by adjusting the dose of the biological drug and/or the frequency
of administration. However, to choose the best biological drug and the best starting
dose, other types of biomarkers are needed. Moreover, these new biomarkers should be
inexpensive and easy to implement in clinical routine, which is not always simple.

4. Genomic Biomarkers of Response to Anti-TNFs in pIBD

Pharmacogenomics may play an important role in predicting response, mainly before
initiation of anti-TNF treatment in pIBD. Genetic variants and gene expression could
be useful markers for predicting response to biological drugs in children with IBD. Since
pediatric patients will have to live longer with the disease and will therefore need treatment
for longer, identification of pharmacogenomic biomarkers with the aim of personalizing
treatment is especially important in this population.

4.1. Genetic Variants

The genetics of pIBD differs from that of adult IBD, thus highlighting the relevance
of finding specific biomarkers for children [85]. Several single-nucleotide polymorphisms
(SNPs) have been associated with the response to anti-TNF drugs in adult patients with CD,
UC, or IBD. The most relevant SNPs are located at various sites: in genes involved in the NF-
kB signaling pathway activated through TLR2, TLR4, TLR5, TLR9, LY96, CD14, MAP3K14,
NFKBIA, and NFKB1; in genes of the TNF signaling pathway activated through TNF,
TNFRSF1A, TNFRSF1B, and TNFAIP3 and other cytokines and their receptors regulated by
this pathway, such as IL1B, IL1RN, IL6, IL10, IL17A, and IFN; in other genes involved in the
regulation of inflammation, for instance, IL4R, IL6R, IL23R, TGFB1, PTPN22, PPARG, and
NLRP3; and in genes involved in autophagy and apoptosis, such as ATG16L1, ATG12, and
ATG5 and FASLG and FCGR3A [9,44,86–96].

Of note, information on these biomarkers of response to infliximab and adalimumab
in pIBD is lacking. Few studies have included children [97], and even fewer have focused
only on children [98–101]. The two main strategies followed are selection of genome-wide
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association studies (GWAS) [97,98] and selection of SNPs [10,101]. Another approach has
been to identify the genetic variants associated with parameters that correlate with a higher
probability of response, such as biological drug trough level [100,101].

Dubinsky et al. aimed to find SNPs associated with response to anti-TNF drugs in
94 children with IBD by GWAS in order to develop a predictive model for primary anti-
TNFα non-response [98]. The authors found 65 SNPs associated with primary response to
infliximab in pIBD with a p value < 0.0001 (Table 1). They then tested for predictive models
of non-response to infliximab. The best predictive model included diagnosis, pANCA, and
the following SNPs: rs2836878 (BRWD1), rs975664 (TACR1), rs4855535 (FAM19A4), and
rs6100556 (PHACTR3) [98]. The SNP rs2836878 was one of the susceptibility loci for pIBD
and had not previously been reported in adults with IBD [102]. This does not indicate
that it is not associated with adult IBD, but rather suggests that there may be differences
between the two populations, thus highlighting the importance of separating them when
studying pharmacogenetic markers. The study by Dubinsky et al. is the largest to try to
identify genetic variants associated with response to biological drugs in children with IBD.

Table 1. Genetic variants associated with response or factors related to response to biological drugs in pediatric inflammatory
bowel disease.

Gen RS ID Effect Treatment Patient (Age) Reference

ATG16L1 rs2241880 PNR IFX CD+UC (<21) [98]
IRF-AS1 rs2188962 PNR IFX CD+UC (<21) [98]
CDKAL1 rs6908425 PNR IFX CD+UC (<21) [98]

None rs762421 PNR IFX CD+UC (<21) [98]
None rs2395185 PNR IFX CD+UC (<21) [98]

BRWD1 rs2836878 PNR IFX CD+UC (<21) [98]
TACR1 rs975664 PNR IFX CD+UC (<21) [98]
TAFA4 rs4855535 PNR IFX CD+UC (<21) [98]
None rs4796606 PNR IFX CD+UC (<21) [98]

PHACTR3 rs6100556 PNR IFX CD+UC (<21) [98]
CNBD1 rs2943177 PNR IFX CD+UC (<21) [98]

COL22A1 rs11991611 PNR IFX CD+UC (<21) [98]
DOCK1 rs3740543 PNR IFX CD+UC (<21) [98]
LRRC7 rs7521532 PNR IFX CD+UC (<21) [98]

CLSTN2 rs4605505 PNR IFX CD+UC (<21) [98]
TNFRSF21 rs2103867 PNR IFX CD+UC (<21) [98]
PHACTR1 rs10485363 PNR IFX CD+UC (<21) [98]
HAPLN2 rs3795727 PNR IFX CD+UC (<21) [98]

PHACTR1 rs6906890 PNR IFX CD+UC (<21) [98]
NLRP13 rs302827 PNR IFX CD+UC (<21) [98]

ETV6 rs2723829 PNR IFX CD+UC (<21) [98]
LRP1B rs1372256 PNR IFX CD+UC (<21) [98]
DCHS2 rs13138970 PNR IFX CD+UC (<21) [98]

KIAA1755 rs1205434 PNR IFX CD+UC (<21) [98]
TACR1 rs7588326 PNR IFX CD+UC (<21) [98]
TACR1 rs3771823 PNR IFX CD+UC (<21) [98]
ATXN1 rs12527937 PNR IFX CD+UC (<21) [98]
KCNQ5 rs3757105 PNR IFX CD+UC (<21) [98]
CNTN1 rs278917 PNR IFX CD+UC (<21) [98]

HAPLN2 rs12567958 PNR IFX CD+UC (<21) [98]
CNBD1 rs1880473 PNR IFX CD+UC (<21) [98]

LINC00290 rs7689941 PNR IFX CD+UC (<21) [98]
GPC3 rs1264379 PNR IFX CD+UC (<21) [98]
TPST2 rs3088103 PNR IFX CD+UC (<21) [98]

TRERF1 rs4711716 PNR IFX CD+UC (<21) [98]
MGAM rs10464448 PNR IFX CD+UC (<21) [98]
EEPD1 rs2540678 PNR IFX CD+UC (<21) [98]

LINC00290 rs7659755 PNR IFX CD+UC (<21) [98]
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Table 1. Cont.

Gen RS ID Effect Treatment Patient (Age) Reference

None rs770389 PNR IFX CD+UC (<21) [98]
CNTN1 rs7309734 PNR IFX CD+UC (<21) [98]
CPA6 rs10808755 PNR IFX CD+UC (<21) [98]

RBM26 rs1155848 PNR IFX CD+UC (<21) [98]
None rs1592749 PNR IFX CD+UC (<21) [98]
None rs765132 PNR IFX CD+UC (<21) [98]
None rs4707930 PNR IFX CD+UC (<21) [98]
None rs7905482 PNR IFX CD+UC (<21) [98]
None rs7059861 PNR IFX CD+UC (<21) [98]
None rs5975453 PNR IFX CD+UC (<21) [98]
None rs4077511 PNR IFX CD+UC (<21) [98]
None rs2825673 PNR IFX CD+UC (<21) [98]
None rs7003556 PNR IFX CD+UC (<21) [98]
None rs1243519 PNR IFX CD+UC (<21) [98]
None rs2044111 PNR IFX CD+UC (<21) [98]

DGKB rs17168564 PNR IFX CD+UC (<21) [98]
LOC105379171 rs7726515 PNR IFX CD+UC (<21) [98]

TSPAN18 rs835780 PNR IFX CD+UC (<21) [98]
TSPAN18 rs835791 PNR IFX CD+UC (<21) [98]
TSPAN18 rs7124825 PNR IFX CD+UC (<21) [98]

None rs9556658 PNR IFX CD+UC (<21) [98]
None rs1555901 PNR IFX CD+UC (<21) [98]
None rs4465121 PNR IFX CD+UC (<21) [98]
None rs10269232 PNR IFX CD+UC (<21) [98]

DGS2-AS1 rs1667216 PNR IFX CD+UC (<21) [98]
None rs9404502 PNR IFX CD+UC (<21) [98]
None rs5977968 PNR IFX CD+UC (<21) [98]
None rs12937472 PNR IFX CD+UC (<21) [98]
None rs4301261 PNR IFX CD+UC (<21) [98]
None rs6529954 PNR IFX CD+UC (<21) [98]
None rs12559781 PNR IFX CD+UC (<21) [98]
None rs2825699 PNR IFX CD+UC (<21) [98]

DCDC2C rs11903032 PNR IFX CD+UC (<21) [98]
TLR4 rs5030728 SubT-IFX IFX CD+UC (<18) [100]
LY96 rs11465996 LTR IFX, ADL UC (<18) [100]

SubT-IFX IFX CD+UC (<18) [100]
TLR2 rs1816702 SupT-IFX IFX CD+UC (<18) [100]

AB-ADL ADL CD+UC (<18) [100]
TNFRSF1B rs3397 LTR IFX, ADL CD (<18) [100]

SubT-ADL ADL CD+UC (<18) [100]
CD14/TMCO6 rs2569190 AB-IFX IFX CD+UC (<18) [100]

AB-ADL ADL CD+UC (<18) [100]
Sup-IFX IFX CD+UC (<18) [100]

IL10/IL19 rs1800872 LTR IFX, ADL CD (<18) [100]
IL17A rs2275913 LTR IFX, ADL CD (<18) [100]

rs10499563 LTR IFX, ADL CD (<18) [100]
HLA-DQA1*05 Higher immunogenicity [97]

FCGR3A rs396991 RCR, Higher immunogenicity,
Lower IFX levels IFX CD+UC (7–18) [101]

PNR, primary non-response; LTR, long-term response; CD, Crohn’s disease; UC, ulcerative colitis; IFX, infliximab; ADL, adalimumab;
SubT, subtherapeutic trough levels; SupT, supratherapeutic trough levels; AB, absolute trough level; RCR, reduced clinical response at the
end of induction, at 22 weeks and at 52 weeks.
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Our group recently applied another strategy to analyze response to anti-TNFs in
pIBD. We used Kaplan–Meier curves to analyze 21 SNPs in TLR2, TLR4, TLR9, LY96, CD14,
MMP3K14, TNFRSF1A, TNFRSF1B, TNF, TNFAIP3, FASLG, IL10, IL1B, IL6, and IL17A in
association with long-term response in pediatric patients diagnosed with CD or UC [10].
Using this approach, we identified the polymorphisms rs1800872 (IL10), rs2275913 (IL17A),
rs10499563 (IL6), and rs3397 (TNFRSF1B) as being associated with response to anti-TNF
agents in pCD. None of these SNPs was significantly associated with response to infliximab
in adults diagnosed with CD, suggesting that they could be differential biomarkers for
response to biological drugs in children [9]. In the same study, the SNP rs11465996 in LY96
was associated with response to anti-TNF drugs in pUC. This SNP has not yet been studied
in adults with UC.

Another strategy used to identify SNPs related to efficacy of biological drugs in pIBD
is the use of parameters associated with a higher probability of response, such as biological
drug trough level (see above).

This strategy was first successfully tested in adults with CD treated with infliximab [9].
The same approach was subsequently used to identify genetic polymorphisms associated
with serum trough levels of infliximab and adalimumab during maintenance therapy in
children diagnosed with IBD (Table 1) [100]. Remarkably, patients with rs1816702 CC
(TLR2) had almost double the serum trough levels of patients with the CT or TT genotypes.
This difference was not observed in serum trough infliximab levels. These differences
between infliximab and adalimumab could facilitate selection between the drugs according
to genotype.

Since anti-drug antibodies are associated with failure of biological drugs in IBD, ge-
netic variants associated with the presence of these antibodies could be useful for predicting
response to the drugs. Along these lines, Sazonovs A et al. found that patients carrying the
HLA-DQA1*05 allele more frequently had antibodies against anti-TNF agents in adults and
in pediatric patients (aged six years or older) with CD. The finding was associated with a
worse response to these treatments [97]. Up to 90% of CD patients who received infliximab
and carried HLA*DQA1*05 had developed anti-infliximab antibodies by week 54. This is a
potential biomarker that should be specifically explored in children.

Consistent with our approach, other authors explored the association of the SNPs
rs3936991 (FCGR3A) and rs1800629 (TNF) with response, serum trough levels, and ADA
production in IBD patients treated with infliximab [101]. Curci et al. showed that variant
C rs396991 was associated with a poorer clinical response at the end of induction and at
22 and at 52 weeks of treatment with infliximab. In addition, patients with this variant
had lower infliximab levels and were more likely to produce ADAs than patients with the
wild-type genotype [101].

Unfortunately, none of the SNPs that have been associated with response to anti-TNFs
in children have been validated in other studies. More studies are needed to explore the
usefulness of these biomarkers. More genetic data are necessary to personalize anti-TNF
therapy in patients with pIBD according to type of disease and biological drug to be used.

4.2. Biomarkers of Gene Expression

Specific gene expression profiles in the inflamed tissues of adult patients with CD
and UC have been associated with response to anti-TNF drugs. The genes identified
include TNFRSF11B, STC1, PTGS2, IL13A2, IL11, OSM, TREM1, CCR2, and CCL7 [103–107].
Expression of OSM and its receptor OSMR was recently shown to be higher in the colonic
mucosa of adult patients not achieving endoscopic remission [106]. The expression of
these genes predicted response to anti-TNF therapy with an area under the curve (AUC)
of 73.7%. However, none of these studies focused on the pediatric population. The only
gene expression studies carried out in children with IBD to date [99,108] measured gene
expression in whole blood, instead of in inflamed tissue (Table 2).

In Salvador-Martín et al., which included 33 children, expression of SMAD7, FCGR1A,
FCGR1B, and GBP1 was found to be a pharmacogenomic biomarker of early response to
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anti-TNF agents in children with IBD. SMAD7 expression was decreased in non-responders
before initiation of treatment and after two weeks on the treatment [99]. The same authors
conducted a transcriptome analysis which revealed 32 genes differentially expressed in
children with IBD between responders and non-responders before initiation of treatment
with anti-TNFs and 44 genes two weeks later. Of these, FCGR1A, FCGR1B, and GBP1 were
overexpressed in non-responders after two weeks of treatment with anti-TNFs [108].

Given the invasive nature of biopsies to obtain colon samples, gene expression
biomarkers from whole blood could prove advantageous, especially in children. Lit-
tle is known about this subject in children with IBD. A meta-analysis found genes to be
differentially expressed in the blood and colon biopsies of children with UC, thus validat-
ing the approach of identifying biomarkers of IBD in blood, although the authors did not
explore efficacy of biological drugs [109]. TNF was not upregulated in damaged tissues
or in whole blood. Increased expression of receptors in genes such as TNFRSF1B, OSMR,
IFNAR2, and CSF2RA can explain the lack of increase in their ligand in colonic biopsies.
Finally, there is a certain correspondence in gene expression between blood and colon
tissue.

Ostrowski et al. identified a group of 15 genes (ANOS1, ANXA3, ATP9A, CACNA1E,
COX6B2, FCGR1B, GALNT14, IL18R1, ITGB4, KLRF1, MMP9, OPLA, PFKFB3, S100A12,
and UTS2R) in peripheral blood with the potential to discriminate between children with
clinically active IBD and healthy donors, but not between adults with IBD and healthy
donors [110].

Table 2. Gene expression biomarkers associated with disease activity or response to biological drugs in children with IBD.

Gen Comparison Time/Tissue Disease/Treatment Ref

SMAD7 *R vs. NR 0, 2 W/Blood IBD/Anti-TNFs [99]
FCGR1A *NR vs. R 2 W/Blood IBD/Anti-TNFs [108]
FCGR1B *NR vs. R 2 W/Blood IBD/Anti-TNFs [108]

GBP1 *NR vs. R 2 W/Blood IBD/Anti-TNFs [108]
ANOS1 *Active IBD vs. Controls Blood IBD [110]
ANXA3 *Active IBD vs. Controls Blood IBD [110]
ATP9A *Active IBD vs. Controls Blood IBD [110]

CACNA1E *Active IBD vs. Controls Blood IBD [110]
COX6B2 *Active IBD vs. Controls Blood IBD [110]
FCGR1B *Active IBD vs. Controls Blood IBD [110]

GALNT14 *Active IBD vs. Controls Blood IBD [110]
IL18R1 *Active IBD vs. Controls Blood IBD [110]
ITGB4 *Active IBD vs. Controls Blood IBD [110]
KLRF1 *Active IBD vs. Controls Blood IBD [110]
MMP9 *Active IBD vs. Controls Blood IBD [110]
OPLAH *Active IBD vs. Controls Blood IBD [110]
PFKFB3 *Active IBD vs. Controls Blood IBD [110]
S100A12 *Active IBD vs. Controls Blood IBD [110]
UTS2R *Active IBD vs. Controls Blood IBD [110]

TNFRSF1B *UC vs. Controls Blood/CB UC [109]
OSMR *UC vs. Controls Blood/CB UC [109]

IFNAR2 *UC vs. Controls Blood/CB UC [109]
CSFR2A *UC vs. Controls Blood/CB UC [109]

NR, non-responders; R, responders; IBD, inflammatory bowel disease; UC, ulcerative colitis; CB, colon biopsies. * Higher levels.

A role as potential biomarkers in IBD has also been proposed for micro RNAs
(miRNAs) [111]. One study identified the expression of three miRNAs in whole blood
associated with response to prednisone and infliximab in children with pIBD [112]. The list
subsequently increased to 11 miRNAs associated with response to anti-TNF treatment, glu-
cocorticoids, or both [113]. The analysis of these 11 genes showed that increased baseline
expression, i.e., prior to administration of anti-TNF agents, returned to levels comparable
to those of healthy subjects after anti-TNF treatment in eight miRNAs (miR-126, miR-26a,
miR-26b, miR-454, miR-146a, miR-146b, miR-320a, and let-7c). Furthermore, five of these
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miRNAs were also increased in biopsies of inflamed tissue (miR-146a, miR-146b, miR-320a,
miR-126, and let-7c) [113]. However, the main limitation of this study was that all the
recruited patients responded to treatment.

Another study with miRNAs identified miR-15a as a biomarker of activity in pediatric
CD [114]. Since decreased activity directly correlates with response, this molecule could be
a potential pharmacogenomic biomarker of biological drugs in children with IBD. More
studies are needed to improve our knowledge of miRNAs as biomarkers of pIBD in clinical
practice.

A recent search for differentially expressed genes in the anti-TNF response led the
authors to suggest that IL6 levels prior to initiation of infliximab are associated with primary
nonresponse (measured at 14 weeks), in addition to body mass index, disease course, and
C-reactive protein levels in patients diagnosed with CD [115]. Unfortunately, these authors
did not include information about the number of children recruited. It would be interesting
to search for a cutoff value of IL6 as a biomarker or as a predictor of the response to
biological therapy in children with IBD. Our group found that the SNP rs10499563 C (IL6)
was associated with anti-TNF trough levels in adults with maintenance therapy, but not in
children [9,100]. More studies are needed to identify the potential role of IL6 as a biomarker
in children, adults, or both.

A study with 913 children with CD found a genetic signature associated with strictur-
ing complications and that early anti-TNF therapy reduces penetrating, but not stricturing,
disease complications [116]. This combination makes it possible to personalize anti-TNF
treatment in children with CD.

5. Other Biomarkers of Response to Anti-TNFs in pIBD

Regulatory T cells (Tregs) play an essential role in the pathogenesis of IBD, in which
Treg counts are decreased [117]. Anti-TNF therapy is known to increase the number and
function of Tregs in IBD [118]. The study of these cells may help to predict response to
anti-TNF agents, because upregulation is not as efficient in non-responders as in respon-
ders [119,120].

Few studies have assessed Tregs in children, although preliminary results suggest an
effect similar to that observed in adults. Ricardelli et al. showed that FOXP3+ T-cell counts
were lower in the mucosal samples of children with active CD than in healthy controls.
However, this difference disappeared after the initiation of infliximab [121].

Furthermore, intestinal microbiota may also modulate the immune system and play
an acute role in IBD [122]. It has been suggested that defects in Treg function might induce
changes in the gut microbiome, leading to loss of tolerance to commensal bacteria [123]. In
children, Conte et al. observed higher numbers of mucosa-associated aerobic and facul-
tative anaerobic bacteria in IBD patients than in healthy controls [124]. The authors also
observed a decrease in counts of Bacteroides vulgatus. A subsequent study differentiating
between CD and UC in children showed a decrease in counts of Faecalibacterium prausnitzii
and an increase in those of Escherichia coli in children with CD [125]. However, no differ-
ences were found in the composition of microbiota in children with UC, in contrast with
findings in adults [125].

Concerning anti-TNF therapy and the gut microbiome in children with IBD, a higher
number of multiple short-chain, fatty-acid-producing bacteria has been associated with a
sustained response to infliximab in pediatric CD [126]. In addition, infliximab increased
the diversity of the gut microbiome, and its composition resembled that of healthy children.
These results were recently confirmed in a larger cohort of pediatric CD patients, where bile
salt hydrolase-producing bacteria are also enriched after treatment with infliximab [127].

The aforementioned data suggest that Treg count and functionality, as well as the
gut microbiome, could act as relevant biomarkers of response to anti-TNFs. However,
this observation is restricted to infliximab. More studies are necessary to validate these
biomarkers and to find new ones associated with the different biological drugs used in
pIBD.



Pharmaceutics 2021, 13, 1786 10 of 16

The list of factors thought to affect the efficacy of anti-TNFs is growing. It was
recently reported that vitamin D deficiency was associated with a higher risk of early
discontinuation of anti-TNF therapy (14.5% vs. 0%) in children with IBD [128].

6. Conclusions and Perspectives

In this review, we present clinical, biochemical, genetic, genomic, and cellular biomark-
ers of response to anti-TNF therapy in pIBD and discuss their differences with adults. We
also discuss the role of the microbiome in this disease. Some markers, such as fecal cal-
protectin, C-reactive protein, and serum trough anti-TNF level are supported by their
utility and strong clinical evidence and are useful in current clinical practice. There are
currently no predictive biomarkers, prior to treatment initiation, that can be used to guide
the personalization of biologic therapy in pIBD. Genomic biomarkers need to be validated
in larger cohorts of patients before they can be applied in clinical practice. Some of them
are very promising and, if confirmed, could be useful in real practice in a few years.

Several reviews focusing on children with IBD also address prediction of response to
anti-TNF agents. However, ours is the only one to add studies specifically performed in
children diagnosed with IBD and to focus on biomarkers of response to biological drugs.
Research should also be extended to other biologic drugs in IBD that are used off-label in
children, such as vedolizumab and ustekinumab. Currently no clear biomarkers have been
identified for these drugs in children with pIBD.

Nevertheless, regardless of the reason for the differences observed, the identification
of biomarkers of response to biological drugs in pediatric IBD could help to personalize
therapy and prolong the useful life of existing treatments, while we wait for new drugs
to be developed. Although it is clear that the basis for personalized medicine is not yet
available and remains an unmet need in daily clinical practice, the identification of response
biomarkers to anti-TNF drugs could improve future treatment in pediatric patients with
this chronic disease.
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