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INTRODUCTION

Recently, attention on endocrine disrupting chemicals has in-

creased due to rising concerns over the health risks of environ-
mental pollutants, such as fine dust and microplastics. However, 
it has been proven difficult to demonstrate a causal relationship 
between serum levels of these materials and disease develop-
ment, one of the most important reasons being the inadequa-
cy of methods with which to evaluate the direct toxic effects of 
chemical mixtures that people are exposed to.

Persistent organic pollutants (POPs) are some of the most 
important and highly divergent endocrine disrupting chemi-
cals. Among POPs, dioxin and dioxin-like substances are the 
most infamous, as they are resistant to degradation in the envi-
ronment and bioaccumulate in our body through the food 
chain.

Many POPs bind to the aryl hydrocarbon receptor (AhR), 
leading to transcriptional activation of multiple genes, including 
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cytochrome p450 1A1 (CYP 1A1), by binding to dioxin-response 
elements (DRE) of their promoters, eliciting increases in in-
flammatory proteins.1-3 The representative ligands of AhR are 
dioxins, which have a very high affinity for this receptor.4 The 
standard method of dioxin measurement is high resolution 
chromatography coupled to high resolution mass spectrometry 
system, which requires a large amount of serum, expensive fa-
cilities, and experts. 

We previously developed a highly sensitive cell-based AhR-
dependent luciferase activity (CALA) assay with which to de-
termine serum levels of dioxin and dioxin-like substances as 
reflected by AhR transactivating (AHRT) activity. The assay 
shows good correlation with dioxin toxic equivalency values 
derived from chemically measured concentrations.5 Moreover, 
AHRT was correlated with serum mitochondrial inhibitor 
(MTI) activity, as ascertained by measurement of intracellular 
adenosine triphosphate (ATP) content and reactive oxygen 
species generation in cells treated with serum samples from 
patients.5 Our CALA assay can also be reliably used to assess di-
oxin-like polychlorinated biphenyl levels in clinical studies, as 
some polychlorinated biphenyls showed good correlation with 
AHRT activities and ATP levels in 911 senior adult subjects in 
the Prospective Investigation of the Vasculature in Uppsala Se-
niors (PIVUS) cohort.6 

We previously reported that AHRT activities as measured by 
CALA assay were quantitatively associated with the prevalence 
of diabetes and metabolic syndrome in a cross-sectional study.5 
Furthermore, AHRT activity was positively correlated with dia-
betic kidney disease progression and severity of renal dysfunc-
tion in patients with diabetic kidney disease.7 Among many 
AhR ligands, gut bacteria metabolites of tryptophan, indoxyl 
sulfates, have been reported as uremic toxins associated with 
complex inflammatory conditions and cardiovascular comor-
bidities in uremic patients.8,9 According to these considerations, 
we hypothesized that patients with pre-dialysis chronic kid-
ney disease (CKD) and end-stage renal disease (ESRD) pa-
tients would show high AHRT activity as measured by CALA 
analysis. One reason is the nature of POPs that accumulate in 
the body; the second is because CKD patients are not allowed 
to eat a lot of fresh vegetables, which help to get rid of chemi-
cals; and the third is because kidney function itself is decreased. 
We measured AHRT activity and MTI activity in CKD patients 
and dialysis patients, investigated the effect of dialysis modality 
and time on AHRT activity, and evaluated the relationship be-
tween AHRT activity and clinical parameters of comorbid dis-
eases in CKD patients.

MATERIALS AND METHODS

Patient characteristics
A total of 118 patients were prospectively recruited from Eulji 
Medical Center: 22 peritoneal dialysis (PD) and 38 hemodial-

ysis (HD) patients currently being treated by dialysis for at least 
36 months, as well as 28 pre-dialysis CKD stage IV or V patients 
[estimated glomerular filtration rate (eGFR) <30 mL/min/1.73 
m2]. Thirty patients with normal kidney function (eGFR >60 
mL/min/1.73m2) who visited the hospital for regular health 
checkups were included as normal controls. eGFR was calcu-
lated with the Modification of Diet in Renal Disease equation 
using sex, ethnicity, age, and serum creatinine. Dialysis pa-
tients, treated with alternative methods for over 3 months (in 
the case of HD patients, treated with PD for the last 3 months) 
were excluded. Patients exhibiting acute and chronic inflam-
mation and were taking immunosuppressants were also ex-
cluded. We reviewed comorbid conditions, body mass index 
(BMI), blood pressure, and echocardiography. To compare 
differences in blood pressure among groups, we used the 
mean of 20 random blood pressure values of HD patients just 
before dialysis and the mean of 20 blood pressure values in 
PD patients during their visit to the clinic. Dialysis adequacy 
(Kt/V) in peritoneal equilibrium tests were quantified, and dif-
ferences according to Kt/V were compared in PD patients. Se-
rum samples for measuring AHRT activity and intracellular 
ATP content were collected before initiation and after termi-
nation of dialysis on weekdays among HD patients and at 
monthly check ups for PD and CKD stage IV and V patients. 
Two-dimensional echocardiography was performed to evalu-
ate left ventricular ejection fraction (LVEF) in the patients un-
dergoing HD or PD (n=46). LVEF was calculated using modi-
fied Simpson’s rule. Informed consent was obtained from all 
118 participants. All data were compared according to dialysis 
modality. This protocol was approved by the Institutional Re-
view Board of the Eulji Medical College Hospital in accor-
dance with the Declaration of Helsinki (IRB No. 2017-05-008).

Laboratory assay and definitions
Complete blood cell counts, BUN, creatinine, HbA1c, and se-
rum lipid levels were measured. Fasting plasma glucose was 
measured using a glucose oxidase method, and total choles-
terol, triglyceride, and high-density lipoprotein cholesterol 
(HDL-C) levels were measured using enzymatic colorimetric 
procedures with an auto-analyzer (Hitachi-747; Hitachi, Tokyo, 
Japan). Glycated hemoglobin (HbA1c) was measured with 
high-performance liquid chromatography using HLC-723G7 
(Tosoh, Tokyo, Japan). Blood samples from all subjects were 
collected after >8 h of fasting.

Serum AHRT activity assay
We measured AHRT activity as described previously with some 
modifications.5 Serum was prepared by allowing the blood to 
clot and then removing the clot. Each serum sample was heat-
inactivated by incubation at 65°C for 30 min. Fetal bovine se-
rum (Gibco BRL, Grand Island, NY, USA) or control human se-
rum (charcoal stripped serum, CSS) was treated with activated 
charcoal (Sigma Co., St. Louis, MO, USA) overnight at 4°C and 
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filtered to remove all small molecules and AhR agonists that 
might have been present. 2,3,7,8-tetrachlorodibenzodioxin 
(TCDD), a positive control for AhR agonist, was purchased from 
Sigma Co. TCDD was considered extremely hazardous, so ap-
propriate personal protective methods and materials were 
used. pGL4-DRE-luc(puromycin+)/pRL-mTK double-positive 
stable cells and heat-inactivated serum samples were prepared 
as described previously.6 The AHRT activity assay is similar to 
the CALUX assay, except it utilizes different recombinant cell 
lines and heat-inactivation method instead of organic solvent 
extraction for sample preparation.10 All cell-based assays were 
performed in duplicate on blinded samples. pGL4-DRE-luc/
pRL-mTK-transfected mouse Hepa1c1c7 cells (1×105/well) in 
a 96-well plate were treated for 24 h with 10 μL of serum sam-
ple (10% culture media) or control CSS in phenol red-free 
Dulbecco’s Modified Eagle’s Medium. Luciferase activity was 
measured using a Dual-Glo Luciferase assay system (Promega, 
Madison, WI, USA) and a luminometer (Berthold, Bad Wild-
bad, Germany), and subsequently normalized against Renilla 
luciferase activity. Relative AhR-dependent luciferase reporter 
activity reflects the AHRT activity of serum sample-treated cells, 
which was calculated as a fold induction (FI), with the AHRT 
activity of 10% CSS-treated cells being set to 1. Then, AHRT 
values were converted to 2,3, 7,8-TCDD equivalents (TCDDeq, 
pM) using a standard curve (0–10 pM of TCDD), prepared 
using cells exposed to serially diluted TCDD (0–50 pM) for 24 
hours in the presence of 10% CSS. According to the standard 
curve, a 0.1-FI change in AHRT activity was equivalent to 0.37 
pM TCDDeq. The intra- and interassay coefficients of variation 
for these methods were <5.0%.

Mitochondria inhibiting activity assay
The effects of human serum on the mitochondrial function of 
cultured cells was evaluated by measuring intracellular ATP 
content as described previously with minor modifications.5 In 
short, we selected G418 resistant stable colonies from Hepa1c1c7 
cells that had been transfected with pRL-TK using SuperFect 
(Qiagen, Germantown, MD, USA) for 3 weeks and stored. Cells 
showed stable Renilla luciferase activity. pRL-mTK-transfect-
ed mouse Hepa1c1c7 cells (5×104/well) in a 96-well plate were 
treated with 10 μL of heat-inactivated-serum samples for 48 h. 
The ATP content of the treated cells was determined using the 
luciferin-luciferase reaction with the CellTiter-Glo luciferase 
kit (Promega), with the output being normalized to Renilla lu-
ciferase activity. The intracellular ATP content of CSS-treated 
control cells was 65.1± 2.7 nM. The ATP concentration of 10% 
sample serum-treated cells could be calculated from a standard 
curve of ATP concentrations (nM)=(% control+18.24)/1.817. 
ATP content was expressed as a percentage of CSS-treated 
control. The intra- and interassay coefficients of variation for 
these methods were <6.0%.

Statistical analysis
This study was designed as an exploratory study through 
which to generate new evidence for our thesis. Mean values 
and standard deviations were calculated for individual vari-
ables using SPSS statistics software version 18.0 (SPSS Inc., Chi-
cago, IL, USA). Comparisons between frequencies were tested 
by the chi-squared test. Differences between groups were 
tested using the unpaired Student’s t-test for normally distrib-
uted variables and Mann–Whitney U-test for variables with a 
skewed distribution. Differences among the three groups 
were investigated by one-way analysis of variance for normally 
distributed variables and the Kruskal–Wallis test for variables 
with skewed distribution. Paired-t test was used to compare 
AHRT activity and ATP level before and after HD. Pearson’s cor-
relation test was used to evaluate the relationship among AHRT, 
MTI activity, and various metabolic parameters. The signifi-
cance level was set at p<0.05.

RESULTS

Clinical characteristics of the study patients
There were a total of 118 participants, consisting of 30 subjects 
with normal kidney function, 28 with pre-dialysis CKD, 22 un-
dergoing PD, and 38 undergoing HD. The mean age of all par-
ticipants was 60.6±13.0 years. Of the participants, 77 (65.3%) 
were male, and 41 (34.7%) were female. The mean durations 
of dialysis were 62.9±39.6 months in PD patients and 81.4± 
35.2 months in HD patients. Table 1 lists the clinical character-
istics of the study group. There were significant differences in 
BMI, systolic blood pressure (SBP), blood urea nitrogen (BUN), 
creatinine, hemoglobin, low-density-lipoprotein (LDL) choles-
terol, and triglyceride levels between the study groups (Table 1). 

Comparisons of AHRT activity and intracellular ATP 
levels according to kidney function and dialysis 
modalities
We noted statistical differences in AHRT activity among the 
study groups in the following order: normal kidney function< 
PD<CKD<HD. Intracellular ATP levels also differed signifi-
cantly between groups: HD<PD=CKD<normal kidney func-
tion (Fig. 1). The same tendency was also confirmed when the 
mean values of AHRT activity before and after HD were ana-
lyzed.

Comparison of AHRT activities and intracellular ATP 
levels according to diabetes status in all study 
participants
We analyzed serum AHRT activity and intracellular ATP levels 
in all study participants and compared these values according 
to diabetes status. The patients with diabetes had significantly 
higher serum levels of AHRT activity and lower intracellular 
ATP levels than the normal control group (Fig. 2).



59

Jin Taek Kim, et al.

https://doi.org/10.3349/ymj.2020.61.1.56

Table 1. Comparison of Baseline Characteristics of the Study Groups
Normal CKD PD HD p value

Age (yr) 59.70±11.80 65.80±13.46 57.48±13.05 61.17±12.65 0.057
Sex (M/F), n 21/9 20/8 11/11 25/13 0.387
Diabetes, n 1 14 12 31 <0.001
BMI (kg/m2) 24.86±3.27 24.16±2.89 24.64±3.58 22.14±3.68 0.005
SBP (mm Hg) 120.32±11.75 126.90±16.84 138.44±12.68 142.44±10.63 <0.001
DBP (mm Hg) 73.53±7.40 73.20±9.13 78.81±8.90 70.69±7.09 <0.001
BUN (mmol/L) 4.65±1.86 19.32±8.58 18.64±5.04 21.33±3.56 <0.001
Creatinine (µmol/L) 85.78±23.03 336.99±109.86 960.42±312.74 856.80±252.23 <0.001
Hemoglobin (mmol/L) 8.74±0.92 6.86±0.81 6.52±0.35 6.55±0.33 <0.001
HbA1c (%) 6.02±1.25 6.81±1.34 7.01±1.66 7.16±1.55 0.364
Fasting glucose (mmol/L) 5.20±0.97 6.64±2.52 7.80±3.35 7.63±2.92 <0.001
LDL cholesterol (mmol/L) 3.37±1.06 2.12±0.83 2.19±0.72 2.05±0.49 <0.001
Triglyceride (mmol/L) 1.30±0.73 1.70±1.15 1.64±0.85 1.15±0.57 0.022
AHRT activity (FI) 1.63±0.23 2.36±0.32 1.73±0.36 2.56±0.31 <0.001
ATP (% control) 61.91±6.00 54.37±6.18 54.28±4.35 49.68±4.40 <0.001
CKD, chronic kidney disease; PD, peritoneal dialysis; HD, hemodialysis; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, he-
moglobin A1c; BUN, blood urea nitrogen; LDL, low-density-lipoprotein; AHRT, aryl hydrocarbon receptor transactivating; ATP, adenosine triphosphate; FI, fold induction.
Values are expressed as means±SDs unless otherwise noticed. Significance at p<0.05 by ANOVA and Tukey’s test or χ2-test.
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Comparison of AHRT activity and ATP levels according 
to dialysis treatment and dialysis adequacy
Serum levels of AHRT activity were reduced after dialysis in 
HD patients. On the contrary, intracellular ATP levels were ele-
vated after dialysis, compared to a pre-dialysis state (Fig. 3). 
Among patients undergoing HD, over 97% achieve sufficient 
dialysis adequacy (>1.3 of Kt/V); however, among PD patients, 
only 60% reach an Kt/V ≥1.7. When we divided the PD pa-
tients into two groups according to their Kt/V values, as high 
Kt/V (≥1.7) and low Kt/V (<1.7) groups, there was no signifi-
cant difference between two groups in regards to AHRT activi-
ty and ATP levels (low Kt/V vs. high Kt/V, AHRT activity, 
1.81±0.42 FI vs. 1.63±0.16 FI, p=0.406; ATP level, 53.31±3.79% 
vs. 55.86±5.4%, p=0.327). 

Correlation analysis for AHRT activity, intracellular 
ATP levels, and various clinical parameters
We performed linear regression analysis between AHRT activ-
ity and intracellular ATP, along with various clinical parame-
ters. AHRT activities showed a negative correlation with intra-
cellular ATP levels, LDL-cholesterol, hemoglobin, BMI, and 
LVEF (Table 2, Fig. 4). AHRT activity also showed a marginally 
significant positive correlation with SBP, BUN, creatinine, and 
duration of dialysis (Table 2, Fig. 4). ATP showed a significant-
ly negative correlation with SBP, BUN, and creatinine and a 
positive correlation with multiple parameters, such as LDL 
cholesterol, hemoglobin, and LVEF (Table 2).

DISCUSSION

As the number of patients with ESRD is increasing due partly 
to an increased prevalence of diabetes and partly with recent 
improvement in dialysis therapy and patient care, more pa-
tients are maintaining dialysis over the long term. However, 
the exact pathogenesis of cardiovascular complications, a main 
cause of death in ESRD patients, is still ill-defined, although 

chronic inflammation and some uremic toxins are suggested 
as primary culprits. In this study, we measured AHRT activity 
and ATP levels in patients with CKD and ESRD using a cell-
based AhR-dependent luciferase activity assay. CKD patients 
showed higher levels of AHRT activity and lower intracellular 
ATP levels than control patients with normal renal function 
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Fig. 3. Changes in AHRT activity and intracellular ATP levels after HD treatment in HD patients. Paired-t test was used. AHRT, aryl hydrocarbon recep-
tor transactivating; ATP, adenosine triphosphate; HD, hemodialysis.

Table 2. Correlations among AHRT Activity, Intracellular ATP, and Vari-
ous Clinical Parameters

Clinical 
parameters

AHRT activity ATP
r p value r p value

AhR - - -0.436 <0.001
ATP -0.436 <0.001 - -
Age 0.088 0.342 0.008 0.928
Duration of dialysis 0.259 0.046 0.002 0.990
BMI -0.224 0.028 0.159 0.120
SBP 0.329 0.001 -0.364 <0.001
DBP -0.120 0.222 0.068 0.489
Fasting glucose 0.164 0.079 -0.286 0.002
HbA1c 0.117 0.282 -0.173 0.111
LDL cholesterol -0.416 <0.001 0.381 <0.001
Triglyceride -0.142 0.134 -0.001 0.990
Calcium 0.103 0.441 0.085 0.527
Phosphorus -0.101 0.450 0.147 0.272
PTH 0.158 0.237 0.154 0.249
BUN 0.405 <0.001 -0.332 <0.001
Creatinine 0.307 0.001 -0.446 <0.001
hsCRP -0.062 0.665 0.153 0.284
Hemoglobin -0.450 <0.001 0.517 <0.001
Uric acid 0.114 0.391 -0.209 0.112
LVEF -0.360 0.014 0.408 0.005
AhR, aryl hydrocarbon receptor; AHRT, AhR transactivating; ATP, adenosine 
triphosphate; BMI, body mass index; SBP, systolic blood pressure; DBP, dia-
stolic blood pressure; HbA1c, hemoglobin A1c; LDL, low-density-lipoprotein; 
PTH, parathyroid hormone; BUN, blood urea nitrogen; hsCRP, high-sensitivity 
C-reactive protein; LVEF, left ventricular ejection fraction. 
Pearson’s coefficient r and p values are presented.
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and ESRD patients under dialysis. We speculate that the elim-
ination of AhR ligands is reduced in CKD patients and that in-
creases in AhR ligands may be causes of kidney disease pro-
gression. AhR, a ligand-inducible transcription factor, mediates 
its toxic renal effect by inducing cytochrome p450 proteins, 
which contribute significantly to renal dysfunction through 
formation of reactive oxygen species.11,12 Furthermore, after 
classifying patients according to diabetes status, regardless of 
CKD stage, we found AHRT activity to be higher and intracellu-
lar ATP levels to be lower in patients with diabetes than in those 
without. These results coincide with findings from our previ-
ous epidemiologic study.5

In this study, patients with ESRD under HD and PD showed 
higher AHRT activity and lower levels of intracellular ATP than 

patients with normal renal function. Unexpectedly, ESRD pa-
tients treated by dialysis showed less elevation of AHRT activity 
than pre-dialysis CKD patients, suggesting that dialysis may 
reduce AHRT activity. To evaluate the effect of dialysis on se-
rum AHRT activity, we obtained serial serum samples before 
and after HD sessions and found that serum AHRT activity 
decreased after HD. Indoxyl-sulfate and indole-3-acetic acid, 
well known uremic toxins known to be involved in renal pro-
gression, are also known as AhR ligands.9,13,14 They exist in the 
form of albumin-bound molecules in the body and are unlikely 
to be removed by dialysis.15 However, whether and how other 
individual AhR ligands are affected by dialysis treatment are 
still ill-defined. As high flux dialysis membranes may have dif-
ferent effects on AHRT activity, further research is mandated to 
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identify the individual molecules among AhR ligands and to 
compare the effects of HD and hemodiafiltration on AHRT ac-
tivity in order to determine the exact role of dialysis treatment. 
Regarding the relationship between Kt/V and AHRT activity in 
PD patients, our results showed no relationship between them. 
It is well-known that PD is more effective in removing larger 
molecules than HD, and AHRT activity was lower in PD patients 
than HD patients in this study. There is the possibility that larg-
er protein-bound molecules, including indoxyl sulfate and in-
dole-3 acetic acid, influenced this result. 

Our data suggest that increased AHRT activity may have an 
important relationship with the cardiovascular complications 
of ESRD patients as evidenced by meaningful associations 
with multiple clinical parameters. AHRT activity was negatively 
correlated with LDL-cholesterol, hemoglobin, and LVEF. These 
results suggest that there may be some relationships between 
malnutrition, inflammation, and atherosclerosis (MIA) syn-
drome in CKD patients and AHRT activity.16 In MIA syndrome, 
malnutrition status adversely affects the development of car-
diovascular events.17 Our study did not show an association 
between AHRT activity and the inflammatory marker CRP, al-
though we suspect that chronic inflammation is the main link 
between AHRT activity and CKD. In addition, a complex varia-
tion in oxidative stress marker levels in CKD has been report-
ed.18 Therefore, it is necessary to measure and analyze various 
oxidative stress markers and inflammatory cytokines further 
to clarify the association between inflammation and AHRT ac-
tivity. As a reference, in our previous study, AHRT activity ex-
hibited a negative correlation with serum adiponectin, which 
is known to have significant anti-inflammatory and anti-ath-
erogenic effects.19 Recently, Dou, et al.20 showed that AhR is in-
creased in patients and mice with CKD, and increased cardio-
vascular events were observed in CKD patients with increased 
AhR activities in their survival analyses. 

In our study, AHRT activity showed a strong negative corre-
lation with intracellular ATP levels. Given that ATP levels are 
potent biomarkers of mitochondrial function, our data sug-
gest a possible mechanism linking mitochondrial dysfunction 
and increased AHRT activity, as well as their harmful effects 
on cardiovascular complications, in ESRD patients.

The present study has several limitations. First, this cross-
sectional observation study did not allow for concluding a 
causal relationship between AHRT activity and CKD. Second, 
this was a single-center study with a small sample size. Nation-
wide and multinational cooperation to clarify the observed as-
sociation is needed. Third, there are several ‘non-classical’ AhR 
ligands other than dioxins and dioxin-like compounds. These 
include tryptophan and its metabolites and phytochemicals, 
and the list is growing.21 

In conclusion, we found AHRT activity to be associated with 
CKD, ESRD, and cardiovascular complications, and dialysis 
treatment played a role in reducing AHRT activity. Further stud-
ies are needed to specify the precise role of AHRT activity and to 

demonstrate the direct cause and consequence relationships 
for complications in patients with CKD.  
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