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A B S T R A C T

Bats carry a great diversity of zoonotic viruses with a high-impact on human health and livestock. Since the
emergence of new coronaviruses and paramyxoviruses in humans (e.g. Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV) and Nipah virus), numerous studies clearly established that bats can maintain some of
these viruses. Improving our understanding on the role of bats in the epidemiology of the pathogens they
harbour is necessary to prevent cross-species spill over along the wild/domestic/human gradient. In this study,
we screened bat faecal samples for the presence of Coronavirus and Paramyxovirus in two caves frequently visited
by local people to collect manure and/or to hunt bats in Zimbabwe. We amplified partial RNA-dependent RNA
polymerase genes of Alpha and Betacoronavirus together with the partial polymerase gene of Paramyxovirus.
Identified coronaviruses were related to pathogenic human strains and the paramyxovirus belonged to the re-
cently described Jeilongvirus genus. Our results highlighted the importance of monitoring virus circulation in
wildlife, especially bats, in the context of intense human-wildlife interfaces in order to strengthen prevention
measures among local populations and to implement sentinel surveillance in sites with high zoonotic diseases
transmission potential.

Bats comprise nearly 1200 species and constitute ≈20% of living
mammal species and are distributed on all continents except Antarctic,
Artic and a few islands (Simmons, 2005). Due to their unique (only
flying mammals) and diverse lifestyles, bats differ from other sylvatic
disease mammalian reservoirs and are predisposed for the acquisition
and maintenance of viruses (Hayman et al., 2013). During the past two
decades, bats (Chiroptera) have been identified as the reservoir host of a
number of high-impact zoonotic viruses known to induce highly lethal
diseases in humans and domestic animals (Brook and Dobson, 2015).
They have been associated with emerging Paramyxovirus (Nipah and
hendra viruses), Coronavirus (MERS-CoV and SARS-CoV) and Filovirus
(Ebola and Marburg viruses) (Smith and Wang, 2013) which attracted

global attention due to their severity and/or large-scale spread. Those
emergences have been caused by the ever-increasing interfaces between
domestic animals, people and bat communities created by current
global and human changes (Brierley et al., 2016). Human activities that
increase exposure to bats induce new and more infectious contacts
between species and promote the spill over of unknown pathogens from
bats to other animals. The identification of the reservoir species is key
for the control of these emerging infectious diseases in order to pre-
vent/manage practices at risk of pathogens spill over.

Although numerous studies have been implemented on bat-borne
viruses around the world, large gaps still exists concerning the viral
diversity among Chiroptera especially in some regions that attracted
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little disease research until now. The Republic of Zimbabwe is situated
southern Africa in the subtropical zone and has an exceptional great
diversity of wildlife. To date more than 60 bat species have been re-
corded in Zimbabwe (Monadjem et al., 2010). Accordingly, Zimbabwe
represents a potential hot spot for future emergence of microorganisms
from bats that can transmit infections to humans and livestock (Morse
et al., 2012). Many cases of rabies, anthrax, African swine fever and
foot and mouth diseases have been recorded in the last 20 years. Fur-
thermore, Lyssavirus were demonstrated in bats (Duvenhage virus) and
in cats and dogs (Mokola Virus, Lagos bat virus) (Bingham et al., 2001;
Foggin, 1982). In the 1970s, a traveller who passed through Zimbabwe
was probably infected with theMarburg virus after visiting the Chinhoyi
caves about 135 km northwest of Harare, capital of Zimbabwe
(Peterson et al., 2006). We report here the first evidence of circulation
of Coronavirus and Paramyxovirus in Hipposideros bat species in Zim-
babwe.

Between June 2016 and February 2017, 99 and 146 faecal samples
were respectively collected in two caves (Fig. 1) regularly visited by
local people to collect bat guano used as fertiliser. Each cave was visited
twice at two different periods. Two square meters plastic sheets were
laid down in the caves, underneath the bat colonies for overnight (five
plastic sheets per cave). Faeces were collected from each plastic sheet at
a rate of ≈ 6 g of pooled faeces in 15ml tube with 6ml of homemade
RNA stabilisation solution (Pol Scientific, 1999). Samples were stored at
−80 °C until laboratory analyses.

Bat species were identified by Cytochrome b amplification (Kocher
et al., 1989) and sequencing after DNA extraction using Qiamp DNA
stool (Qiagen S.A, Courtaboeuf, France). Cytochrome b sequences were
then compared to available bat sequences in the GenBank database
using Basic Local Alignment Search Tool (BLAST) program and species
were confirmed by phylogenetic analysis (supplementary material,
Fig. 1S,). Only bats from Hipposideros spp., representing two distinct

colonies, were identified. To date, two different Hipposideros bat species
have been reported in Zimbabwe; Hipposideros caffer and Hipposideros
vittatus (Monadjem et al., 2010). Our samples were closer to Hip. caffer
than any other Hipposideros spp. (supplementary material, Fig. 1S,).

RNA extraction was carried out from all faecal samples collected.
Briefly, two sample tubes from the same plastic sheet were pooled and
transferred in a 50ml tube with 20ml of PBS 1× then vigorously
mixed. All together we made 73 (51 in June 2016 and 22 in February
2017) pools from Mabura cave and 50 (35 in June 2016 and 15 in
February 2017) pools from Magweto cave respectively. Tubes were
centrifuged at 4500 rpm for 10min. Supernatant was filtered using
gauze in order to eliminate faecal matter and transferred in fresh tubes
then re-centrifuged at 4500 rpm for 10min. Supernatant was filtered
through a 0.2 μm filter to remove eukaryotic and bacterial sized parti-
cles. Seven millilitres of filtered samples were centrifuged at 250,000 g
for 2.5 h at 4 °C. The pellets were re-suspended in 600 μl H20 molecular
grade and 150 μl were used to extract RNA using NucleoSpin® RNA Kit
(Macherey-Nagel, France) according to the manufacturer's protocol.
The 123 RNA samples extracted from the pools were then reverse
transcribed using random hexamers and screened for Coronavirus (CoV)
and Paramyxovirus (ParV) as previously described employing a pan-
coronavirus and pan-paramyxovirus nested RT-PCR directed against
partial polymerase RNA-dependent RNA polymerase (RdPd) and poly-
merase gene sequences, respectively (Chu et al., 2011; Tong et al.,
2008). PCR products (415 bp for CoV and 531 bp for ParV) were
agarose gel purified (Geneclean Turbo Kit, MP Biomedicals, France) and
directly sequenced in both 5′ and 3′ directions using cycle sequencing
and dye terminator methodologies (Eurofins, Germany). Overlapping
sequences were assembled into contiguous sequences using SEQMAN
DNASTAR software (lasergene, DNASTAR, Inc., Madison, WI, USA).
Partial non-concatenated nucleic acid sequences of the new Coronavirus
and Paramyxovirus as well as from Cytochrome B were aligned using

Fig. 1. Geographical distribution of bats faecal samples collection sites.
Blues circles represent the caves where bat faecal samples were collected. The name of the caves as well as the GPS location is noted next to the circle. Number of faeces collected per site
is shown in brackets.
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MEGA 7 (Kumar et al., 2016), with minor manual adjustments. Sites
that could not be unambiguously aligned were excluded and divergent
regions were excluded from subsequent analyses. Phylogenies were
inferred using both Bayesian methods and Maximum Likelihood (ML)
method implemented in MrBayes v3.2.6 and in PhyML respectively
(Guindon et al., 2010; Ronquist et al., 2012). Mr. Bayes ran for four
million generations for Coronavirus RdRp and Paramyxovirus polymerase
genes, respectively, with a 10% burn-in. Bayesian parameters were
examined with the Tracer program (Tracer, 2003). Convergence diag-
nostic for the Estimated sample Size (ESS) values and Potential Scale
Reduction Factor (PSRF) were>500 and equal to 1 respectively. In ML
method, the reliability of branching orders was tested using the boot-
strap approach (1000 replicates). The suited evolution model
(GTR+ Γ4+ I for Coronavirus and Cytochrome B, and GTR+ Γ4 for
Paramyxovirus) was selected by Akaie's Information criterion (AIC)
using Topali software (Milne et al., 2009). From both phylogenetic
analyses, similar tree topologies were obtained (data not shown).
Identities analyses were done using ClustalX (Larkin et al., 2007).

We characterised Alphacoronavirus in Mabura cave as well as
Betacoronavirus and Paramyxovirus in Magweto cave from roundleaf
bats, which was the only bat genus observed in the two visited caves at

the time of our samplings. Our new Alphacoronavirus formed a well
sustained specific sub-clade close to the human Coronavirus 229E strain
(HCoV-229E) (Fig. 2) that circulates in human population worldwide
and mostly causes mild respiratory disease (Masters and Perlman,
2013). This close relationship is confirmed by a high percentage (95%)
of amino acid identities (Supplementary Material, Table S1). Interest-
ingly, our BtCoV 229E related strains are distinct to those identified in
Hip. caffer rufer from Ghana (Pfefferle et al., 2009). Our results are in
accord with the recently suggested long evolutionary history of 229E-
related CoV in old world hipposiderid bats (Corman et al., 2015).
Nonetheless it is unclear whether bats directly transmitted this virus to
human or if an intermediate host was involved in the transmission
chain such as demonstrated for SARS-CoV and MERS-CoV (Smith and
Wang, 2013).

In Mabura cave, during our first visit during the cold dry season in
June 2016 we collected faeces from three plastic sheets and Bat 229-E
like virus was amplified from samples issued from each plastic sheet
suggesting an important circulation of this virus in the bat colony.
Interestingly, no viruses were amplified from the second sampling in
this cave during the rainy season in February 2017. Nonetheless, during
the second visit we observed a consequent diminution of bats present in

0.4

Fig. 2. Phylogenetic analysis of partial RNA-dependent RNA polymerase (RdRp) of the newly identified Alphacoronavirus and Betacoronavirus sequences from Zimbabwe. New partial RdRp
(415 bp) CoV sequences are represented in bold and were compared to previously identified Alphacoronavirus and Betacoronavirus available in the GenBank. Accession numbers are
showed before the strain name. Only Bayesian posterior probabilities are showed. Asterisks at nodes represent posterior probability ≥90%. Scale bars indicate the number of base
substitutions per site.

M. Bourgarel et al. Infection, Genetics and Evolution 58 (2018) 253–257

255



the cave and our sampling was lower than expected. This could be due
to Hipposideros spp. seasonal movement. Besides, the absence of
Alphacoronavirus could also be due to temporal variation in virus
shedding in bats (Plowright et al., 2015).

In Magweto cave we amplified Betacoronavirus from only one pooled
sample (Fig. 2). It could be due to a low circulation of this virus in the
bat colony. Phylogenetic analyses showed that this new virus formed a
specific clade with betacoronaviruses isolated in Asia and Africa
(Gouilh et al., 2011; Pfefferle et al., 2009; Quan et al., 2010) with 90%
to 87% of amino acid identities (Supplementary material, Table S1) and
together they formed a sister clade with the described SARS-CoV strains
with 77% of amino acid identities (Fig. 2, Supplementary material,
Table S1). The SARS-CoV related (SARS-CoVr) sister clade is well sus-
tained and our new Bt SARS-CoVr strain is positioned at the root of this
clade. This finding could strengthen the African origin hypothesis of
SARS-like group (Pfefferle et al., 2009; Quan et al., 2010). Nonetheless,
this hypothesis is controversial and, in order to disentangle the Bt SARS-
CoVr origin, future studies should focus on Hipposideridae as well as on
Rhinolophidae and Rhinonycteridae since these three bat families di-
verged from a common ancestor, which potentially hosted the ancestor
of SARS-related COVs (Foley et al., 2015; Gouilh et al., 2011).

Additionally, SARS-CoVr have been characterised from these three bat
families (Pfefferle et al., 2009; Smith et al., 2016; Wu et al., 2016).

SARS-CoV emerged at the beginning of 21e century following a
human transmission by an intermediary host, a palm civet, in China.
More than 8000 human infections were reported around the world with
a case fatality rate of up to 10% (Smith and Wang, 2013). To date
several studies evidenced different bat species as potential SARS and
SARS-like CoV reservoirs worldwide (Li et al., 2005).

In addition, in the same cave we amplified a Paramyxovirus closer to
bat Paramyxovirus (77 to 87% of amino acid identities) related to the
putative Jeilongvirus genus (Fig. 3, Supplementary material Table S1)
than other Paramyxovirus lineages. To date, the pathogenic potential of
the viruses from this genus is currently unknown. However, the Beilong
virus was discovered on human kidney cell lines and neutralising an-
tibodies against J virus have been detected in rodents, pigs and humans
(Audsley et al., 2016). In addition, bat viruses belonging to the related-
Jeilongvirus genus were widely detected in China and more recently in
Luxembourg in Europe (Pauly et al., 2017). Altogether, these data
highlight the need for further studies on the zoonotic potential of these
viruses.

Although Coronavirus and Paramyxovirus have been widely

Fig. 3. Phylogenetic analysis of partial polymerase gene of the newly identified Paramyxovirus (ParV) sequence from Zimbabwe. New partial pol (531 bp) ParV sequences are represented
in bold and were compared to previously identified Paramyxovirus available in the GenBank. Accession numbers are showed before the strain name. Only Bayesian posterior probabilities
are showed. Asterisks at nodes represent posterior probability ≥90%. Scale bars indicate the number of base substitutions per site
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described in bats around the world (Anthony et al., 2017; Drexler et al.,
2012), our results pointed out the need to widen viral screening in
under-investigated countries particularly when the country has con-
siderable potential as a hot spot for emerging infectious diseases (Morse
et al., 2012). Our study focused on two caves in Zimbabwe with an
important bat-human interface throughout guano harvesting and/or
bats poaching. Non-invasive sampling provides a rapid approach to
target site of interest for in-depth studies on virus prevalence in bats
and temporal variation in virus shedding in bats (viral ecology) and
provides a first risk assessment of the transmission of bat-borne pa-
thogens to humans. Finally, our study will enable, in agreement with
the local health authorities, to carry out a specific communication
within the local populations on the risk of contamination and how to
prevent it.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.meegid.2018.01.007.
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