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Abstract

Neural spike sorting is prerequisite to deciphering useful information from electrophysiologi-

cal data recorded from the brain, in vitro and/or in vivo. Significant advancements in nano-

technology and nanofabrication has enabled neuroscientists and engineers to capture the

electrophysiological activities of the brain at very high resolution, data rate and fidelity. How-

ever, the evolution in spike sorting algorithms to deal with the aforementioned technological

advancement and capability to quantify higher density data sets is somewhat limited. Both

supervised and unsupervised clustering algorithms do perform well when the data to quan-

tify is small, however, their efficiency degrades with the increase in the data size in terms of

processing time and quality of spike clusters being formed. This makes neural spike sorting

an inefficient process to deal with large and dense electrophysiological data recorded from

brain. The presented work aims to address this challenge by providing a novel data pre-pro-

cessing framework, which can enhance the efficiency of the conventional spike sorting algo-

rithms significantly. The proposed framework is validated by applying on ten widely used

algorithms and six large feature sets. Feature sets are calculated by employing PCA and

Haar wavelet features on three widely adopted large electrophysiological datasets for con-

sistency during the clustering process. A MATLAB software of the proposed mechanism is

also developed and provided to assist the researchers, active in this domain.

Introduction

Neuro-engineering is an interdisciplinary research domain that provides a collaborative plat-

form for engineers, scientists, neurologists and clinicians to grow a robust and reliable com-

munication network between human brain and computers using advanced engineering

procedures, methods, tools and algorithms [1–3]. It is largely accepted hypothesis that the

brain passes information in terms of neurons’ firings i.e. action potential or spikes over specific

interval of time, known as neuron firing rate. Neurophysiological study of these hefty action

potentials or spikes emanating from the neural network of the brain is essential to reveal the

underlying behaviours and properties of neurons. A good understanding of the human brain

neuronal network or nervous system is critically important in developing brain machine

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0245589 February 10, 2021 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ul Hassan M, Veerabhadrappa R, Bhatti A

(2021) Efficient neural spike sorting using data

subdivision and unification. PLoS ONE 16(2):

e0245589. https://doi.org/10.1371/journal.

pone.0245589

Editor: Alexandros Iosifidis, Aarhus University,

DENMARK

Received: August 21, 2019

Accepted: January 4, 2021

Published: February 10, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0245589

Copyright: © 2021 Ul Hassan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: The research work is fully supported by

Neural and Cognitive Systems Lab at Institute for

https://orcid.org/0000-0003-0414-1372
https://orcid.org/0000-0001-6876-1437
https://doi.org/10.1371/journal.pone.0245589
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245589&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245589&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245589&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245589&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245589&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245589&domain=pdf&date_stamp=2021-02-10
https://doi.org/10.1371/journal.pone.0245589
https://doi.org/10.1371/journal.pone.0245589
https://doi.org/10.1371/journal.pone.0245589
http://creativecommons.org/licenses/by/4.0/


interfaces (BMIs), neuro-prosthetics and comprehensive brain-computer communication net-

works [4].

Electrophysiological analysis has attracted paramount importance, in recent years, in deci-

phering useful information about the underlying functional behaviour of the brain both in

spontaneous and stimulated environments [5, 6]. This has paved the way of new discoveries in

understanding the impact of external stimuli such as pharmaceuticals [7] and infections on the

brain functionality [8]. Researchers have successfully developed the neural decoders from the

neurophysiological study of intra neural recordings of human primary motor cortex to drive

the artificial prostheses [9]. Electrophysiological studies also find significant importance in

treating patients having neurological diseases or mental disorders especially in the case of epi-

leptic disease. In addition, these studies have played vital role in understanding the gamma-

protocadherine influences in regulating the neural network endurance and generating new

neural synapses [10].

The significance of electrophysiological study of human brain lies in intercepting the neu-

ronal signals with negligible interference in brain’s natural functionality. Numerous

electrophysiological methods are found in the literature to monitor the action potentials or

spikes from neurons, such as intracellular glass pipette electrodes [11], patch clamp electrodes

[12, 13], extracellular single or multi-site electrodes [14], and optical imaging devices [15, 16].

Among all, extracellular recordings using micro fabricated electrode arrays [17–19] are largely

preferable in research because of its relatively less impact on the normal working behaviour of

neurons [20]. Extracellular recordings are further categorised into invasive (in-vivo) and non-

invasive (in-vitro) approaches [21]. In in-vivo approach, microelectrodes such as a probe or

tetrode (probe with four electrodes) is surgically implanted in the understudy region of the

brain. Whereas, in in-vitro approach, neurons are cultured on the separate dishes integrated

with microelectrodes [22]. The neurophysiological technology implemented to record neural

action potentials is very advanced, but still it is very immature to record the action potentials

emanating from a single neuron. Brain consists of closely packed neurons that mostly excites

simultaneously to encode information consisting of synchronised and correlated action poten-

tials [23, 24]. Neurons present in the surrounding or neighbourhood of the understudy region,

when excited, introduce noise in the neural recordings [25, 26]. Therefore, to study and ana-

lyse the behaviour of individual neurons and to group the action potentials having similar fea-

tures into specific clusters, the concept of ‘Spike Sorting’ is implemented [27, 28].

An overview of in-vivo and in-vitro recordings and complete description of the steps

involved in the spike sorting process is illustrated in Fig 1. Spike sorting consists of four main

steps. First, raw data is filtered to minimise the effect of noise. The work of Choi et al. in [29]

has significance importance in reducing the effect of background noise and detecting useful

spikes trains from neural recordings at low signal to noise ratio (SNR) using multi resolution

Teager energy operator (MTEO). Paralikar et al. in [30] proposed the virtual referencing (VR)

method based on average functional electrode signal and inter-electrode correlation (IEC)

method based on correlation coefficient between threshold exceeding spikes segments for

common noise reduction. Common noise is generally produced by electromyographic activity,

motion artifacts, and electric field pickup, especially in awake/behaving subjects. Pillow et al.

in [30] proposed binary pursuit algorithm to significantly reduce the effect of stochastic back-

ground component of correlated Gaussian noise from the neural recordings. Takekawa et. al

in [31] worked on filtering the biological noise from the neural recording using peak band

pass filtering technique. Band pass filtering is a common practice among neural scientists for

reducing the effect of background noise. This followed by spike extraction [32]. Abeles and

Golstein in [33], elaborated extensively about multi-unit spikes detection. Threshold and

inter-spike interval based detection methods are frequent and popular among researchers [34].
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However, in the proposed algorithm the focus is on the computation efficiency of spike sorting

algorithms rather than the spike estimation. For the proposed research work, spikes are

extracted using labels provided with the data to make comparison of performance between dif-

ferent algorithms unbiased due to noise effects. The third step in spike sorting is the feature

extraction of detected spikes [35]. The latest feature extraction technique is proposed by

Zamani and Demosthenous in [36], however, feature extraction techniques that are largely

practised by researchers are Principal Component Analysis (PCA) [37–39], Wavelet Trans-

form [40–42] and Wavelet Packet Decomposition [43]. The last step in this process is the

clustering of spikes into specific action potential groups having similar features [44]. For clus-

tering, scientists have proposed numerous clustering algorithms in the literature [45–48] that

are mainly classified into two main categories; Supervised [49] and Un-Supervised [50]. In

supervised clustering, the number of clusters are predefined and the algorithms forced the

spikes to fit into desired number of predefined clusters [51]. Whereas, in unsupervised cluster-

ing, algorithms, without having prior clustering information, automatically estimate the total

cluster numbers and based on similarity in spike features, label the spikes into their respective

groups [52]. The unsupervised clustering is more reliable and useful when there is no prior

knowledge about clusters [53]. The spike sorting algorithms are mainly used offline and are

implemented for behavioural quantification on pre-recorded neural datasets [54]. However,

Fig 1. An overview of spike sorting process with in-vivo and in-vitro recordings. (a) Microscopic image of neural network in the

brain. (b) Brains cells cultured on the Micro-Electrode Arrays (MEAs). (c) Implanted probe in the rat brain for in vivo recordings.

(d) Data acquisition system to interface with MEAs (e) Computing machine for data processing and spike sorting. (f) Multichannel

data acquisition and recording (g) Visualisation of complete spike sorting process. (h) Raw data after sampling and amplification. (i)

Noise filtering of data using band pass filters. (j) Spikes detected using the threshold or inter-spike interval methods. (k) Feature

extraction of the detected spikes to reduce the dimensionality of the data. (l) Clustered features after applying clustering algorithms

extracted spike features. (m) Clustered spikes.

https://doi.org/10.1371/journal.pone.0245589.g001
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researchers have developed online spike sorting algorithms that can quantify spike-clusters on

live neural recordings [55]. The latest state of art in spike sorting process is presented in [56].

Problem statement

Advancements in nanotechnology and nanofabrication has enabled neuroscientists and engi-

neers to capture the electrophysiological activities of the brain at very high resolution, data rate

and fidelity. However, to decipher useful information from these high dense electrode data,

performance in terms of computational speed and accuracy of these spike-sorting algorithms,

independent of their online and offline nature, plays an important role.

Stevenson and Kording in [57], presented data analysis issues due to progressive technolog-

ical advancements of neural recordings. Progress in neural recording techniques enabling

simultaneous multi channels recording is projected to double every 7 years resulting in high

density and large size data. It is estimated that recording from 1000 neurons simultaneously

could be achieved by 2025. The most recent automated spike sorting algorithm proposed by

Chung et al. in [58] also highlighted the issue of low computational speed of spike sorting algo-

rithms. Although they have proposed an efficient method for spike sorting, it lacks the speed

researchers require for optimal results when sorting larger and high dense datasets. Wild et al.

in [59] studied the performance evaluation on widely used clustering algorithms. His research

outcomes highlighted the dependency of computational speed on data size or number of spikes

to be clustered.

Chen and Cai in [60] investigated the issue and proposed that this behaviour is due to com-

plexity of operations involved in the algorithms. They reported, for n size of data, spectral clus-

tering requires O(n2) (second order equation) operations in graph construction and O(n3)

(third order equation) operations in Eigen-decomposition. These second order and third

order equations prove the non-linear behaviour of spectral clustering. To motivate our analy-

sis, spectral clustering was applied on five datasets of variable length and calculated the corre-

sponding computational time as in Table 1. The plot in Fig 2, clearly depicts the non-linear

behaviour in computational time required by spectral clustering to complete its operations

with respect to data size.

The dependency of speed and computational time on data size in spike-sorting has made it

very difficult to efficiently and accurately identify the total number of neurons in large and

dense electrophysiological data. Furthermore, based on the work of Napoleon and Pavalakodi

on large, dense and high dimensional breast cancer cell data [64], the accuracy of clustering

algorithms is also somehow contingent to the data size. With the increase in data size the

occurrence of false positives and negatives in spike sorting increases significantly, which

reduces the overall efficiency and performance of the algorithms involved in the process.

Despite these challenges, in literature, researchers have developed numerous spike sorting

algorithms to address the challenge of handling large and dense electrophysiological data.

However, limited work has considered enhancing computational speed and efficiency by

Table 1. Computational times of five datasets for spectral clustering.

Data Name Data Size # of classes Computational Time

MNIST [61] 70000 10 3654.90

LetterRec [62] 20000 26 195.63

PenDigits [62] 10992 10 60.48

Seismic [63] 98528 3 4328.35

Covtype [62] 581012 7 181006.17

https://doi.org/10.1371/journal.pone.0245589.t001
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changing the way we input data into spike sorting algorithms. The proposed algorithm pre-

processes data to significantly reduce computational time and to enhance speed and efficiency

of a wide range of existing spike sorting algorithms. The proposed algorithm has great poten-

tial to be adopted by parallel computing approaches to further enhance spike sorting algo-

rithms’ efficiency for real-time online spike analysis.

Proposed mechanism

The novelty of the proposed mechanism lies in its capability to operate the existing spike sort-

ing algorithms at their peak efficiency by introducing the optimal length subsets of large

electrophysiological data at clustering stage. The overall mechanism consists of three major

steps as illustrated in Fig 3. 1) The first step involves subdivision of data into data-subsets of

optimal length. The procedure to identify optimal length is discussed in next section. 2) The

second step involves clustering spikes in data-subsets using conventional spike sorting algo-

rithms. 3) The last step involves unification of the clustered subsets. The final unified clusters

are then used to label the detected spikes representing complete large electrophysiological data

into their respective neural classes. The comparison of conventional spike sorting and pro-

posed algorithm is depicted in Fig 4. It is worth mentioning that the proposed mechanism

deals with data- subdivision and unification to felicitate and enhance the performance of exist-

ing clustering algorithms and does not modify the internal workings of the algorithms

employed in this study. A recently developed clustering algorithm “Mountainsort” by Chung

et al. [58] uses a density based approach to cluster spikes can also be used with this mechanism

for efficient spike sorting.

A similar approach of data subdivision is used by Pachitariu et al. in [65] for KiloSort algo-

rithm. The algorithm divides the high dense neural data into small batches and uses them for

mean-time processing of data filtering in the GPU that reduces the overall time of the spike

sorting process. However, clustering of spikes is still deployed at complete large neural data-

sets, which resulted into the slower computational speed of spike sorting at clustering stage. In

addition, as opposed to proposed mechanism, the data-subdivision mechanism is limited to

KiloSort and may not be applicable for other spike sorting algorithms. Furthermore, this algo-

rithm failed to introduce the concept of optimal length for data-subdivision which is an

Fig 2. Computational time versus data size plot.

https://doi.org/10.1371/journal.pone.0245589.g002
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important parameter to consider in enhancing the computational speed and operational cost

of spike sorting process.

The detailed description of the steps involved in the proposed mechanism is provided in

the following sections:

Fig 3. Illustration of complete proposed mechanism. The first step is to divide the large electrophysiological data into

smaller groups. Second step involves the clustering of data-subsets using the conventional spike sorting algorithms.

Last step involves the unification or merging of clustered data-subsets to get optimal clustering of complete large

electrophysiological data.

https://doi.org/10.1371/journal.pone.0245589.g003
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Data subdivision

Subdividing large electrophysiological data into optimal length subsets is the most critical

component of proposed mechanism. To form data subsets, let D represents the electrophysio-

logical data recorded at a single acquisition channel. The total number N of optimal subdivi-

sions is estimated as in Eq (1)

N ¼
L
OL

ð1Þ

where L is the length of data D and OL is the optimal length for data-subsets. The procedure to

calculate OL is presented in the next section.

The data-subsets are then estimated as in Eq (2).

Sd nð Þ ¼
Dð1þ ðn � 1Þ � NÞ : Dðn � NÞ n � N < Dt

Dð1þ ðn � 1Þ : DðDtÞ n � N � Dt

( )

8 n ¼ 1; 2; 3; 4 . . . N

ð2Þ

where Sd(n) represents n number of subdivided data-subsets of the large data D.

Fig 4. Comparison of conventional and proposed spike sorting process.

https://doi.org/10.1371/journal.pone.0245589.g004
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Identification of optimal length (OL) for data-subsets

OL is the range of values from which if the data size is selected to perform clustering, the clus-

tering quality and computational efficiency of the conventional algorithms improve signifi-

cantly. OL parameter is dependent on the algorithm type rather than on the data dynamics.

Therefore it needs to be estimated only once for each algorithm. The OL parameter for ten com-

monly used clustering algorithms employed in this study, is estimated and shown in Fig 5b.

To understand the computational time vs data size behaviour, clustering is performed in an

incremental manner. At every increment, the size or length of the data increases and the

computational time is plotted with respect to data size as shown in Fig 5a. The size of data for

which the clustering algorithm shows smoother behaviour is termed as OL, that needs to be

estimated for optimal clustering results.

In this research work OL is estimated by employing the work of Killick [66]. A threshold of

0.1 of the maximum rate of change of the computational time is used. The first change in

computational time above the threshold is estimated to be the optimal length of the data-

subset.

The procedure proposed in this research work to calculate OL is implemented on ten afore-

mentioned commonly used clustering algorithms. The procedure is repeated hundred times to

get an average OL value as an efficient measure for robustness in results. The calculated O0Ls are

depicted in Fig 5b. It is observed that the performance of clustering algorithms is independent

of the data dynamics and feature extraction techniques. OL for all the algorithms adopted in

this study, lies approximately in the same range for all three data and six feature sets,

employed. Therefore, the computational performance of the algorithms depends on the length

of the data set and not on the data dynamics.

Deviation of (OL) from the estimated optimal point could lead to inefficient spike sorting

performance. Data subdivision using optimal length is a compromise between computations

involved in clustering process and unification process. (OL) forms a direct relationship with

clustering computations and an inverse relationship with computations involved in the unifi-

cation process.

Clustering of data

Data subdivision is followed by clustering of data-subsets employing conventional spike sorting

algorithms. Ten algorithms, as illustrated in Fig 5, are employed in this study due to their wide

adaptability in spike sorting research. The algorithm proposed is independent of the clustering

procedure; therefore, any other clustering technique could be adopted in this mechanism.

Unification of subclusters

After the clustering is performed on each data-subset, the unification of the sub clusters is per-

formed. Sub-clusters are unified by identifying the overlap between the bounded regions of

sub-clusters. The bounded region (BR) is a ‘m’ dimensional set which consist of minimum and

maximum variations of ‘m’ dimensional spike feature waveforms in each dimension for a corre-

sponding sub cluster. The bounded region for jth sub cluster is given by relationship in Eq (3).

BRj;i ¼

min

max

2

4

3

5

j;1

min

max

2

4

3

5

j;2

min

max

2

4

3

5

j;3

� � �

min

max

2

4

3

5

j;m

8
<

:

9
=

;
ð3Þ
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Fig 5. Identification of optimal length OL. (a) Illustrates the description of steps involved in identifying the OL for spike sorting algorithms. Computational time

versus data size plot. The X-axis shows the length of the data increasing from zero to 2000 while the Y-axis shows the corresponding time taken by the clustering

algorithm to perform clustering process, in milliseconds. The computational time is the processing time after movmean filter(20 datapoints length) filtered the

unwanted ripples in the plot and returned smooth curves. Detected abrupt changes in the plot taking 0.1 of the maximum rate of change in computational time

as threshold (d) Identified optimal length OL of data subsets used for data subdivision. b) Optimal Length (OL) for ten commonly used clustering algorithms. The

average value over ten repetitive analyses is given as robustness of the measure in optimal length for data subdivision.

https://doi.org/10.1371/journal.pone.0245589.g005
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Where BRj,i is the ‘m’ dimensional bounded region for jth sub cluster with j 2 [1, 2, 3,.., k]

and ‘k’ is the total number of sub clusters participated in the unification process.
min

max

" #

j;i

are

the minimum and maximum variations of spike feature waveforms for jth sub cluster and in ith

dimension and i 2 [1, 2, 3, . . ., m].

In this study, since 10 PCA or 10 Wavelet features are used to transform the spike waveform

into spike feature waveform. So ‘m’ is 10 in this particular case and BR is a 10 dimensional set

with minimum and maximum values providing variation of spike feature waveforms in each

dimension for a particular sub cluster.

The bounded region is calculated for all ‘k’ sub clusters participated in the unification pro-

cess. The sub clusters, having overlapping bounded regions in all dimensions, are unified

together. The unification process for a 2 dimensional sub clusters is shown in Fig 6. In the Fig

6, it is also illustrated how sub clusters unify in three different scenarios i.e. 1) no overlapping

region between sub clusters 2) overlap between two distinct sub clusters and 3) multiple over-

lapping sub clusters.

Fig 6. Mechanisim to unify or merge clusters.

https://doi.org/10.1371/journal.pone.0245589.g006
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To eliminate the impact of outliers in deciding the bounded region for unification process,

the spike feature waveforms are filtered in each sub clusters. The filter proposed in this study is

based on Euclidean distance. A sub cluster having ‘m’ dimensional spike feature waveforms,

should have an ‘m’ dimensional centroid ‘C’. It is important to note that, the complete ‘m’

dimensional spike feature waveform is considered as a single point in ‘m’ dimensional space in

calculating the Euclidean distance. Therefore, for each spike feature waveform, an Euclidean

distance from spike feature waveform to its sub cluster centroid is calculated. The relationship

to calculate the Euclidean distances is given in Eq (4).

EDlðCi; Sl;iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðC1 � Sl;1Þ
2
þ ðC2 � Sl;2Þ

2
þ ðC3 � Sl;3Þ

2
þ � � � þ ðCm � Sl;mÞ

2
q

ð4Þ

EDl(Ci, Sl,i) is the Euclidean distance calculated for the lth spike feature waveform Sl,i and sub

cluster centroid Ci. l 2 [1, 2, 3, 4 . . ., n] and i 2 [1, 2, 3, . . ., m] where ‘n’ is the total number of

spikes in a sub cluster and ‘m’ is the spike feature waveform dimension.

Since, the Euclidean distance is calculated based on Eq (4), a n × 1 Euclidean distance

matrix (EDM) is generated, as in Eq (5).

EDM ¼

ED1

ED2

ED3

..

.

EDn

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð5Þ

This EDM matrix is used to identify outliers in spike feature waveforms. From EDM, a

Mean ‘μ’ and Standard Deviation ‘σ’ is calculated by using Eqs (6) and (7).

m ¼

Pn
t¼1

EDt

n
ð6Þ

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1

ðEDt � mÞ
2

s

ð7Þ

Using the mean and standard deviation of a normal distribution curve, the Euclidean dis-

tance values are converted into Z scores using the Eq (8).

Zl ¼ ðEDl � mÞ=s ð8Þ

The Z score distribution determined by Eq (8) is then used to identify the data outliers in

the EDM matrix given by Eq (5). To this aim, we considered two scenarios; 1) when the Z

score distribution of the EDM matrix is normal and 2) when the Z score distribution of the

EDM matrix is skewed. There are numerous methods that can determine the normality of the

data distribution as in [67–69]. However, in this study, the normality of the Z score distribu-

tion of EDM matrix is determined using the Interquartile Range IQR method [70].

The quartiles are three points that divide the data set into four equal groups, each group

comprising a quarter of the data, for a set of data values which are arranged in either ascending

or descending order. Q1, Q2, and Q3 are represent the first, second, and third quartile’s value.

The Interquartile Range (IQR) is basically a difference between the first quartile (Q1) and
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third quartile (Q3). The IQR of the Euclidean distance matrix sorted in ascending order can be

determined using relation given in Eq (9).

IQR ¼ Q3 � Q1 ð9Þ

Where Q1 is first quartile and it is the median of lower half of the euclidean distances sorted

in ascending order and Q3 is the third quartile and it is the median of upper half of the euclid-

ean distances sorted in ascending order.

If the distance of the Q1 and Q3 from the median of the complete dataset containing Euclid-

ean distances is equal, the data is normally distributed and the bell shaped curve is symmetric.

If the distance from data mid-point to Q1 is bigger than Q3, the data distribution is skewed

towards left, and if Q3 is bigger than Q1, the data distribution is skewed towards right.

For a normal distribution of the data, when bell shaped curve is symmetric, Empirical rule

is valid and the outlier filter (OF) is is defined as a range between μ±2σ and its is given by

Eq (10).

OF ¼ min max½ � ¼ m � 2s mþ 2s½ � ¼ � 2Z 2Z½ � ð10Þ

For a nonsymmetric or left and right skewed distributions, 1.5 Interquartile Range (1.5

IQR) filter is used to identify the sub cluster outliers. The factor 1.5 is empirically derived and

being used by novel researchers in statistics for skewed data to identify outliers [71, 72]. There-

fore, in this study 1.5 IQR based outlier filter (OF) is designed to remove data outliers in

skewed distribution and it is given by Eq (11).

OF ¼ min max½ � ¼ Q1 � 1:5� IQR Q3þ 1:5� IQR½ � ð11Þ

All the featured spikes, having the Euclidean distance lies within the OF range, are consid-

ered in estimating the bounded region in Eq (3) for unification of sub clusters.

A similar approach is adopted by Aksenova et al. in [73] to perform training of online spike

sorting algorithm employing phase space. Their algorithm is focused on efficient noise reduc-

tion rather than optimisation of computational efficiency.

Performance evaluation of the proposed algorithm

In this research work, the performance of the proposed algorithm is evaluated using two indi-

cators, computational time and clustering quality. A comparative performance of the proposed

algorithm with respect to the conventional algorithm is presented in Fig 7(a) and 7(b).

For validation, ten most widely adopted clustering algorithms are employed in the pro-

posed research work. The algorithms include MeanShift (MS) [74], Density-based spatial clus-

tering of applications with noise (DBSCAN) [75], Kmeans (KM) [76], Kmedoids (KMD) [77],

Fuzzy C means (FCM) [78], Variational Bayesian Gaussian Mixture Model (VBGMM) [79],

Expectation Maximization Gaussian Mixture Model (EMGMM) [80], Agglomerative Hierar-

chical Clustering (AHC) [81], Birch (BH) [82] and Ordering Points to Identify the Clustering

Structure (OPTICS) [83].

To quantify computational efficiency of the proposed algorithm, three data sets are used,

reported by Quiroga [84], because of their wider adoptability and ground truth availability.

These datasets includes two (2) simulated Dataset 1 (D1) and Dataset 2 (D2) and one human

Dataset 3 (D3). Human data is originated from multiunit recording in the temporal lobe of an

epileptic patient from Itzhak Fried’s lab at UCLA [84]. The information regarding spatio-tem-

porally overlapping spikes as a result of multi-unit recordings can be identified using “Match-

ing Persuit” algorithm [85]. However in this study, the multi-unit spikes are already detected

PLOS ONE Efficient neural spike sorting using data subdivision and unification

PLOS ONE | https://doi.org/10.1371/journal.pone.0245589 February 10, 2021 12 / 23

https://doi.org/10.1371/journal.pone.0245589


and labeled in the ground truth. Labels for three distinguished clusters are provided for each of

dataset D1, D2 and D3 in their respective ground truth.

Each spike waveform consists of 64 samples. Haar Wavelets and PCA features are employed

to reduce the data dimensionality while preserving the variance of the data and spike informa-

tion. In case of Haar wavelets transform, optimal wavelet features were selected following the

study of Quiroga [79], which implemented the four-level multi resolution decomposition. The

64 wavelet coefficients generated provides unique spike characteristic at different scales and

times. As each spike class has different multimodal distribution, the Lilliefors modification of

Kolmogorov-Smirnov (KS) test for normality [81] was used to select the optimal wavelet

Fig 7. Illustration of improved computational speed and clustering accuracy. (a) Improved computational speed in percentage of understudy ten algorithms across six

large neural feature sets. (b) Improved clustering accuracy in percentage of understudy ten algorithms across six large neural feature sets. The proposed data-subdivision

and unification method has shown a positive trend in improving the performance of spike sorting algorithms. The improvement in reducing computational time is

significantly high, while due to maturity of spike of sorting algorithms, accuracy improvement is relatively lower in some of spike sorting algorithms. The average results

for 10 repetitive analysis has been presented and it is worth noting that proposed mechanism has shown promising improvement results around all data types and spike

sorting algorithms.

https://doi.org/10.1371/journal.pone.0245589.g007
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features. The maximum deviation of multimodal distribution features from normality defines

the optimal features. We refer the readers to Quiroga [79] for further explanation. In this con-

text, 10 wavelet features with largest deviation of normality is regarded as optimal wavelet

features.

Similarly, 10 PCA features were selected in this study to validate the computational and per-

formance efficiency of the proposed vs conventional algorithms. The PCA components are not

scaled to match their explained variances. The individual variances of PCA components are

accumulated and the optimal number of PCA components that gives at least 85% of cumula-

tive explained variance are chosen for the analysis. 10 PCA features are required to get at least

85% cumulative explained variance of the 64 dimensional spikes data used in this study.

It is important to note that, the accuracy of clustering algorithms may be affected by the

data dimensionality and number of optimal feature sets used. However, in this study the same

10-dimensional features are used for all the algorithms to maintain the consistency while vali-

dating the performance outcomes.

The research work is carried out on a personal computer (PC) consisting of Intel (R) Pen-

tium (R) CPU G4560 @3.5GHz, 8 GB of RAM and 64 Bit windows 10 operating system.

Performance on computational time or speed

To explore and validate the performance of the proposed algorithm, in terms of computational

time, as tabulated in Table 2, is estimated using the expression (12).

Ts %ð Þ ¼
ðCt � PtÞ

Ct
� 100 ð12Þ

Where Ct and Pt are computational times of clustering using conventional and proposed

algorithms, respectively.

Performance on clustering accuracy

The clustered spikes from spike sorting algorithms are generally evaluated using the validation

indices [46]. In this work clustering accuracy, as is described in [86] and (13), is adopted as a

validation index and is calculated using the confusion matrix [87] as in (14).

A ¼
# of accurately clustered spikes

Total # of Spikes
% ¼

Sum of Conf : Matrix Diagonals
Total # of Spikes

% ð13Þ

C ¼

Ce1g1
Ce1g2

. . . Ce1gq

Ce2g1
Ce2g2

. . . Ce2gq

:

:

:

:

:

:

:

:

:

Cemg1
Cemg2

. . . Cemgq

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð14Þ

Where A and C are accuracy index and confusion matrix, respectively. m is total number of

estimated clusters and q is total number of clusters in ground truth. Cei ;gi
represents the num-

ber of spikes estimated and clustered accurately relative to the labels provided with the spikes
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data ground truth. Where ei refers to estimated cluster index and gi ground truth. The accuracy

index highlights the percentage of spikes accurately labelled to the clusters described in the

ground truth. There are two scenarios taken into account while calculating accuracies.

m = q: when number of clusters estimated are equal to number of clusters in the ground

truth. This leads to the square confusion matrix of size m|m=q and the sum of confusion matrix

diagonals divided by total number of spikes provides the percentage of accuracy as in Eq (13).

m 6¼ q: when the number of clusters estimated m are not equal to the number of clusters in

ground truth q, the confusion matrix is generated by taking only the dominant estimated clus-

ters m equal to the total number of clusters q in the ground truth. In case of estimated clusters

less than the ground truth clusters, i.e. m< q, the confusion matrix is zero padded. The accu-

racy is calculated by using the expression (13).

The percentage of accuracy enhancement is estimated using the accuracy difference

between proposed and conventional methods, which is tabulated in Table 3.

Table 2. Computational times and time based performance improvement for ten clustering algorithms.

Algorithm Method Computational Time (Seconds)

D1, PCA D1, WAV D2, PCA D2, WAV D3, PCA D3, WAV

Meanshift Proposed 0.3 0.02 0.43 0.13 0.11 0.03

Conventional 0.36 0.04 0.76 0.16 0.15 0.06

Time Saved (%) 17.25 60.59 43.69 17.81 23.88 46.63

DBSCAN Proposed 0.75 1.6 3.26 0.54 8.76 3.84

Conventional 1.82 4.81 8.37 1.3 48.63 21.09

Time Saved (%) 58.6 66.64 61.02 58.71 81.98 81.77

Kmeans Proposed 0.04 0 0.01 0 0.04 0.03

Conventional 0.28 0.03 0.03 0.01 0.09 0.05

Time Saved (%) 84 84.7 73.2 55.14 52.55 32.59

Kmedoids Proposed 0.32 0.1 0.17 0.14 1.37 1.31

Conventional 1.14 0.36 0.33 0.41 1.38 1.85

Time Saved (%) 72.39 72.2 47.67 65.99 1.19 29.26

VBGMM Proposed 0.3 0.25 0.6 0.4 1.91 1.05

Conventional 0.44 0.51 0.75 0.63 3.9 2.57

Time Saved (%) 31.17 50.85 19.46 37.15 51.02 59.35

EMGMM Proposed 0.43 0.32 1.2 0.46 3.39 3.07

Conventional 0.46 0.62 1.76 0.58 3.71 4.29

Time Saved (%) 6.83 48.56 32.06 21.17 8.78 28.5

Agglomerative Proposed 0.18 0.07 0.06 0.06 0.2 0.2

Conventional 0.18 0.15 0.15 0.14 1.14 1.04

Time Saved (%) 2.55 54.23 59.75 58.61 82.92 80.46

OPTICS Proposed 1.11 0.44 0.42 0.43 1.72 1.72

Conventional 1.14 1.08 1.02 1.05 7.27 7.18

Time Saved (%) 2.35 59.15 58.56 59.37 76.34 76.07

BIRCH Proposed 1.25 1.61 1.39 1.94 2.22 5.32

Conventional 1.68 4.11 2.35 3.73 5.9 31.56

Time Saved (%) 25.65 60.77 40.94 47.99 62.4 83.15

FCM Proposed 0.01 0.03 0.01 0.05 0.02 0.41

Conventional 0.08 0.05 0.02 0.06 0.05 0.59

Time Saved (%) 81.92 49.8 54.26 13.51 65.12 29.43

https://doi.org/10.1371/journal.pone.0245589.t002
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Clustering results

To highlight enhancement in clustering quality, visual representation of clusters estimated

using proposed and conventional methods employing OPTICS on dataset 3 with PCA features

and DBSCAN on dataset 1 with Wavelet features, gives 49.99 and 56.87 percent accuracy

improvement in the clustering results with respect to the ground truth as in Table 3. The illus-

tration of clustering results for aforementioned examples is shown in Figs 8 and 9 respectively.

It is clear from the results that proposed methodology generates significantly superior results

in contrast to conventional methods.

Discussion

It is largely observed from the results and performance evaluation that the proposed algorithm

shows continuous improvement around all algorithms and datasets. The accuracy is improved

up to 56.87% while computational time is reduced up to 84.7%. Hence, proposed mechanism

has significant impact on enhancing the speed and accuracy of the spike sorting process. In

Table 3. Clustering accuracy and accuracy based performance improvement for ten clustering algorithms.

Algorithm Method Accuracy (%)

D1, PCA D1, WAV D2, PCA D2, WAV D3, PCA D3, WAV

Meanshift Proposed 89.89 97.81 83.76 94.03 72.18 81.82

Conventional 89.18 97.59 62.36 94 52.72 75.05

Improved Acc. (%) 0.71 0.23 21.4 0.03 19.46 6.76

DBSCAN Proposed 87.85 92.16 34.72 84.02 72.18 72.19

Conventional 61.07 35.29 33.79 62.3 51.55 51.88

Improved Acc. (%) 26.77 56.87 0.93 21.72 20.63 20.32

Kmeans Proposed 66.35 99.38 95.21 92.78 71.63 78.87

Conventional 44.69 63.86 65.46 81.58 36.56 62.21

Improved Acc. (%) 21.66 35.52 29.76 11.19 35.06 16.66

Kmedoids Proposed 98.07 99.38 77.52 93.1 61.31 83.92

Conventional 96.79 99.38 48.46 92.78 43.48 69.14

Improved Acc. (%) 1.28 0 29.06 0.32 17.82 14.78

VBGMM Proposed 88.25 77.31 62.3 84.34 70.08 63.51

Conventional 85.26 66.47 54.52 68.85 50.66 31.93

Improved Acc. (%) 2.98 10.85 7.77 15.49 19.42 31.58

EMGMM Proposed 91.31 90.37 72.97 84.66 74.15 57.21

Conventional 89.15 80.41 56.61 65.84 61.95 38.15

Improved Acc. (%) 2.16 9.97 16.36 18.82 12.2 19.05

Agglomerative Proposed 94.55 99.26 88.46 96 56.15 80.88

Conventional 93.7 99.21 84.86 87.91 43.75 51.4

Improved Acc. (%) 0.85 0.06 3.6 8.09 12.4 29.48

OPTICS Proposed 76.58 29.42 31 26.04 62.33 20.58

Conventional 42.67 17.18 22.71 12.38 12.34 4.28

Improved Acc. (%) 33.9 12.24 8.29 13.66 49.99 16.29

BIRCH Proposed 93.19 99.26 86.83 93.33 54.73 80.88

Conventional 72.43 99.18 84.66 92.89 44.76 55.53

Improved Acc. (%) 20.76 0.09 2.18 0.44 9.96 25.35

FCM Proposed 71.78 99.38 84.98 92.63 60.99 77.15

Conventional 71.72 99.38 49.42 92.6 39.77 63.97

Improved Acc. (%) 0.06 0 35.56 0.03 21.22 13.18

https://doi.org/10.1371/journal.pone.0245589.t003
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term of clustering accuracy, DBSCAN demonstrates high accuracy improvement of 56.87 per-

cent followed by OPTICS at 49.99 percent. In terms of computational time, Kmeans shows

highest computational speed enhancement of 84.7 percent followed by BIRCH with computa-

tional speed enhancement of 83.15 percent. In terms of parameter tuning complexity, Mean-

Shift, FCM and Gaussian Mixture models require one parameter to tune, DBSCAN and

OPTICS require two and BIRCH requires three parameters to tune to perform their opera-

tions. All the supervised clustering algorithms including Kmeans, Kmedoids and Agglomera-

tive require single parameter to tune. In terms of robustness, Kmeans, Kmedoids,FCM gives

different results at every iteration, however, Meanshift, EMGMM, VMGMM, Agglomerative,

DBSCAN, OPTICS, BIRCH converged to same results after each iteration. For simplicity of

the presentation, the presented results are averaged over 10 repetitions.

Software implementation

The software for proposed mechanism is implemented using MATLAB as shown in Fig 10.

The free access to open source software for academic purpose is provided with detailed user

Fig 8. Comparison of clustering results obtained using conventional and proposed mechanism employing OPTICS with dataset 3 and PCA features. (a) Clustering

results using conventional spike sorting method applied on complete dataset containing 3740 Spikes. (b) Performance indication of clustering results based on

computational time/speed and clustering accuracy. (c)-(f) Clustering results using proposed spike sorting mechanism applied on data-subdivision of optimal length i.e

935 for OPTICS. (g) Unification of subdivided cluster subsets. (h) Performance indication of clustering results using proposed spike sorting method.

https://doi.org/10.1371/journal.pone.0245589.g008
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instructions online at: https://github.com/ermasood/Handling-Larger-Data-Sets-for-

Clustering. The software yields the clustering labels with high accuracy and in a fast and effi-

cient way. The first graph in the software window shows the clustered spikes and the second

graph illustrates the clustered features of the inputted data. MATLAB codes provided are

tested on 2019b and 2018b MATLAB versions. Additionally,’Linspecer.m’ file [88] from

MathWorks is required to generate attractive colour combinations and shades for beautiful

visualisations.

Conclusion

Neural spike sorting is prerequisite to deciphering useful information from electrophysiologi-

cal data recorded from the brain, in vitro and/or in vivo. Significant advancements in nano-

technology and nano fabrication has enabled neuroscientists and engineers to capture the

electrophysiological activities of the brain at very high resolution, data rate and fidelity. How-

ever, the evolution in spike sorting algorithms to deal with the aforementioned technological

advancement and capability to quantify higher density data sets is somewhat limited. It is

observed from the experiments that larger datasets highly effect the computational time

Fig 9. Comparison of clustering results obtained using conventional and proposed mechanism employing DBSCAN with dataset 1 and Wavelet features. (a)

Clustering results using conventional spike sorting method applied on complete dataset containing 3405 Spikes. (b) Performance indication of clustering results based on

computational time/speed and clustering accuracy. (c)-(f) Clustering results using proposed spike sorting mechanism applied on data-subdivision of optimal length i.e

1135 for DBSCAN. (g) Unification of subdivided cluster subsets. (h) Performance indication of clustering results using proposed spike sorting method.

https://doi.org/10.1371/journal.pone.0245589.g009
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required to perform clustering. To address this challenge, a novel clustering mechanism is pro-

posed to handle large datasets efficiently and with higher accuracy. The proposed mechanism

resolves the issue of high computational time and reduced accuracy in conventional method.

The proposed algorithms has demonstrated up to 84% and 56% improvement in terms of

computational time and clustering accuracy, respectively. The proposed framework is vali-

dated by applying on ten widely used clustering algorithms and six large data sets. PCA and

Haar wavelets features are employed for consistency during the clustering process. A

MATLAB software of the proposed mechanism is also developed and provided to assist the

researchers, active in this domain.
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