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Abstract

Current experiments likely cover only a fraction of all protein-protein interactions. Here, we developed a method to predict
SH2-mediated protein-protein interactions using the structure of SH2-phosphopeptide complexes and the FoldX algorithm.
We show that our approach performs similarly to experimentally derived consensus sequences and substitution matrices at
predicting known in vitro and in vivo targets of SH2 domains. We use our method to provide a set of high-confidence
interactions for human SH2 domains with known structure filtered on secondary structure and phosphorylation state. We
validated the predictions using literature-derived SH2 interactions and a probabilistic score obtained from a naive Bayes
integration of information on coexpression, conservation of the interaction in other species, shared interaction partners, and
functions. We show how our predictions lead to a new hypothesis for the role of SH2 domains in signaling.
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Introduction

The cell’s ability to respond to internal and external cues

depends largely on reversible post-translational modifications of

proteins, such as phosphorylation, ubiquitylation, methylation or

acetylation. These modifications often occur on short unstructured

stretches of proteins and are read by domains that recognize the

modified form [1]. Signal transduction often involves phosphor-

ylation of tyrosine residues by tyrosine kinases. This turns on the

recognition of the phosphorylated site by SH2-domain containing

proteins, leading to regulation of cellular localization, enzymatic

activity and formation of multiprotein complexes [2,3].

Experiments using peptide libraries indicate that each SH2

domain binds a different spectrum of phosphopeptides [4–8].

Although the differences in the binding constants for different

phosphopeptides are often modest [9], they are known to play an

important role in regulating signal transduction in vivo [3]. For

example, exchanging an SH2 domain for another with a different

specificity can impair activation of the Ras pathway in

Caenorhabditis elegans [10], alter the transformation ability of the

Abelson murine leukemia [11] and the Rous sarcoma viruses [12]

and trigger mesoderm formation in Xenopus laevis [13]. Moreover,

point mutations that induce changes in specificity are associated

with diseases such as the X-linked alpha-gammaglobulinemia [14],

the X-linked lymphoproliferative syndrome [15] and the Noonan

syndrome [16].

The in vitro binding specificity of SH2 domains is commonly

determined using peptide libraries [4,17]. The results of peptide

library experiments are often summarized in the form of consensus

sequences [4] or as position-specific scoring matrices [18] and then

used to predict and characterize novel in vivo SH2-mediated

protein-protein interactions. However, the genome-wide determi-

nation of the binding specificity of SH2 domains using peptide

libraries seems impractical given the more than one hundred

human SH2 domains [19] and the limited complexity of the

peptide libraries available. The computational modeling of SH2

domain specificity is in a developing stage [20–22]. On one hand,

fast methods with energy functions based on solvent-accessible

surface area reached only limited success [20]. On the other hand,

algorithms using molecular dynamics [21] and comparative

molecular field analysis [22] showed a good predictive power

but are computationally expensive and can only be used to study a

limited number of complexes for a given SH2 domain. Recently,

McLaughlin and coworkers predicted the binding specificity of

two SH2 domains by combining information on known binding

peptides with structure-based calculations [23]. The resulting

hidden Markov models could be used in a genomic scale to predict

SH2-mediated interactions [23]. However, a main drawback of

their method is that it relies partially on experimental information.

The limitations of the current computational methods encouraged

us to develop a new structure-based algorithm to predict the

specificity of SH2 domains.

Our group has developed FoldX, an empirical force field for the

prediction of protein energetics [24]. The energy of a protein or

protein complex is calculated in FoldX using a structure-based

energy function. This energy function is a linear combination of

empirical terms such as solvation of polar and hydrophobic atoms,

water binding, Van der Waals energy, steric clashes, hydrogen
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bonds, electrostatic interactions and side chain and main chain

entropy. These energy terms are scaled with atom or residue burial

and have empirical weights derived by fitting to a database with

more than one thousand mutations [24]. FoldX can give accurate

predictions for changes in protein stability upon mutation [24],

water and metal binding [25] and interactions between globular

domains [26–29]. The algorithm is fast enough to be used in

genome-wide predictions and the modularity of its energy function

makes the implementation of new capabilities straightforward.

FoldX is available online at http://foldx.crg.es.

We have implemented the force field contributions of

phosphorylated amino acids (pTyr, pSer and pThr) into FoldX

and used it to predict the binding specificity of nine human SH2

domains with known structure. Our calculations can reproduce

experimental consensus target sequences. FoldX performs as well

as experimentally derived consensus sequences or position-specific

substitution matrices in the prediction of in vitro SH2-phosphopep-

tide binding and in vivo SH2-mediated protein-protein interactions.

Together with information on phosphorylation and secondary

structure, FoldX can give accurate predictions of novel protein-

protein interactions. We used the developed method to predict a

high confidence SH2 interaction network and validated it using

information on co-expression, conservation of the interaction in

other species, shared interaction partners and shared GO

functions, integrated using a naive Bayes network. The predicted

interactions can be use to derive biologically relevant testable

hypothesis.

Results

Implementation of Phosphorylated Residues into FoldX
We have implemented phosphorylation of tyrosine, serine and

threonine residues into FoldX [24] by combining available

experimental information and empirical estimates (see Methods).

We have validated our implementation in two ways. First, we

predicted the change in the free energy of binding upon

dephosphorylation for nineteen protein-phosphopeptide complex-

es [30–41] (Table S1). Experimentally, nine of the complexes do

not form at all, or are severely destabilized (.5 kcal/mol) if the

peptide is not phosphorylated. The average predicted change in

free energy for these complexes is 6.862.5 kcal/mol (average6

stdev). For the other ten complexes, the average experimental

change in the free energy of binding is 0.9760.61 kcal/mol

(average6stdev). The average predicted change in free energy for

these complexes is 1.761.5 kcal/mol (average6stdev). Thus,

FoldX can predict whether a protein-phosphopeptide complex

will be disrupted or not by dephosphorylation.

Second, we have predicted the changes in the free energy of

formation of 21 protein-phosphopeptide complexes upon muta-

tion of protein residues close to a phosphorylated residue

[15,34,42–45] (Table S2). The experimental changes in the free

energy of binding range from 21.13 to 3.44 kcal/mol. Figure 1

shows the correlation between the experimental and calculated

changes in free energy of binding upon mutation. A linear fit of the

data gives a correlation R-value of 0.72, a slope of 0.91 and a

standard deviation of 0.95 kcal/mol. The quality of the predic-

tions is comparable to that of changes in protein stability upon

mutation [24], confirming that FoldX can be used to predict the

energetics of phosphorylated residues.

FoldX Predictions Reproduce Experimental Consensus
Target Sequences

Next, we tested the ability of FoldX to predict the binding

specificity of phosphopeptide-binding domains. The binding

specificity of a domain is commonly determined in vitro by

exposing the domain to a synthetic phosphopeptide library in

which several positions have been randomized. The preferred

residues at each position and the consensus target sequence are

identified by sequencing the pool of bound peptides [4]. We

considered here the nine human SH2-phosphopeptide complexes

of known three-dimensional structure (Table 1), for which eight

experimental consensus sequence patterns are available [4-8]

(Table 1). All eight consensus peptides bind the corresponding

SH2 domain [4–8], which strongly suggests that most sequences

matching a consensus will bind the domain. On the other hand,

the comparison of the experimental consensus sequences and the

crystallized sequences (Table 1) clearly shows that there are

sequences that do not match the consensus and yet bind the target

Figure 1. Prediction of the changes in free energy for the
formation of protein-phosphopeptide complexes upon muta-
tion of protein residues in the environment of the phosphate
group. The fitted line has a correlation R-value of 0.72 and a slope of
0.91.
doi:10.1371/journal.pcbi.1000052.g001

Author Summary

Understanding the functional role of every protein in the
cell is a long-standing goal of cellular biology. An
important step in this direction is to discover how and
when proteins interact inside the cell to accomplish their
tasks. Many of the cellular functions depend on reversible
protein modifications like phosphorylation. To sense these
modifications, cells have protein domains capable of
binding phosphorylated proteins such as the SH2 domain.
In this work, we show that it is possible to use the three-
dimensional structure of protein domains to predict its
binding preferences. Using a computational tool called
FoldX, we have predicted the binding specificity of several
human SH2 domains. These predictions, based on the
computational analysis of the 3-D structure, were shown to
be of similar accuracy as those obtained from experimental
binding assays. We show here that it is also possible to
understand how a mutation changes the binding prefer-
ence of protein binding domains, opening the way for
better understanding of some disease causing mutations.
The combination of this novel computational approach
with other sources of information allowed us to provide a
set of high-confidence novel interactions for the proteins
here studied.

FoldX Prediction of SH2 Targets
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SH2 domain. This is in agreement with the heterogeneous pool of

bound peptides found in library experiments with SH2 domains

[4–8].

We have used position specific scoring matrices calculated with

FoldX to compute the binding energy of 50,000 random

sequences and 50,000 sequences matching the experimental

consensus (see Methods). The average binding free energies for

both classes of peptides are shown in Table 1. In all cases, peptides

matching the consensus pattern are predicted to bind better than

peptides of random sequence. A variable fraction of random

peptides is predicted to bind better than the average of peptides

matching the consensus (Table 1). These predictions may be due

to the consensus target sequences not covering all possible binding

sequences, to the crystallized sequence being a bad template for

sequences matching the consensus or to modeling errors. Overall,

the predictions from FoldX are in agreement with the experi-

mental binding specificity of these eight SH2 domains.

FoldX Prediction of in vitro SH2 Domain-Phosphopeptide
Interactions

We have made a direct comparison between experimental

SH2 domain binding specificity and FoldX predictions using

experimental binding affinities of SH2 domains for non-

randomized peptides. We have retrieved a list of 429

phosphopeptides tested for binding to the nine SH2 domains

in Table 1 from the ADAN database (http://adan.embl.de,

Table S3). 187 of the protein-phosphopeptide complexes have a

measurable affinity under the conditions tested and were taken

as the positive dataset. The other 242 complexes do not form

under the conditions tested and were taken as the negative

dataset. We have computed the binding energy of all putative

complexes using position specific scoring matrices calculated with

FoldX, relative to the average binding energy of 50,000 random

peptides. We generated a ROC curve by considering as positives

peptides with different relative binding energies (grey line in

Figure 2). The area under the ROC curve for the FoldX

predictions is 0.6860.03 (statistics obtained using the SPSS

package under the nonparametric assumption and a confidence

level of 95%, results for the individual domains are shown in

Table S4). The probability of the true area being 0.5 (random

prediction) is 1.3?10210, indicating that FoldX can predict in vitro

binding of phosphopeptides to SH2 domains.

We have made a direct comparison of FoldX and experimental

consensus target sequences in the detection of protein-phospho-

peptide complexes for the eight domains in Table 1 for which a

consensus sequence is available (Figure 2A). Predictions using

experimental target sequences allowed zero (square) and one

mismatch (circle) with the consensus sequence. The performance

of FoldX (blue line) over the set of 169 positives and 227 negatives

is similar to that of experimental consensus sequences, with an

area under the ROC curve of 0.7060.03 (p-value 3.1?10211).

Experiments with randomized peptide libraries can also be used to

generate position-specific scoring matrices [18]. Figure 2B com-

pares the predictions from FoldX (blue line) with the predictions

from Scansite scoring matrices [18] for five of the domains in

Table 1 (green line, Table S4). This dataset includes 131 positives

and 164 negatives for the Nck1, p85, Src, Lck and Grb2 SH2

domains. The area under the ROC curve is 0.7160.03 (p-value

6.2?10212) for the FoldX predictions and 0.7060.03 (p-value

8.6?10211) for the predictions using experimental scoring matrices.

Altogether, the performance of our structure-based calculations in

the prediction of in vitro protein-phosphopeptide binding specificity

is similar to experimental methods based on peptide libraries.

FoldX Prediction of Changes in Specificity in the Src SH2
Domain Upon Mutation

The binding specificity of the Src SH2 domain changes from

pYEEI-containing phosphopeptides to pYVNV-containing phos-

phopeptides upon mutation of threonine EF1 to tryptophan [46].

We have used the structure of the mutated Src SH2 domain in

complex with a pYVNV-containing phosphopeptide (1F1W.pdb)

to further test the ability of FoldX to predict the binding specificity

of SH2 domains. We calculated a position-specific substitution

matrix for the ThrEF1Trp Src SH2 domain using FoldX and

compared it to the substitution matrices for the wild type Src and

Grb2 SH2 domains in two ways. First, we calculated the binding

energy for the complexes of the three domains with all tyrosine-

containing peptides in the human genome. The binding energies

for the ThrEF1Trp Src SH2 domain show a strong correlation

with the Grb2 SH2 domain and a weak one with the Src SH2

domain (Table 2). Thus, FoldX predicts that the binding specificity

of the ThrEF1Trp Src SH2 domain is Grb2-like, as observed

experimentally [46]. Second, we tested the ability of the

substitution matrix for the ThrEF1Trp Src SH2 domain to

Table 1. Comparison of experimental consensus target sequences with FoldX predictions of binding specificity for human SH2
domains.

SH2 domain Structure
Crystallized
Sequence

Consensus Target
Sequence

DGbinding

(Consensus)
DGbinding

(Random)

p (Random
Better than
Consensus)

p85 2IUH TNEpYMDMK pY[MLI]XM [4] 2.2461.39 9.7463.25 0.01

Lck 1CWE QpYEEIP pYEEI [5] 1.1360.90 6.7662.61 0.01

Src 1SPS PQpYEEIP pYE[ENY][IML] [4] 2.6261.47 7.3362.67 0.02

Grb2 1ZFP EpYINQ pY[QY]NY [5] 1.0660.71 7.5062.87 0.02

Sap 1D4W SLTIpYAQVQK TXpYXX[IV] [6] 5.6362.80 12.2565.45 0.08

Syk (C-term) 1A81 PDpYEPIRKGQRD pY[QTE][QTE]L [8] 4.1962.15 6.9762.29 0.11

Nck1 1CI9 HIpYDEVAAD pYDE[PDV] [4] 2.3162.33 5.1462.57 0.14

Stat1 1YVL pYDKPH pYERQH [7] 1.10 1.1461.71 0.48

Syk (N-term) 1A81 DLpYSGLN — — 1.9561.87 —

Binding energies are relative to the crystallized peptide and in kcal/mol units.
doi:10.1371/journal.pcbi.1000052.t001

FoldX Prediction of SH2 Targets
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discriminate between peptides positive and negative for binding to

the Src and Grb2 SH2 domains (Table 2). The area under the

ROC curve for prediction of binding to the Grb2 domain is 0.69,

much higher than for the wild type Src SH2 matrix (AROC 0.29)

and close to the Grb2 SH2 matrix (AROC 0.82). At the same

time, the matrix for the ThrEF1Trp Src SH2 domain is a bad

predictor for binding to the Src domain (AROC 0.35), clearly

worse than the wild type matrix (AROC 0.64). We conclude that

FoldX can predict the change in in vitro binding specificity induced

by the ThrEF1Trp mutation in the Src SH2 domain.

FoldX Prediction of in vivo SH2-Mediated Protein-Protein
Interactions

We showed so far that FoldX can predict the binding in vitro of

phosphopeptides to a given SH2 domain for which high resolution

structural data is available. Next, we used FoldX for the prediction

of binding in vivo. We compiled a list of SH2-mediated protein-

protein interactions in the following way: First, we extracted from

the Human Protein Reference database all interactions for

proteins containing the SH2 domains in Table 1. We then

curated the database to keep only interactions known to be

mediated by the SH2 domains. The final list of positives contains

107 interactions for the nine proteins (see Table S5). All human

proteins not reported as positives were taken as negatives. We have

used FoldX matrices to compute the binding energy of each of the

499,293 putative complexes (55,477 tyrosines in the human

genomes times 9 SH2 domains), relative to the average binding

energy of 50,000 random peptides. The predicted binding energy

of an SH2 domain with a putative target protein was considered to

be the same as the most favorable binding peptide within that

protein. We generated a ROC curve by considering as positives

target proteins with different relative binding energies (grey line in

Figure 3; results for the individual domains shown in Table S4).

The area under the ROC curve for the FoldX predictions is

0.7960.02, (p-value 9.2?10226), indicating that FoldX is able to

predict in vivo SH2-mediated protein-protein interactions.

Figure 2. Prediction of SH2 domain-phosphopeptide interactions using FoldX and experimental data from peptide libraries. The
orange line corresponds to random prediction, the grey line to prediction for all nine domains in Table 1. (A) Comparison of predictions from
experimental consensus sequences allowing zero (square) and one mismatch (circle) with the consensus sequence with FoldX predictions for the
eight domains in Table 1 for which a consensus sequence is available (blue line). (B) Comparison of predictions from Scansite scoring matrices for the
Nck1, p85, Src, Lck, and Grb2 SH2 domains (green line) with FoldX predictions for the same domains (blue line).
doi:10.1371/journal.pcbi.1000052.g002

Table 2. FoldX prediction of the change in specificity of the Src SH2 domain ThrEF1Trp mutant.

SH2 domain
Correlation R-Value for the Predicted Binding Free
Energies to all Tyrosines in the Human Genome

Area Under the ROC Curve for Prediction
of In Vitro SH2-Phosphopeptide Binding

Src ThrEF1Trp Src Grb2 Grb2 peptides Src peptides

Src 1 0.26 0.18 0.29 0.64

ThrEF1Trp Src 0.26 1 0.76 0.69 0.35

Grb2 0.18 0.76 1 0.82 0.54

doi:10.1371/journal.pcbi.1000052.t002

FoldX Prediction of SH2 Targets
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We have compared the ability of FoldX, experimental

consensus target sequences and Scansite matrices to identify in

vivo SH2-mediated protein-protein interactions (Figure 3). There

are 99 positives for the eight domains in Table 1 for which a

consensus sequence is available. Predictions using experimental

target sequences were made allowing zero (Figure 3A, square) and

one mismatch (Figure 3A, circle) with the consensus sequence. The

performance of FoldX (Figure 3A, blue line) is similar to that of

experimental consensus sequences, with an area under the ROC

curve of 0.8060.02 (p-value 4.5?10225). The results for the five

domains with available Scansite matrices (88 positives) are shown

in Figure 3B and Table S4. The area under the ROC curve is

0.7960.02 (p-value 9.0?10221) for FoldX and 0.7660.03 (p-value

8.3?10217) for the Scansite predictions. As observed for in vitro

interactions, FoldX performs similar to experimental methods

based on peptide libraries in the prediction of SH2-mediated in vivo

interactions.

Combining FoldX with Information on Phosphorylation
State, Secondary Structure, and Conservation

The final goal of our work is to make useful predictions of SH2-

mediated protein-protein interactions. SH2 target sites are likely to

be not only phosphorylated, but also within disordered regions of

proteins [47]. In order to increase the accuracy of the predictions

from FoldX, we filtered our predictions for sites known to be

phosphorylated [48–50] or predicted by the disphos algorithm

[47] to be phosphorylated and within a disordered region. The

results are shown in Figure 4A. The area under the ROC curve for

prediction of SH2 target proteins increases from 0.7960.02, (p-

value 9.2?10226) for the unfiltered FoldX predictions (blue line) to

0.9360.02, (p-value 7.9?10253) for the filtered predictions (red

line). As a control, we tried to predict the same set of interactions

using only the phosphorylation/secondary structure filter

(Figure 4A, green point). Figure 4B shows a zoom into the low

false positive rate region of Figure 4A, with the ROC curve for

predictions using the phosphorylation/secondary structure filter

(green curve) and using both the filter and FoldX (red curve).

FoldX clearly improves the performance of the phosphorylation/

secondary structure filter, supporting the combined use of both

prediction methods.

Previous work on SH3-mediated interactions suggested that

conservation of the prediction in related genomes could be used as

an additional empirical filter [51]. We have tested this idea in the

case of SH2-mediated interactions using a group of 9 genomes of

varying divergence from human (see Methods). The conservation

filter improves the predictions from FoldX only slightly and only in

the absence of the phosphorylation/secondary structure filter

(Figure S1). We suggest that the evolution of SH2 target sites is too

fast to give a useful conservation signal in the framework of our

method.

High-Confidence Predictions of SH2-Mediated Protein-
Protein Interactions

We have obtained a list of highly accurate predicted interactions

by running our method with the phosphorylation/secondary

structure filter and selecting for each domain the ten targets with

the lowest predicted binding energy (Figure 5, Table S6, and

Methods). 27 of the 85 predicted interactions (32%) are known

physical interactions (for the full proteins) included in the Human

Protein Reference Database [49]. We assessed the quality of the

predictions by integrating available information regarding co-

expression, number of shared interactions, shared GO-functions

Figure 3. Prediction of SH2-mediated protein-protein interactions using FoldX and experimental data from peptide libraries. The
orange line corresponds to random prediction, and the grey line to prediction for all nine domains in Table 1. (A) Comparison of predictions from
experimental consensus sequences allowing zero (square) and one mismatch (circle) with the consensus sequence with FoldX predictions for the
eight domains in Table 1 for which a consensus sequence is available (blue line). (B) Comparison of predictions from Scansite scoring matrices for the
Nck1, p85, Src, Lck, and Grb2 SH2 domains (green line) with FoldX predictions for the same domains (blue line).
doi:10.1371/journal.pcbi.1000052.g003

FoldX Prediction of SH2 Targets
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and conservation of the interaction at physical or genetic level in

different species into a single likelihood score using a naive

Bayesian approach (see Methods). The width of a line in Figure 5

is proportional to the likelihood score, were thicker lines represent

more reliable predictions. From the 85 predicted interactions, 34

(40%) have more than 50% odds of being a true in vivo interaction

in the face of this additional evidence. We can conclude that the

predicted network is enriched for interactions strongly supported

by experimental evidences. It is important to note that the quality

of the predictions does not appear to be homogeneous, with some

domains faring better than others. In particular we could not find

supporting information for any of the predictions for the SH21A

SH2 domain. This could be due the lack of information available

for this protein and/or the poor performance of FoldX (Table 1)

for its unconventional mode of binding [15].

We have investigated further some of the predicted novel

interactions by compiling relevant information from the literature.

For some of the interactions we could find either evidence for

association (not currently annotated in HPRD) or we found

supporting information from homologous proteins. For example,

the Lck SH2 domain (LCK_HUMAN) has been shown to bind

IRS1 (IRS1_HUMAN) peptides in vitro [52]. The expression of

Lck was shown to be important for activation of Hematopoietic

progenitor kinase (HPK1 or M4K1_HUMAN) and determinant

for the efficient recruitment of HPK1 to the contact site of antigen-

presenting T-cell conjugates [53]. It is possible that the predicted

interaction between Lck and HPK1 might be important for this

membrane recruitment. The predicted interaction between N-

terminal SH2 domain of p85 regulatory subunit (P85A_HUMAN)

and the fibroblast growth factor receptor 1 (FGFR1_HUMAN)

has previously been shown by yeast-two-hybrid [54]. Also, the

same interaction has been observed in vivo in Xenopus blastulae [55]

and the injection of p85 alpha N-SH2 in Xenopus laevis oocytes was

shown to impair FGFR1 signaling [55]. Our method also predicts

that p85 interacts with FGFR2 and FGFR3 that by homology are

also likely to be biologically relevant. These putative interactions

emphasize the importance of the p85 N-SH2 for fibroblast

receptor signaling.

Some of the putative interacting proteins form complexes with

common targets that might hint at the biological roles of the

predicted interactions. For example, both Wiskott-Aldrich syn-

drome like protein (WASL_HUMAN) and SAP (SH21A_HU-

MAN) have been shown to interact with an activated form of

Cdc42 [56,57]. WASL phosphorylation at tyrosine 253 can

activate in vitro WASL-Arp2/3 actin polymerization in synergy

with Cdc42-WASL interaction [57]. The predicted interaction

between SAP-SH2 domain and phosphorylated Y253 of WASL

may further enhance this synergistic effect in vivo by directing the

activated form of Cdc42 to WASL.

This initial investigation of the possible biological functions of

the predicted interactions further indicates that the predictions

presented can be used to derive biologically relevant testable

hypothesis.

Discussion

We have implemented phosphorylation into FoldX in order to

predict the binding specificity of SH2 domains. There are only

nine available X-ray structures of human SH2 domains in

complex with a target phosphopeptide (Table 1). We tried to

overcome the modest size of this dataset by testing whether the

Figure 4. Prediction of SH2-mediated protein-protein interactions using FoldX, phosphorylation, and secondary structure
information. (A) FoldX predictions for all nine domains in Table 1 (blue line), predictions using FoldX and the phosphorylation/secondary structure
filter (red line), predictions using the phosphorylation/secondary structure filter only (green point), and random prediction (orange line). (B) Detail of
the low false positive rate region of (A), with predictions using the phosphorylation/secondary structure filter (green curve) and both the filter and
FoldX (red curve).
doi:10.1371/journal.pcbi.1000052.g004

FoldX Prediction of SH2 Targets
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upgraded version of FoldX can predict six different kinds of

experimental results: the effect of dephosphorylation (Table S1)

and of mutations in the environment of the peptide group on the

stability of the complex (Figure 1), the consensus target sequence

for the domain (Table 1), the in vitro binding specificity (Figure 2)

and how it changes upon mutation of the SH2 domain (Table 2)

and in vivo SH2-mediated protein-protein interactions (Figure 3).

The performance of FoldX is comparable in all cases to consensus

target sequences and substitution matrices derived from experi-

ment. Based on this combination of results, we propose that the

FoldX algorithm is a useful alternative to peptide library

experiments for the prediction of SH2-mediated protein-protein

interactions.

Several groups have developed other structure-based methods

to predict the in vitro binding specificity of SH2 domains [20–22].

Henriques and coworkers tested several solvent-accessible surface

area-based energy functions for binding of 6 phosphopeptides to

the src SH2 domain, finding a poor correlation between their

calculations and experiment [20]. Later algorithms using molec-

ular dynamics [21] and comparative molecular field analysis [22]

showed a good predictive power. Both studies focused on a small

number of complexes (9 and 30, respectively) and on a single SH2

domain. The portability of these methods to other SH2 domains

remains to be shown. Here, we have shown that FoldX can predict

the in vitro binding thermodynamics of protein-phosphopeptide

complexes including nine different SH2 domains, showing its

applicability for genome-wide predictions.

The structure-based prediction of SH2-mediated in vivo protein-

protein interactions has been addressed only once. McLaughlin

and coworkers predicted the binding specificity of the Grb2 and

SAP SH2 domains by combining information on known binding

peptides plus structure-based predictions [23]. The resulting

hidden Markov models gave predictions enriched in known in

vivo interactions and binding sites [23]. The main advantage of

our approach is that we derived the binding specificity using only

structure-based calculations. Thus, our method is applicable to

domains for which no binding experiments are available. We also

benefit from the use of extra information on phosphorylation and

secondary structure, which is available in databases or readily

calculated from sequence.

Our approach is limited by the number of known structures of

protein-phosphopeptide complexes. Nevertheless, given the struc-

ture of an SH2 domain in isolation, the location of the

phosphopeptide binding site and the structure of a given SH2-

phosphopeptide complex can be predicted computationally [58-

60]. This, together with available methods for homology

modelling of globular domains will widen the applicability of

FoldX considerably in the near future.

FoldX can predict in vivo interactions as well as methods based

on experimentally determined in vitro specificity. The fact that both

methods based on binding specificity can make useful predictions

confirms that specificity plays an important role in determining

SH2-mediated protein interactions in vivo. On the other hand, the

observed limitations of these methods strongly suggests that high

Figure 5. High-confidence predictions of SH2-mediated protein-protein interactions. Arrows depict the predicted interactions from SH2-
containing proteins to the top 10 putative targets. The 15 predictions for Syk (KSYK_HUMAN) correspond to the top 10 predictions for both the N-
terminal and C-terminal SH2 domains. Both domains were predicted to bind B3AT_HUMAN, ERBB3_HUMAN, VAV_HUMAN, CD19_HUMAN, and
IKBA_HUMAN. Interactions confirmed by experimental evidence are highlighted in blue. The thickness of the line is proportional to the odds that the
proteins interact in vivo as calculated by the naive Bayes network. The exact odds score and the source of the supporting evidence found for each
particular interaction is detailed in Table S6. Eight alpha-tubulin subunits were predicted to interact with the Src SH2 domains, and seven guanine
nucleotide binding subunits were predicted to interact with the Grb2 SH2 domain. In both cases, these predictions are depicted as a single arrow.
doi:10.1371/journal.pcbi.1000052.g005
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affinity between an SH2 domain and its binding site is necessary

but not sufficient to mediate binding in vivo due to other factors like

co-expression, co-localization, phosphorylation and binding site

availability requirements. FoldX may miss an SH2-mediated

interaction in which specificity plays only a minor role, stressing

the importance of integrating biological information into our

method. We believe that future prediction methods should

account for both the biophysics and the biology of SH2 domains.

We have used FoldX to predict in vivo protein-protein

interactions for nine SH2 domain-containing proteins and

annotated the predicted interactions with supporting information,

providing a resource for further experimental testing. The

predicted interactions are more informative than typical high-

throughput or bioinformatics experiments in the sense that they

provide binding site information and a structural template for the

putative complex. Together with the prediction of binding

specificity for other peptide binding domains and enzymes, we

propose that FoldX can be used for the large-scale prediction and

study of protein-protein interaction networks and signaling

cascades and the impact of genetic variation in binding.

Methods

Parameterization of Phosphorylated Residues in FoldX
Proteins are represented in the algorithm as collections of

residues and atoms with certain properties [24]. The main chain

entropy and the properties of atoms not belonging to the

phosphate moiety in pSer, pThr and pTyr were set to the

corresponding values of serine, threonine and tyrosine. Similarly,

the parameters of atoms belonging to the phosphate moiety were

set to be the same for pSer, pThr and pTyr. Side chain entropy

values were calculated by adding R?ln(6) to the values for the

unphosphorylated residues, where six is the additional number of

states for the phosphate group [24,61]. Atom radii and volumes

come from crystal structures of small compounds and the Voronoi

analysis of structures of protein-nucleic acid complexes [62]. Van

der Waals energies for the atoms in the phosphate groupwere

calculated using the atomic volumes and a proportionality

constant of 20.082 kcal/mol?Å3 [63]. The pK-values for the

phosphate hydrogens in pSer, pThr and pTyr are at around 2 and

5.9 [64]. The pK-value for the second ionization can be

significantly lower when interactions with other molecules are

present [65]. Therefore, around neutral pH the charge of the

phosphate group should be close to 22. We chose a charge of

20.60 for the oxygen atom in the phosphate group, which

corresponds to a total charge for the phosphate moiety of 21.80.

The average value of the solvation energy for charged atoms in

FoldX is 3.33 kcal/mol per unit of charge [63]. We used this value

to estimate a solvation energy of 2 kcal/mol per oxygen atom of

the phosphate group.

Calculation of Binding Energies
SH2 domains are globular and target phosphorylated motifs

within disordered regions. Upon binding, these motifs adopt a

single conformation, amenable to structure determination and

FoldX calculations. We take into account folding-upon-binding by

doing a stepwise calculation. First, we calculate the free energy for

folding of the phosphopeptide into the conformation observed in

the SH2-phosphopeptide complex (‘‘folding energy’’). Second, we

calculate the free energy of interaction between the protein and

the phosphopeptide in the complex (‘‘interaction energy’’). Last,

we add the two numbers to calculate the free energy for formation

of the protein-phosphopeptide complex (‘‘binding energy’’).

Substitution matrices are calculated as follows. First, the

geometry of the wild-type complex was optimized. After this, we

introduced all 20 residues at each phosphopeptide position. The

‘‘binding energy’’ for each residue at each position relative to the

amino acid at the same position of the crystallized ligand was

stored in a scoring matrix. The binding energy of a given sequence

was calculated by summing over all positions of the matrix, which

are taken to be independent.

Predictions using experimentally derived scoring matrices were

obtained from the Scansite webserver (http://scansite.mit.edu/). It

is not possible to obtain predicted binding scores covering the full

dynamic range of the matrices from this web service so the lowest

available threshold was selected. In the ROC curves calculated

from Scansite predictions (Figures 2 and 3) the dotted line marks

the threshold limit.

Conservation and Phosphorylation Filters
We have previously shown that it is possible to improve the

prediction of protein-interactions by combining the in-vitro

binding specificity encoded in the form of linear motifs with

additional information like conservation and secondary structure

[51]. In this study, we compiled information on known

phosphorylated tyrosines in the human proteome from the Human

Protein Reference Database, Phosida and Phospho.ELM [48–50].

To these experimentally determined phosphorylation sites we

added phospho-tyrosines predicted using the disPhos algorithm

[47]. We also looked for the conservation of a putative binding site

within a human protein in predicted orthologs in 9 other species

(Anopheles gambiae, Apis mellifera, Caenorhabditis elegans, Canis familiaris,

Danio rerio, Fugu rubripes, Gallus gallus, Mus musculus, Pan troglodytes).

These genomes were selected on basis of their availability and to

cover a broad evolutionary time scale of divergence from human.

The ortholog assignments were taken from the Inparanoid

database [66]. We considered that a putative binding site was

conserved in another species when the orthologous protein also

contained a predicted binding site.

Naive Bayes Predictor
We have used a naive Bayes predictor [27] similar to the

developed by Rhodes and colleagues [67] to integrate available

information on conserved interactions, co-expression, shared

interacting partners and shared GO function into a likelihood

for the interactions of two proteins (Text S1). Briefly, we have

considered a group of 8235 of in vivo protein interactions, found in

the Human Protein Reference Database [49] (downloaded on 27

February 2006), as our positive standard. We considered that a

protein defined in GO as belonging to the plasma membrane is

less likely to interact with proteins in the nucleus and defined a

negative set from pairs of such proteins (2,663,352 negative

interactions). Using the positive and negative dataset we

determined how each type of evidence impacts the odds that a

pair of proteins interact. Assuming that the datasets are

conditionally independent the likelihood ratio can be calculated

as the product of individual likelihood ratios [27]. The tables of

likelihood ratios calculated for each evidence type as well as a

more detailed description of the different evidences used can be

found in [27] and Text S1.

Supporting Information

Figure S1 Conservation as a filter for FoldX predictions of SH2-

mediated protein-protein interactions. (A) ROC curves for FoldX

predictions (AROC 0.7960.02), filtered for conservation in one

(AROC 0.8160.02), two (AROC 0.8260.02), three (AROC
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0.8260.02) and four genomes (AROC 0.7760.03). (B) ROC

curves for FoldX predictions filtered for phosphorylation/

secondary structure (AROC 0.9260.02), filtered also for conser-

vation in one (AROC 0.9260.02), two (AROC 0.9260.02), three

(AROC 0.9160.02) and four genomes (AROC 0.8660.02).

Found at: doi:10.1371/journal.pcbi.1000052.s001 (0.09 MB

DOC)

Table S1 Experimental and calculated changes in free energy

for protein-phosphopeptide complex formation upon dephosphor-

ylation.

Found at: doi:10.1371/journal.pcbi.1000052.s002 (0.12 MB

DOC)

Table S2 Experimental and calculated changes in free energy

for protein-phosphopeptide complex formation for mutations in

the environment of the phosphate group in protein-phosphopep-

tide complexes.

Found at: doi:10.1371/journal.pcbi.1000052.s003 (0.12 MB

DOC)

Table S3 Binding and non-binding phosphopeptides. For all

SH2 domains with available x-ray structure we compiled a list of

binding and non-binding peptides from the literature. We could

not find significant number of known binding and non-binding

peptides for the C-terminal SH2 domain of Syk.

Found at: doi:10.1371/journal.pcbi.1000052.s004 (0.50 MB

DOC)

Table S4 Area under the ROC curve (AROC) statistics for

prediction of peptide binding and full protein targets for human

SH2 domains using FoldX and the Scansite server.

Found at: doi:10.1371/journal.pcbi.1000052.s005 (0.08 MB

DOC)

Table S5 Known SH2-mediated protein-protein interactions

and binding sites in human.

Found at: doi:10.1371/journal.pcbi.1000052.s006 (0.16 MB

DOC)

Table S6 High-confidence predictions of SH2-mediated pro-

tein-protein interactions.

Found at: doi:10.1371/journal.pcbi.1000052.s007 (0.27 MB

DOC)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pcbi.1000052.s008 (0.18 MB

DOC)
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