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Abstract: β-glucuronidase is a lysosomal glycosidase enzyme which catalyzes the extracellular
matrix of cancer and normal cells and the glycosaminoglycans of the cell membrane, which is
important for cancer cell proliferation, invasion, and metastasis. Liver cancer, colon carcinoma, and
neoplasm bladder are triggered by the increase of the level of β-glucuronidase activity. The most
valuable structures are indole and oxadiazole which has gain immense attention because of its
pharmacological behavior and display many biological properties. Twenty-two (1–22) analogs
of indole based oxadiazole were synthesized and screened for their inhibitory potential against
β-glucuronidase. Majority of the compounds showed potent inhibitory potential with IC50 values
ranging between 0.9 ± 0.01 to 46.4 ± 0.9 µM, under positive control of standard drug D-saccharic
acid 1,4 lactone (IC50 = 48.1 ± 1.2 µM). Structural activity relationship (SAR) has been established
for all synthesized compounds. To shed light on molecular interactions between the synthesized
compounds and β-glucuronidase, 1, 4, and 6 compounds were docked into the active binding site
of β-glucuronidase. The obtained results showed that this binding is thermodynamically favorable
and β-glucuronidase inhibition of the selected compounds increases with the number of hydrogen
bonding established in selected compound-β-glucuronidase complexes.
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1. Introduction

β-glucuronidase is an enzyme that catalyzes the extracellular matrix of cancer and normal cells
and also catalyzes glycosaminoglycans of the cell membrane. This catalysis is important for cancer
cell proliferation, invasion, and metastasis [1,2]. Liver cancer, colon carcinoma and neoplasm bladder
are caused by the increase level of β-glucuronidase activity [3–6]. β-glucuronidase has been used
as an important tool in the detection of real time monitoring, clinical therapies, diagnosis in early
stage, and used in tumor marker [7,8]. High level of β-glucuronidase is associated with various
diseases including epilepsy [9] and other physiological disorder. β-glucuronidase increase level cause
liver damage which is a major issue worldwide [10]. The deficiency of GUS in the human body
causes mucopolysaccharidosis type VII (MPSVII, known as Sly syndrome) due to the accumulation
of glycosoaminoglycans containing glucuronic acid residues, leading to lysosomal storage in the
brain [11,12]. It is very important to inhibit this enzyme to prevent such physiological disorder.
The heterocyclic compounds cover one of the important fields in medicinal chemistry. They occupy
an important position in the structures of a variety of natural products. One of the most valuable
structures is indole which has gain immense attention because of its pharmacological behavior and
has been considered a vital scaffold [13,14]. A number of indole-based compounds have been reported
for their potential anticancer activities [15]. Hydrazono-indole analogs have been reported to induce
apoptosis [16], and to interact with tubulin [17–19].

On the other hand, compounds that contained oxadiazole ring in their structures also display many
biological properties including anticancer [20], cytotoxic and antimicrobial [21], anticonvulsant [22],
antiepileptic [23], anti-TB [24], and anti-allergic activities [25]. Both structural moieties are potent and
their combination has been reported to have enhanced biological activity [26,27].

Our research group has reported various heterocyclic compounds classes as potent inhibitors of
β-glucuronidase [28–35]. Here, we report the synthesis and the β-glucuronidase inhibition of a series
of 22 indole-based oxadiazole derivatives.

2. Results and Discussion

2.1. Chemistry

A series of indole based 2,5-disubstituted-1,3,4-oxadiazoles (1–22, Scheme 1) was synthesized
affording to literature protocol [36]. The methyl 2-(1H-indol-2-yl) acetate (a) was refluxed with
ethanolic hydrazine solution for six hours to provide 2-(1H-indol-2-yl) acetohydrazide (b) followed by
reflux 2-(1H-indol-2-yl) acetohydrazide (b) was formerly treated with diverse aromatic carboxylic acids
in POCl3 to achieve indole based oxadiazoles (1–22). Characterization of all synthesized compounds
was performed using 1H NMR, 13C NMR, and mass spectra which originated to be in complete
arrangement with the projected structures.
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In this study, we have carried out the synthesis of indole based oxadiazole analogs (1–22) and their
evaluation against β-glucuronidase. Majority of the compounds showed potent inhibitory potential
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with IC50 values ranging from 0.9 ± 0.01 to 46.4 ± 0.9 µM when compared with the positive control
D-saccharic acid 1,4 lactonec (IC50 = 48.1 ± 1.2 µM).

Structural activity relationship has been established for all compounds. Compound 6 having at
the ortho-meta position the dihydroxyl groups on the phenyl ring was found the most active analog
among the series. The greater inhibitory potential of this compound may be due to the position as well
as the vicinity of the dihydroxy groups.

If we compare analog 6 with other dihydroxy analogs i.e., analog 5 (IC50 = 11.4 ± 0.30 µM), analog
7 (IC50 = 1.2 ± 0.01 µM) and analog 8 (IC50 = 7.2 ± 0.10 µM), it was found that the Compound 6 is
much more potent. This higher activity of analog 6 is seems due to the hydroxyl groups position on the
phenyl ring which is ortho-meta. Additionally, the activity may also be enhanced when both hydroxyl
groups are at the vicinal position. If we compare the dihydroxy analogs with mono-hydroxy analogs
i.e., analog 3 (IC50 = 6.2 ± 0.2 µM), analog 4 (IC50 = 17.90 ± 0.4 µM), and analog 9 (IC50 = 11.0 ± 0.4 µM),
the dihydroxy analogs were found to be most superior. The greater potential indicates that position
and number of the hydroxyl groups on phenyl ring play a vital role in the inhibitory potential.

Comparing the nitro substituted analogs 10 (IC50 = 40.0 ± 0.7 µM), 11 (NAb) and 13
(IC50 = 37.3 ± 0.7 µM), the ortho and para substituted analogs 10 and 12 were found active while
analog 11 was found inactive. This indicates that the position of the nitro group at ortho and para
positions enhances the activity rather than meta position.

If we compared the o-fluoro substituted analog 18 (IC50 = 5.0 ± 0.1 µM) with m-fluoro analog 19
(IC50 = 10.5 ± 0.2 µM) and p-fluoro substituted analog 20 (IC50 = 17.0 ± 0.4 µM), analog 18 was found
more superior and the reason for this greater potential is that ortho substituted analog is more favorable
for inhibition of the enzyme. Similarly, the ortho substituted chloro analog 21 with IC50 = 6.0 ± 0.2 µM
showed more potency when compared with meta and para substituted analogs 15 (IC50 = 34.6 ± 0.7 µM)
and 22 (IC50 = 22.2 ± 0.5 µM), respectively. This greater inhibition of Compound 21 is attributed to the
position of chloro group at ortho position. Compounds containing pyridine in their structures—i.e.,
Compounds 15 and 16—were found to be the least active compounds in the series. This less potency
may be due to the non-availability of the nitrogen electron lone pair in the pyridine moiety. From the
whole study it has been concluded that position, nature and number of the substituents on the phenyl
ring play an important role in the inhibitory potential of the synthesized analogs.

2.3. Molecular Docking Study

The concentration inhibition IC50 values of indole based oxadiazole synthesized derivatives as
β-glucoronidase inhibitors are presented in Table 1. From Table 1, it is evident that the inhibitory
activity of the synthesized derivatives depends mainly on structural factors such as the type, number
and position of the functional group on the phenyl ring of the synthesized derivatives. According
to inhibitory IC50 values (Table 1) the synthesized derivatives may be classified into three groups:
Highly active group with low IC50 values (e.g., 6 and 7), moderate active group (e.g., 4 and 5) and
a low active group (e.g., 1 and 2). For a better understanding of the experimental results and to
emphasize the effects of type, number, and relative position of substituted groups on β-glucoronidase
inhibition by the tilted compounds, molecular docking study has been performed to shed light on
the established binding modes of eight selected compounds (1 and 3–9) to the closest residues in
the active site of β-glucoronidase enzyme. Table 2 summarized (i) the calculated binding energies
of the stable complex’s ligand-β-glucoronidase, (ii) number of established intermolecular hydrogen
bonding between the synthesized compounds (1 and 3–9) and amino acid residues into the active site
of β-glucoronidase, and (iii) number of closest residues surrounded the docked compounds (1 and
3–9) within the active binding site of β-glucoronidase.
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Table 1. Synthesis of indole based oxadiazoles (1–22) and their in vitro β-glucuronidase inhibition.

S. No. Yield (%) IC50
(µM ± SEM a) S. No. Yield (%) IC50

(µM ± SEM a)

1
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Structural activity relationship has been established for all compounds. Compound 6 having at 
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If we compare analog 6 with other dihydroxy analogs i.e., analog 5 (IC50 = 11.4 ± 0.30 µM), analog 
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7 (IC50 = 1.2 ± 0.01 µM) and analog 8 (IC50 = 7.2 ± 0.10 µM), it was found that the Compound 6 is much 
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groups are at the vicinal position. If we compare the dihydroxy analogs with mono-hydroxy analogs 

i.e., analog 3 (IC50 = 6.2 ± 0.2 µM), analog 4 (IC50 = 17.90 ± 0.4 µM), and analog 9 (IC50 = 11.0 ± 0.4 µM), 

the dihydroxy analogs were found to be most superior. The greater potential indicates that position 

and number of the hydroxyl groups on phenyl ring play a vital role in the inhibitory potential. 

Comparing the nitro substituted analogs 10 (IC50 = 40.0 ± 0.7 µM), 11 (NAb) and 13 (IC50 = 37.3 ± 
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found inactive. This indicates that the position of the nitro group at ortho and para positions enhances 

the activity rather than meta position. 

If we compared the o-fluoro substituted analog 18 (IC50 = 5.0 ± 0.1 µM) with m-fluoro analog 19 

(IC50 = 10.5 ± 0.2 µM) and p-fluoro substituted analog 20 (IC50 = 17.0 ± 0.4 µM), analog 18 was found 

more superior and the reason for this greater potential is that ortho substituted analog is more 
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moiety. From the whole study it has been concluded that position, nature and number of the 

substituents on the phenyl ring play an important role in the inhibitory potential of the synthesized 
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Structural activity relationship has been established for all compounds. Compound 6 having at 

the ortho-meta position the dihydroxyl groups on the phenyl ring was found the most active analog 

among the series. The greater inhibitory potential of this compound may be due to the position as 

well as the vicinity of the dihydroxy groups. 

If we compare analog 6 with other dihydroxy analogs i.e., analog 5 (IC50 = 11.4 ± 0.30 µM), analog 

7 (IC50 = 1.2 ± 0.01 µM) and analog 8 (IC50 = 7.2 ± 0.10 µM), it was found that the Compound 6 is much 
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Comparing the nitro substituted analogs 10 (IC50 = 40.0 ± 0.7 µM), 11 (NAb) and 13 (IC50 = 37.3 ± 

0.7 µM), the ortho and para substituted analogs 10 and 12 were found active while analog 11 was 

found inactive. This indicates that the position of the nitro group at ortho and para positions enhances 

the activity rather than meta position. 

If we compared the o-fluoro substituted analog 18 (IC50 = 5.0 ± 0.1 µM) with m-fluoro analog 19 
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more superior and the reason for this greater potential is that ortho substituted analog is more 
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± 0.2 µM showed more potency when compared with meta and para substituted analogs 15 (IC50 = 34.6 
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This less potency may be due to the non-availability of the nitrogen electron lone pair in the pyridine 
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D-saccharic acid 1,4 lactone c 48.1 ± 1.2 

SEM a: Standard error Mean; N.B.b: Not Active; D-saccharic acid 1,4 lactone c: Standard Drug. 

2.3. Molecular Docking Study 

The concentration inhibition IC50 values of indole based oxadiazole synthesized derivatives as 

β-glucoronidase inhibitors are presented in Table 1. From Table 1, it is evident that the inhibitory 

activity of the synthesized derivatives depends mainly on structural factors such as the type, number 

and position of the functional group on the phenyl ring of the synthesized derivatives. According to 

inhibitory IC50 values (Table 1) the synthesized derivatives may be classified into three groups: 

Highly active group with low IC50 values (e.g., 6 and 7), moderate active group (e.g., 4 and 5) and a 

low active group (e.g., 1 and 2). For a better understanding of the experimental results and to 

emphasize the effects of type, number, and relative position of substituted groups on β-glucoronidase 

inhibition by the tilted compounds, molecular docking study has been performed to shed light on the 

established binding modes of eight selected compounds (1 and 3–9) to the closest residues in the 

active site of β-glucoronidase enzyme. Table 2 summarized (i) the calculated binding energies of the 

stable complex’s ligand-β-glucoronidase, (ii) number of established intermolecular hydrogen 

bonding between the synthesized compounds (1 and 3–9) and amino acid residues into the active site 

of β-glucoronidase, and (iii) number of closest residues surrounded the docked compounds (1 and 

3–9) within the active binding site of β-glucoronidase. 

Table 2. Concentration inhibition IC50, docking binding energies and number of closest residues to 

the docked ligands (1, 4, and 6) within the active binding site of β-glucoronidase 

Indole Based 

Oxadiazole 

Derivatives 

Free Binding 

Energy 

(kcal/mol) 

H-Bonds 

Number of 

Closest 

Residues to the 

Docked Ligand 

in the Active 

Site 

IC50 ± SEM 

1 −8.74 1 5 36.4 ± 0.6 

3 −8.17 1 4 6.2 ± 0.2 

4 −8.53 2 6 17.9 ± 0.4 

86 0.9 ± 0.01 17
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and position of the functional group on the phenyl ring of the synthesized derivatives. According to 
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Highly active group with low IC50 values (e.g., 6 and 7), moderate active group (e.g., 4 and 5) and a 

low active group (e.g., 1 and 2). For a better understanding of the experimental results and to 
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2.3. Molecular Docking Study 

The concentration inhibition IC50 values of indole based oxadiazole synthesized derivatives as 

β-glucoronidase inhibitors are presented in Table 1. From Table 1, it is evident that the inhibitory 

activity of the synthesized derivatives depends mainly on structural factors such as the type, number 

and position of the functional group on the phenyl ring of the synthesized derivatives. According to 

inhibitory IC50 values (Table 1) the synthesized derivatives may be classified into three groups: 

Highly active group with low IC50 values (e.g., 6 and 7), moderate active group (e.g., 4 and 5) and a 

low active group (e.g., 1 and 2). For a better understanding of the experimental results and to 

emphasize the effects of type, number, and relative position of substituted groups on β-glucoronidase 

inhibition by the tilted compounds, molecular docking study has been performed to shed light on the 

established binding modes of eight selected compounds (1 and 3–9) to the closest residues in the 

active site of β-glucoronidase enzyme. Table 2 summarized (i) the calculated binding energies of the 
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2.3. Molecular Docking Study 

The concentration inhibition IC50 values of indole based oxadiazole synthesized derivatives as 

β-glucoronidase inhibitors are presented in Table 1. From Table 1, it is evident that the inhibitory 

activity of the synthesized derivatives depends mainly on structural factors such as the type, number 

and position of the functional group on the phenyl ring of the synthesized derivatives. According to 

inhibitory IC50 values (Table 1) the synthesized derivatives may be classified into three groups: 

Highly active group with low IC50 values (e.g., 6 and 7), moderate active group (e.g., 4 and 5) and a 

low active group (e.g., 1 and 2). For a better understanding of the experimental results and to 

emphasize the effects of type, number, and relative position of substituted groups on β-glucoronidase 

inhibition by the tilted compounds, molecular docking study has been performed to shed light on the 

established binding modes of eight selected compounds (1 and 3–9) to the closest residues in the 

active site of β-glucoronidase enzyme. Table 2 summarized (i) the calculated binding energies of the 

stable complex’s ligand-β-glucoronidase, (ii) number of established intermolecular hydrogen 

bonding between the synthesized compounds (1 and 3–9) and amino acid residues into the active site 

of β-glucoronidase, and (iii) number of closest residues surrounded the docked compounds (1 and 
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Table 2. Concentration inhibition IC50, docking binding energies and number of closest residues to the
docked ligands (1, 4, and 6) within the active binding site of β-glucoronidase.

Indole Based
Oxadiazole
Derivatives

Free Binding
Energy

(kcal/mol)
H-Bonds

Number of Closest
Residues to the Docked

Ligand in the Active Site
IC50 ± SEM

1 −8.74 1 5 36.4 ± 0.6
3 −8.17 1 4 6.2 ± 0.2
4 −8.53 2 6 17.9 ± 0.4
5 −9.16 3 7 11.4 ± 0.3
6 −8.77 4 7 0.9 ± 0.01
7 −8.88 4 9 1.2 ± 0.01
8 −8.56 4 7 7.2 ± 0.10
9 −8.65 3 7 11.04 ± 0.4



Molecules 2019, 24, 963 5 of 13

Binding energies of the docked selected compounds (Table 2) within the active site β-glucoronidase
show negative binding energies, which indicates the ability of the docked compound to inhibit
β-glucoronidase, and that the inhibition is spontaneous. The docking results in Table 2 and Figure 1
showed that the activity of synthesized compounds may return to the number of hydrogen bonding
established between functional groups of the docked ligands and amnio acid residues of the
β-glucoronidase into its binding site. However, the binding energy of the formed complex between
the docked compounds and β-glucoronidase, and the number of closest residues to the docked ligands
has no significant contribution on the inhibitory activity of the titled compounds (Table 2 and Figure 1).
The lower activity of 1 compared with 3–6 is mainly returned to the nature of the substituted groups
in the aromatic ring (Scheme 1). The Compound 1 is substitute with a methyl group, while 3–6 are
substituted with hydroxyl groups. Docking results show that the methyl group in 1 form alkyl and
Pi-Alkyl weak interactions with ALA A 218, TYR A 242, and TYR A 243 residues into the binding site
of β-glucoronidase, while in 3–6 the substituted hydroxyl groups forms strong hydrogen bonding
interactions with amino acid residues into the binding site of β-glucoronidase (Figure 1).

The aromatic ring in 5–8 is substituted with two hydroxyl groups, while in 3, 4, and 9 is substituted
only with one hydroxyl group. It is obvious from docking results that the increase of hydroxyl groups
increases the number of hydrogen bonds that can be established with amino acid residues into the
binding site of β-glucoronidase (Figure 1). For instance, in the case of the active Compound 6, four
hydrogen bonding are established between residues of β-glucoronidase and Compound 6, while
in 4 only two hydrogen bonds are formed (Figure 1). In 6, the strongest hydrogen bond is formed
between GLU173 amino acid and the hydrogen atom of NH of indole ring with a distance of 1.89 Å.
The second strongest hydrogen bond is relatively weaker than the first one and is established between
the hydrogen atom of hydroxyl of catechol oxygen in the meta position of the catechol group and
GLU245 with a distance of 1.90 Å. The third strongest hydrogen bond is relatively weaker than the
two first ones, and is established between the hydrogen atom of hydroxyl of catechol oxygen in ortho
position of catechol group and GLU245 with a distance of 2.02 Å. The fourth hydrogen bond is relatively
weak than the previous ones, and it is established between TYR243 amino acid and the hydrogen atom
of hydroxyl of catechol oxygen in the ortho position of the catechol group with a distance of 2.90 Å.
In case of Compound 9 with only one hydroxyl groups, three hydrogen bonding are established in
the complex formed between 9 and β-glucoronidase, while for the synthesized Compound 1 only a
weaker hydrogen bond formed, which is established between GLU173 amino acid and the hydrogen
atom of NH of indole with a distance of 2.30 Å. As mentioned above the position of the substituted
groups on the aromatic ring may have a strong influence on β-glucoronidase inhibition. Compound 7
is substituted with two hydroxyl groups on meta and para position, while 8 the two hydroxyl groups
are substituted in ortho and para position. The higher activity of 7 compared with 8 may refer to the
number of hydrogen bonds that are formed in 7 compared with 8. Indeed, the two hydroxyl groups
in 7 forms four hydrogen bonds with amino acids of β-glucoronidase, while in 8 the two hydroxyl
groups formed only three hydrogen bonding with amino acid residues of β-glucoronidase.
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Figure 1. 2D closest interactions between active site residues of β-glucoronidase and synthesized
compounds 1, 4, 9, 6, 7, and 8.

3. Materials and Methods

3.1. Instruments

NMR experiments were done on Avance Bruker AM 300 MHz (Wissembourg, Switzerland).
Electron impact mass spectra (EI–MS) were recorded on a Finnigan MAT-311A (Bremen, Germany).
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Thin layer chromatography (TLC) was performed on pre-coated silica gel aluminum plates (Kieselgel
60, 254, E. Merck, Darmstadt, Germany). Chromatograms were visualized by UV at 254 and 365 nm.

3.2. Molecular Docking Details

To determine the binding modes between the active site residues of β-glucuronidase and docked
selected synthesized indole based oxadiazole derivatives (1 and 3–9), molecular docking has been
performed by using the Lamarckian genetic algorithm as applied in the Autodock package [37]. The 3D
structure of β-glucuronidase and the original docked ligand N-alkyl cyclophellitol aziridine were
downloaded from the RCSB data bank website (PDB code 5G0Q) [38]. After removing the water
molecules, Kollman charge and polar hydrogen atoms have been added to the extracted receptor
structure by manipulating the AutoDock Tools 4.2 (The Scripps Research Institute, La Jolla, CA,
USA). The re-docking of the original ligand N-alkyl cyclophellitol aziridine into the active site of
β-glucuronidase is well reproduced with an RMSD value lower than 2 Å. 1 and 3–9 structural
geometries were optimized using Merck molecular force field 94 as implemented in Hyperchem
Software (HyperChem Release 7.52, Hypercube Inc., Gainesville, FL, USA, 2002), and saved as protein
data bank (pdf) files. For each docked ligand, non-polar hydrogen’s were merged and rotatable bonds
were defined. Docking run was performed by the Lamarckian genetic algorithm, with 500 as a total
number of run for originated ligand and 100 run for 1, 4, and 6 derivatives. A total population of
150 individuals with 27,000 generations and 250,000 energy evaluations were utilized in each particular
run. Operator weights for crossover, mutation, and elitism were set to 0.8, 0.02, and 1, respectively.
The binding site was defined using a grid of 40 × 40 × 40 points each with a grid spacing of 0.375 Å.
Intel (R) core (M) 15-3770 CPU @ 3.40 GHz workstation is used to carry out docking calculation.

3.3. Synthesis Methyl 2-(1H-indol-2-yl)acetate

The methyl 2-(1H-indol-2-yl) acetate (10 g, 52.88 mmol) was treated with hydrazine (15 mL) in
ethanol (50 mL) for 6 h. The excess hydrazine and ethanol were evaporated to get crude product
then recrystallized by ethanol to yield 2-(1H-indol-2-yl) acetohydrazide with 90% (9.01 g, 47.76 mmol)
produced [29].

3.4. General Procedure Indole Based 2,5-Disubstituted-1,3,4-Oxadiazoles (1–22)

A combination of methyl 2-(1H-indol-2-yl) acetohydrazide (0.3 mmol) and several aromatic acid
(0.33 mmol) in POCl3 (7 mL) was reacted for 4–6 h. The mixture left for cooling once confirmed reaction
completion by TLC then poured into cold water. The reaction mixture was treated with NaHCO3

solution and the subsequent solid formed was filtered, dried, and crystallized in ethanolic solution [39].

3.4.1. 2-((1H-indol-2-yl) methyl)-5-(p-tolyl)-1,3,4-oxadiazole

Yield 84%, m.p. 304–305 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.97 (d, J = 7.5 Hz,
2H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.26 (d, J = 7.4 Hz, 2H, Ar), 7.10 (m,
1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 2.34 (s, 3H, CH3), 13C-NMR (125 MHz,
DMSO-d6): δ 166.4, 164.5, 136.5, 135.6, 131.7, 128.1, 127.4, 127.4, 126.3, 126.3, 121.7, 120.7, 120.2, 119.8,
111.1, 101.5, 31.0, 21.3, HREI-MS: m/z calcd. for C18H15N3O [M]+ 289.1215; Found 289.1211

3.4.2. 2-((1H-indol-2-yl) methyl)-5-(o-tolyl)-1,3,4-oxadiazole

Yield 74%, m.p. 300–301 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.73 (d, J = 7.5 Hz,
7.72 (d, J = 7.5 Hz, 1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.40 (d, J = 7.1 Hz, 1H, Ar), 7.35 (m, 1H, Ar),
7.35 (d, J = 7.0 Hz, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H,
Ar), 3.85 (s, 2H, CH2), 1H, Ar), 2.57 (s, 3H, CH3), 13C-NMR (125 MHz, DMSO-d6): δ 166.4, 164.5, 137.2,
136.9, 136.5, 135.6, 129.5, 128.6, 128.1, 127.4, 126.2, 121.7, 120.7, 119.8, 111.1, 101.5, 31.0, 18.7, HREI-MS:
m/z calcd. for C18H15N3O [M]+ 289.1215; Found 289.1210.
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3.4.3. 2-(5-((1H-indol-2-yl) methyl)-1,3,4-oxadiazol-2-yl) phenol

Yield 69%, m.p. 314–315 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.60 (d, J = 7.1 Hz,
1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.32 (m, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06
(m, 1H, Ar), 7.00 (d, J = 6.7 Hz, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR
(125 MHz, DMSO-d6): δ 166.4, 164.5, 157.4, 136.5, 135.6, 130.1, 128.1, 126.3, 121.8, 121.7, 120.7, 119.8,
117.8, 111.1, 108.0, 101.5, 31.0, HREI-MS: m/z calcd. for C17H13N3O2 [M]+ 291.1008; Found 291.1004

3.4.4. 3-(5-((1H-indol-2-yl) methyl)-1,3,4-oxadiazol-2-yl) phenol

Yield 79%, m.p. 311–312 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.61 (d, J = 7.1 Hz,
1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.27 (m, 1H, Ar), 7.14 (s, 1H, Ar), 7.10
(m, 1H, Ar), 7.06 (m, 1H, Ar), 6.82 (d, J = 6.3 Hz, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR
(125 MHz, DMSO-d6): δ 166.4, 164.5, 157.5, 136.5, 135.6, 130.6, 128.1, 127.5, 121.7, 120.7, 120.1, 119.8,
115.9, 112.9, 111.1, 101.5, 31.0, HREI-MS: m/z calcd. for C17H13N3O2 [M]+ 291.1008; Found 291.1003

3.4.5. 2-(5-((1H-indol-2-yl) methyl)-1,3,4-oxadiazol-2-yl) benzene-1,4-diol

Yield 70%, m.p. 319–320 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.51 (d, J = 7.1 Hz,
1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 7.04 (d, J = 6.7 Hz, 1H, Ar),
6.97 (s, 1H, Ar), 6.62 (d, J = 6.6 Hz, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz,
DMSO-d6): δ 166.4, 164.5, 150.1, 150.0, 136.5, 135.6, 128.1, 121.7, 120.7, 119.8, 117.8, 117.3, 114.3, 113.5,
111.1, 101.5, 31.0, HREI-MS: m/z calcd. for C17H13N3O3 [M]+ 307.0957; Found 307.0951

3.4.6. 3-(5-((1H-indol-2-yl) methyl)-1,3,4-oxadiazol-2-yl) benzene-1,2-diol

Yield 73%, m.p. 317–318 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.51 (d, J = 7.1 Hz,
1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.16 (d, J = 6.9 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.96
(d, J = 6.5 Hz, Ar), 6.83 (dd, J = 7.8, 3.5 Hz, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz,
DMSO-d6): δ 166.4, 164.5, 145.6, 143.9, 136.5, 135.6, 130.7, 128.1, 123.2, 121.7, 120.7, 119.8, 117.3, 113.5,
111.1, 101.5, 31.0, HREI-MS: m/z calcd. for C17H13N3O3 [M]+ 307.0957; Found 307.0952

3.4.7. 4-(5-((1H-indol-2-yl) methyl)-1,3,4-oxadiazol-2-yl) benzene-1,2-diol

Yield 85%, m.p. 316–317 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.51 (d, J = 7.1 Hz,
1H, Ar), 7.41 (d, J = 7.3 Hz, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.83 (d,
J = 6.4 Hz, Ar), 6.37 (s, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz, DMSO-d6): δ
166.4, 164.5, 147.3, 145.9, 136.5, 135.6, 128.1, 121.7, 120.7, 120.1, 119.8, 116.2, 114.3, 111.1, 108.9, 101.5,
31.0, HREI-MS: m/z calcd. for C17H13N3O3 [M]+ 307.0957; Found 307.0952

3.4.8. 4-(5-((1H-indol-2-yl) methyl)-1,3,4-oxadiazol-2-yl) benzene-1,3-diol

Yield 83%, m.p. 318–319 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.51 (d, J = 7.1 Hz,
1H, Ar), 7.43 (d, J = 7.1 Hz, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar),
6.42 (d, J = 6.2 Hz, 1H, Ar), 6.33 (s, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz,
DMSO-d6): δ 166.4, 164.5, 159.9, 156.6, 136.5, 135.6, 130.3, 128.1, 121.7, 120.7, 119.8, 111.1, 109.0, 105.6,
101.5, 100.6, 31.0, HREI-MS: m/z calcd. for C17H13N3O3 [M]+ 307.0957; Found 307.0951

3.4.9. 4-(5-((1H-indol-2-yl) methyl)-1,3,4-oxadiazol-2-yl) phenol

Yield 70%, m.p. 310–311 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.85 (d, J = 7.4 Hz,
2H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar),
6.91 (d, J = 6.7 Hz, 2H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz, DMSO-d6): δ 166.4,
164.5, 158.5, 136.5, 135.6, 128.1, 121.7, 120.7, 119.8, 118.7, 116.4, 116.4, 116.3, 116.3, 111.1, 101.5, 31.0,
HREI-MS: m/z calcd. for C17H13N3O2 [M]+ 291.1008; Found 291.1003
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3.4.10. 2-((1H-indol-2-yl) methyl)-5-(2-nitrophenyl)-1,3,4-oxadiazole

Yield 65%, m.p. 307–308 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 8.03 (d, J = 7.8 Hz,
1H, Ar), 8.00 (d, J = 7.4 Hz, 1H, Ar), 7.89 (m, 1H, Ar), 7.72 (m, 1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.28
(d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR
(125 MHz, DMSO-d6): δ 166.4, 164.5, 146.9, 136.5, 135.6, 135.3, 131.6, 129.6, 128.4, 128.1, 124.4, 121.7,
120.7, 119.8, 111.1, 101.5, 31.0, HREI-MS: m/z calcd. for C17H12N4O3 [M]+ 320.0909; Found 320.0904

3.4.11. 2-((1H-indol-2-yl) methyl)-5-(3-nitrophenyl)-1,3,4-oxadiazole

Yield 89%, m.p. 303–304 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 8.60 (s, 1H, Ar),
8.44 (d, J = 8.0 Hz, 1H, Ar), 8.32 (d, J = 7.9 Hz, 1H, Ar), 7.84 (m, 1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.28
(d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR
(125 MHz, DMSO-d6): δ 166.4, 164.5, 146.9, 136.5, 135.6, 135.3, 131.6, 129.6, 128.4, 128.1, 124.4, 121.7,
120.7, 119.8, 111.1, 101.5, 31.0, HREI-MS: m/z calcd. for C17H12N4O3 [M]+ 320.0909; Found 320.0903

3.4.12. 2-((1H-indol-2-yl) methyl)-5-(4-nitrophenyl)-1,3,4-oxadiazole

Yield 71%, m.p. 309–310 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 8.41 (d, J = 8.2 Hz,
2H, Ar), 8.23 (d, J = 8.1 Hz, 2H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H,
Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz, DMSO-d6): δ 166.4, 164.5,
146.9, 136.5, 135.6, 135.3, 131.6, 129.6, 128.4, 128.1, 124.4, 121.7, 120.7, 119.8, 111.1, 101.5, 31.0, HREI-MS:
m/z calcd. for C17H12N4O3 [M]+ 320.0909; Found 320.0905

3.4.13. 2-(5-((1H-indol-2-yl) methyl)-1,3,4-oxadiazol-2-yl)-4-methoxyphenol

Yield 86%, m.p. 313–314 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.51 (d, J = 7.1 Hz,
1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.12 (s, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.79 (d, J = 6.3 Hz,
1H, Ar), 6.72 (d, J = 6.2 Hz, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 3.81 (s, 3H, CH3), 13C-NMR
(125 MHz, DMSO-d6): δ 166.4, 164.5, 153.7, 149.7, 136.5, 135.6, 128.1, 121.7, 120.7, 119.8, 117.4, 115.7,
113.1, 112.7, 111.1, 101.5, 55.8, 31.0, HREI-MS: m/z calcd. for C18H15N3O3 [M]+ 321.1113; Found
321.1110

3.4.14. 2-((1H-indol-2-yl) methyl)-5-(3-bromo-4-fluorophenyl)-1,3,4-oxadiazole

Yield 74%, m.p. 290–291 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 8.23 (d, J = 7.8 Hz,
1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.43 (s, 1H, Ar), 7.29 (d, J = 7.2 Hz, 1H, Ar), 7.28 (d, J = 6.8 Hz,
1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz,
DMSO-d6): δ 166.4, 165.4, 164.5, 136.5, 135.6, 134.7, 128.1, 128.1, 123.9, 121.7, 120.7, 119.8, 118.2, 111.1,
110.6, 101.5, 31.0, HREI-MS: m/z calcd. for C17H11BrFN3O [M]+ 371.0070; Found 371.0065

3.4.15. 2-((1H-indol-2-yl) methyl)-5-(3-chlorophenyl)-1,3,4-oxadiazole

Yield 81%, m.p. 286–287 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.97 (s, 1H, Ar),
7.93 (d, J = 7.3 Hz, 1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.48 (m, 1H, Ar), 7.46 (d, J = 7.1 Hz, 1H, Ar), 7.28
(d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR
(125 MHz, DMSO-d6): δ 166.4, 164.5, 136.5, 135.6, 134.8, 129.5, 128.8, 128.1, 127.5, 127.4, 125.6, 121.7,
120.7, 119.8, 111.1, 101.5, 31.0, HREI-MS: m/z calcd. for C17H12ClN3O [M]+ 309.0669; Found 309.0663

3.4.16. 2-((1H-indol-2-yl) methyl)-5-(pyridin-3-yl)-1,3,4-oxadiazole

Yield 68%, m.p. 279–280 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 9.24 (s, 1H, Ar),
8.70 (d, J = 8.4 Hz, 1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 8.42 (d, J = 7.8 Hz, 1H, Ar), 7.57 (m, 1H, Ar), 7.28
(d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR
(125 MHz, DMSO-d6): δ 166.4, 164.5, 152.7, 147.9, 136.5, 135.6, 134.0, 128.1, 124.4, 124.0, 121.7, 120.7,
119.8, 111.1, 101.5, 31.0, HREI-MS: m/z calcd. for C16H12N4O [M]+ 276.1011; Found 276.1006



Molecules 2019, 24, 963 10 of 13

3.4.17. 2-((1H-indol-2-yl) methyl)-5-(pyridin-4-yl)-1,3,4-oxadiazole

Yield 80%, m.p. 284–285 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 8.75 (d, J = 8.2 Hz,
2H, Ar), 7.99 (d, J = 7.3 Hz, 2H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H,
Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz, DMSO-d6): δ 166.4, 164.5,
152.7, 147.9, 136.5, 135.6, 134.0, 128.1, 124.4, 124.0, 121.7, 120.7, 119.8, 111.1, 101.5, 31.0, HREI-MS: m/z
calcd. for C16H12N4O [M]+ 276.1011; Found 276.1007

3.4.18. 2-((1H-indol-2-yl) methyl)-5-(2-fluorophenyl)-1,3,4-oxadiazole

Yield 72%, m.p. 294–295 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 8.26 (d, J = 7.3 Hz,
1H, Ar), 7.71 (m, 1H, Ar),7.51 (d, J = 7.1 Hz, 1H, Ar), 7.49 (m, 2H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10
(m, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz, DMSO-d6): δ
166.4, 164.5, 158.3, 136.5, 135.6, 130.3, 129.1, 128.1, 124.8, 123.5, 121.7, 120.7, 119.8, 114.7, 111.1, 101.5,
31.0, HREI-MS: m/z calcd. for C17H12FN3O [M]+ 293.0964; Found 293.0961

3.4.19. 2-((1H-indol-2-yl) methyl)-5-(3-fluorophenyl)-1,3,4-oxadiazole

Yield 87%, m.p. 291–292 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.82 (d, J = 7.2 Hz,
1H, Ar), 7.52 (s, 1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.50 (m, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.22
(d, J = 63 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR
(125 MHz, DMSO-d6): δ 166.4, 164.5, 162.0, 136.5, 135.6, 128.1, 127.7, 127.5, 123.1, 121.7, 120.7, 119.8,
115.9, 115.5, 111.1, 101.5, 31.0, HREI-MS: m/z calcd. for C17H12FN3O [M]+ 293.0964; Found 293.0960

3.4.20. 2-((1H-indol-2-yl) methyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole

Yield 83%, m.p. 300–301 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 8.29 (d, J = 7.5 Hz,
2H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.44 (d, J = 7.0 Hz, 2H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H,
Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz, DMSO-d6): δ 166.4, 164.5,
162.9, 136.5, 135.6, 129.1, 129.1, 128.1, 121.7, 121.7, 120.7, 119.8, 116.0, 116.0, 111.1, 101.5, 31.0, HREI-MS:
m/z calcd. for C17H12FN3O [M]+ 293.0964; Found 293.0962

3.4.21. 2-((1H-indol-2-yl) methyl)-5-(2-chlorophenyl)-1,3,4-oxadiazole

Yield 72%, m.p. 280–281 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.71 (d, J = 7.2 Hz,
1H, Ar), 7.61 (d, J = 7.0 Hz, 1H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.38 (m, 1H, Ar), 7.37 (m, 1H, Ar), 7.28
(d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H, Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR
(125 MHz, DMSO-d6): δ 166.4, 164.5, 136.9, 136.5, 135.6, 132.2, 130.1, 129.3, 128.9, 128.1, 127.3, 121.7,
120.7, 119.8, 111.1, 101.5, 31.0, HREI-MS: m/z calcd. for C17H12ClN3O [M]+ 309.0669; Found 309.0666

3.4.22. 2-((1H-indol-2-yl) methyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole

Yield 77%, m.p. 287–288 ◦C; 1H-NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, NH), 7.71 (d, J = 7.2 Hz,
2H, Ar), 7.53 (d, J = 6.9 Hz, 2H, Ar), 7.51 (d, J = 7.1 Hz, 1H, Ar), 7.28 (d, J = 6.8 Hz, 1H, Ar), 7.10 (m, 1H,
Ar), 7.06 (m, 1H, Ar), 6.22 (s, 1H, Ar), 3.85 (s, 2H, CH2), 13C-NMR (125 MHz, DMSO-d6): δ 166.4, 164.5,
136.5, 135.6, 134.3, 129.3, 129.3, 128.9, 128.9, 128.1, 124.2, 121.7, 120.7, 119.8, 111.1, 101.5, 31.0, HREI-MS:
m/z calcd. for C17H12ClN3O [M]+ 309.0669; Found 309.0669

3.5. β-Glucuronidase Assay

β-glucuronidase activity was determined in accordance to method used [40] by measuring
absorbance at 405 nm of p-nitrophenol formed substrate by spectrophotometric method. 250 µL was
the volume of total reaction. Reaction mixture containing 5 µL of test compound solution, 185 µL of
0.1M acetate buffer, and 10 µL of enzyme solution were incubated for 30 min at 37 ◦C. At 405 nm
the plates were recorded on multiplate reader (SpectaMax plus 384) after the addition of 50 µL of
0.4mM p-nitrophenyl-β-D-glucuronide. Experiments were performed for triplicate [41]. To avoid
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precipitation, compound concentrations were decreased, and the volume of reaction was increased
(200 µL). Precipitation probability was less thus addition of detergents was not needed.

4. Conclusions

β-glucuronidase is a member of the enzyme lysosomal glycosidase. The function of this enzyme
is to catalyze the extracellular matrix of cancer and normal cells and also catalyze glycosaminoglycans
of the cell membrane. This catalysis is important for cancer cell proliferation, invasion and
metastasis. Liver cancer, colon carcinoma, and neoplasm bladder are caused by the increase level
of β-glucuronidase activity. The most valuable structures are indole and oxadiazole which has gain
immense attention because of its pharmacological behavior and display many biological properties.
The synthesized analogs (1–22), indole based oxadiazole analogs were evaluated for their inhibitory
potential against the β-glucuronidase enzyme. Majority of the compounds showed potent inhibitory
potential with IC50 values ranging from 0.9 ± 0.01 to 46.4 ± 0.9 µM when compared with the
standard drug D-saccharic acid 1,4 lactonec (IC50 = 48.1 ± 1.2 µM). Structural activity relationship
(SAR) has been established for all synthesized compounds. Molecular docking of 1, 4, and 6
into the active site of β-glucuronidase showed that the β-glucuronidase inhibition by the tilted
compounds is thermodynamically favorable and increases with the number of hydrogens bonding
intermolecular interactions.
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