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A B S T R A C T   

Stress has been shown to disturb the balance of human intestinal microbiota and subsequently causes mental 
health problems like anxiety and depression. Our previous study showed that ingesting the probiotic strain, 
Lactobacillus (L.) plantarum P-8, for 12 weeks could alleviate stress and anxiety of stressed adults. The current 
study was a follow-up work aiming to investigate the functional role of the gut metagenomes in the observed 
beneficial effects. The fecal metagenomes of the probiotic (n = 43) and placebo (n = 36) receivers were analyzed 
in depth. The gut microbiomes of the placebo group at weeks 0 and 12 showed a significantly greater Aitchison 
distance (P < 0.001) compared with the probiotic group. Meanwhile, the Shannon diversity index of the placebo 
group (P < 0.05) but not the probiotic group decreased significantly at week 12. Additionally, significantly more 
species-level genome bins (SGBs) of Bifidobacterium adolescentis, Bifidobacterium longum, and Fecalibacterium 
prausnitzii (P < 0.01) were identified in the fecal metagenomes of the probiotic group, while the abundances of 
SGBs representing the species Roseburia faecis and Fusicatenibacter saccharivorans decreased significantly (P <
0.05). Furthermore, the 12-week probiotic supplementation enhanced the diversity of neurotransmitter- 
synthesizing/consuming SGBs and the levels of some predicted microbial neuroactive metabolites (e.g., short- 
chain fatty acids, gamma-aminobutyric acid, arachidonic acid, and sphingomyelin). Our results showed a po-
tential link between probiotic-induced gut microbiota modulation and stress/anxiety alleviation in stressed 
adults, supporting that the gut-brain axis was involved in relieving stress-related symptoms. The beneficial effect 
relied not only on microbial diversity changes but more importantly gut metagenome modulations at the SGB 
and functional gene levels.   

1. Introduction 

Stress is a ubiquitous part of human daily life, it can cause anxiety 
and even depression in serious cases (Pittenger and Duman, 2008). 
Depression affects over 300 million people worldwide, accounting for 
almost 800,000 suicidal deaths per year (Eker, 2018). Recent studies 
have associated risk of stress and depression with the gut microbiota 
(Richards et al., 2018; Mohajeri et al., 2018). The gut microbiota can be 
viewed as a reservoir of collective genomes that harbors at least 100 
times as many genes as the human genome (Qin et al., 2010). The 
co-evolution of the human genome and the gut microbiome resulted in 
complex bidirectional interactions between the gut, enteric nervous 
system, and central nervous system (Karl et al., 2018; Cryan and Dinan, 
2012). The intestinal microbiota widely participates in the 

synthesis/release of various hormones and gut-brain axis-related neu-
rotransmitters, which then modulate the brain function and host 
behavior (Strandwitz, 2018; Mohajeri et al., 2018). Gastrointestinal 
disturbances are known to influence mental conditions, including stress, 
anxiety, depression, Parkinson’s and Alzheimer’ diseases (Pellegrini 
et al., 2018). 

Psychobiotics are defined as living microorganisms (probiotics) that 
confer mental health benefits to the host through interactions with 
commensal gut bacteria when administered in adequate amounts (Dinan 
et al., 2013). This concept has been further expanded to encompass 
prebiotics that stimulate the growth of beneficial gut bacteria (Sarkar 
et al., 2016). Since probiotics modulate the host gut microbial com-
munities and their synthesis/release of certain neuroactive compounds, 
probiotic-based therapy has thus been proposed as an alternative 
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treatment for some neurological and neurodegenerative diseases (Pue-
bla-Barragan and Reid, 2019; Westfall et al., 2017). Recent clinical 
studies have shown that some probiotic strains could help relieve stress, 
anxiety, and depression symptoms (Messaoudi et al., 2011; Takada 
et al., 2016), particularly, the Bifidobacterium (B.) and Lactobacillus (L.) 
genera (Zhang et al., 2018). However, most studies have focused on 
monitoring the clinical effects by administering behavior tests, cognitive 
assessments and questionnaires to assess relief of symptoms (Allen et al., 
2016; Takada et al., 2016). Some studies have attempted to characterize 
probiotic-induced changes in the taxonomic (16S rRNA-based) profiles 
of intestinal microbiota (Li et al., 2018; Davis et al., 2016), but failed to 
elucidate the function of the gut microbiota and its neuroactive potential 
due to the lack of corresponding reference genomes (Valles-Colomer 
et al., 2019). Microbial reference genomes are indispensable tools for 
microbial profiling, annotating metagenomes and deciphering their 
physiological function (Kyrpides et al., 2014). Recent studies recon-
structed metagenome-assembled genomes (MAGs) from metagenomes 
by binning, which has massively expanded the human gut reference 
genomes to unveil the role of gut microbiome in human health (Almeida 
et al., 2019; Nayfach et al., 2019). 

High-quality human and animal correlative studies have undoubt-
edly shown that the gut microbiota plays an influential role in many 
stress-related conditions (Foster et al., 2017; Rea et al., 2020); however, 
the causal relationship and extent of contribution of the gut microbiome 
in stress-related conditions are unclear. Previously, our team performed 
a 12-week randomized, double-blind, and placebo-controlled human 
trial, demonstrating the clinical efficacy of the probiotics, L. plantarum 
P-8, in ameliorating stress-/anxiety-related symptoms in stressed adults 
(Lew et al., 2019), accompanied by decreased plasma levels of interferon 
(IFN)-γ, tumor necrosis factor (TNF)-α, and cortisol, as well as enhanced 
memory and cognitive traits. However, the mechanism behind these 
effects remained unknown. The current study was a follow-up work 
aiming to elucidate such mechanism from the perspective of the intes-
tinal microbiome. 

2. Materials and methods 

2.1. Experimental design 

This study was extended from our previous human trial. Each subject 
received 12-week treatment of daily oral L. plantarum P-8 (2 g; 2x1010 

CFU/sachet/day; maltodextrin as excipient) or placebo (only malto-
dextrin; light yellow powder with identical taste and appearance as the 
probiotic material; manufactured by Jinhua Yinhe Biological Technol-
ogy Co. Ltd., China under ISO9001 and HALAL standards). Although 52 
probiotic-receivers and 51 placebo-receivers finished the trial, only 43 
probiotic-receivers and 36 placebo-receivers donated fecal samples at 
both weeks 0 and 12 for the current analysis (Fig. S1a; Table S1). 

2.2. DNA extraction, metagenomic sequencing and quality control 

Metagenomic DNA was extracted from 100 mg stool using the 
QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany). The DNA 
quality was examined by agarose gel electrophoresis and a Nanodrop 
spectrophotometer (260 nm/280 nm ratio). Shotgun metagenomic 
sequencing was performed using an Illumina HiSeq 2500 instrument. 
Libraries were constructed by DNA fragments of ~300 bp length; paired- 
end reads were generated using 150 bp in both forward and reverse 
directions. 

A total of 158 stool samples were shotgun sequenced (n = 43 and 36 
for P-8 and placebo groups, sampling at weeks 0 and 12, respectively), 
generating 1.52 Tbp of high-quality paired-end reads (8.34 ± 1.41 Gbp/ 
sample; range = 4.72–11.96 Gbp) for downstream analysis. The gener-
ated metagenomic reads were processed with the KneadData quality 
control pipeline (http://huttenhower.sph.harvard.edu/kneaddata; 
v0.7.5), which used Trimmomatic (a flexible trimmer for Illumina 

sequence data) (Dinan et al., 2013) to filter out low-quality reads of less 
than 60 nt in length. Human contaminating reads were removed by 
Bowtie2 (v2.3.5.1) (Langmead and Salzberg, 2012). 

2.3. Metagenomic assembly, contig binning, genome dereplication 

All samples were singly assembled into scaffolds using MetaSPAdes 
(Nurk et al., 2017), with standard quality control setting and the op-
tions, –k/33,55,77,99,111/–meta, which the average N50 length was 
17.19 Kbp (Table S2). The results of metagenomic assembly were 
evaluated by QUAST (Gurevich et al., 2013), with the parameters, 
“–min-contig 2000”. Assembled scaffolds >2,000 bp were selected for 
binning. Afterwards, MAGs were generated for each sample using 
MaxBin2 (Wu et al., 2016) and MetaBAT2 (Kang et al., 2019), with 
default options, which yielded 10,545 and 14,534 raw bins from the 
initial scaffolds, respectively. Then, the bin refinement module of Met-
aWRAP (Uritskiy et al., 2018) was used to combine the results of the two 
binners to obtain 6566 bins. Raw reads were mapped back to the cor-
responding assemblies using BWA-MEM (Liu et al., 2019), and the read 
depths were calculated using Samtools (Li et al., 2009) and the jgi_-
summarize_bam_contig_depths function in MetaBAT2. 

The completeness and contamination of MAGs were evaluated with 
CheckM (Parks et al., 2015) using the lineage_wf workflow. The quality 
of MAGs was classified as high (completeness≥80%, con-
tamination≤5%), medium (completenes≥70%, contamination≤10%), 
and partial (completeness≥50%, contamination≤5%) (Parks et al., 
2017). Genomic comparisons were performed by the dRep tool (Olm 
et al., 2017) with options -pa 0.95 (primary cluster at 90%) -sa 0.95 
(secondary cluster at 95%) to identify groups of essentially identical 
genomes and select the best genome from each replicate set. Results 
generated by dRep were used to extract species-level genome bins 
(SGBs) from the high-quality genomes based on single representative 
genomes. 

2.4. Taxonomic annotation, phylogenetic analysis, and genome 
comparison 

The MAG scaffolds were annotated using the Kraken2 tool (Wood 
et al., 2019) and NCBI nonredundant Nucleotide Sequence Database 
(retrieved on 2019.04.21) with default parameters. Putative genes in the 
scaffolds were predicted using Prodigal (Hyatt et al., 2010). The pre-
dicted genes were searched against the UniProt Knowledgebase (Uni-
ProtKB, release 2019.04) using the blastp function of DIAMON 
(Buchfink et al., 2015). Phylogeny analysis was performed using 400 
universal PhyloPhlAn markers and visualized using iTOL (Letunic and 
Bork, 2019). 

To evaluate the novelty of SGBs in the current dataset, 589 SGBs 
were cross-compared with the IGG dataset (https://github.com/snayf 
ach/IGGdb; comprised 16,136 non-redundant representative human 
gut genomes) and the MAGs dataset (comprised 154,723 non-redundant 
genomes from gut and other body parts of the global population) (Pasolli 
et al., 2019). 

To identify P-8 in the samples, all metagenomic DNA samples were 
mapped to the P-8 reference genome using a genome coverage breadth 
of 40% (Vandeputte et al., 2017). To avoid ambiguity alignment, reads 
were counted only when the alignment similarity was over 97%. 

2.5. Abundance of SGBs 

The BBMap tool (https://github.com/BioInfoTools/BBMap) was 
used to map raw reads to the scaffolds with the parameters “minid =
0.95 idfilter = 0.95”. The coverage of scaffolds was calculated by pileup. 
sh using sam file as input. The unit, reads per kilobase per million 
(RPKM), calculated by an in-house script was used to indicate the 
average content of SGB in each scaffold. 
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2.6. Identification of neuroactive compounds 

A metabolic reconstruction was performed by searching across 
literature (gut-brain modules, GBMs) (Valles-Colomer et al., 2019) and 
the metabolite database, MetaCyc (Caspi et al., 2020). For each SGB, 
open reading frames (ORFs) were predicted using Prodigal. Annotation 
of metabolic potential and pathways was performed by using the key 
reactions in the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
Orthologies (KOs) database (as of 2018). Each GBM was assigned to 
synthesis/release of a neuroactive compound by specific microbes. All 
pathways were detected by Omixer-RPM (Darzi et al., 2016) and defined 
in SGBs (parameter: c 0.66). 

2.7. Prediction of microbial metabolites 

Microbial sequences were used to predict the gut metabolomes. 
Firstly, one million reads per sample were subsampled using seqtk 
(https://github.com/lh3/seqtk). The subsampled reads were compared 
using the blastx function of DIAMON with options –query-cover 90 –id 
50. Then, the best hit of each gene was selected for calculation of gene 
abundances in each sample. Finally, the MelonnPan-predict workflow 
was employed to convert gene abundances into a predicted metabolomic 
table (Mallick et al., 2019). 

2.8. Data and code availability 

Sequencing data and analysis codes are available in NCBI-SRA 
(BioProject: PRJNA634666) and under https://github.com/TengMa- 
Cleap/Probiotics-relieve-human-stress-and-anxiety-project. 

2.9. Statistical analyses 

All statistical analyses were performed using the R software 
(v.4.0.2). Unless otherwise stated, data were expressed as mean ± SD. To 
evaluate the structural difference between the microbiota of different 
groups of samples, non-metric multi-dimensional scaling (NMDS; Bray- 
Curtis distance) was performed and visualized using the R package 
vegan (v.2.5-1) and ggpubr, respectively. The stress value reflected the 
data representation in the NMDS analysis; stress values < 0.05, <0.1, 
<0.2, and >0.2 were considered excellent, great, good/acceptable, and 
poor representation after dimensionality reduction, respectively. Wil-
coxon test, t-test, and Kruskal-Wallis test were used to evaluate differ-
ences in the microbiome and neurometabolome between two or multiple 
groups. The false discovery rate (FDR) was corrected by using the Ben-
jamini and Hochberg (BH) method with the p.adjust function of the R 
software with a cut-off confidence level of 0.05. Similarity percentage 
(SIMPER) analysis was used to determine the SGBs that contributed 
most to the dissimilarity between sample groups. It was performed by 
the R software Vegan package. The corr.test function in the ‘psych’ 
package was used to perform Spearman correlation analysis. 

In addition, the clr abundance conversion of the samples were per-
formed using the R package microbiome, and the Aitchison distance was 
calculated based on the vegan package. To evaluate similarities among 
groups, analysis of similarities (ANOSIM, permutations = 999) was 
performed. Procrustes analysis based on the vegan package was used to 
determine similarity between two multivariate axes, and p-value was 
generated based on 999 permutations. All graphical presentations were 
generated under the R and Adobe Illustrator (AI) environment. 

3. Results 

3.1. Genomic characteristics of gut microbiome in stressed adults 

After bin refinement, 3803, 851, and 1240 MAGs were assigned to 
high-, medium-, and partial-quality MAGs (Table S3 for information of 
the 3803 high-quality MAGs). The average mappability of 589 SGBs 

obtained was 78.56 ± 6.46% of metagenomic reads/sample (Fig. 1a), 
and the high mappability suggested most genomic contents were already 
known microbial community. The mapped SGBs were distributed across 
13 phyla, 23 classes, 30 orders, 49 families, 91 genera, and 341 species. 
Most SGBs were assigned to the phylum Firmicutes (57.72%), followed 
by Bacteroidetes (14.60%), Actinobacteria (12.56%), and Proteobac-
teria (8.15%). Fifty SGBs remained unmapped and uncharacterized at 
the species level, representing the portion of uncultured species. These 
uncultured species belonged mainly to three phyla, i.e., Firmicutes 
(72%), Bacteroidetes (11.67%), and Proteobacteria (4%) (Fig. 1b and c). 
To estimate the size of the unexplored SGBs, the current dataset was 
cross-compared with the IGG and MAGs datasets (Pasolli et al., 2019). 
Seventy-eight SGBs did not match (<95% average nucleotide similarity) 
any gut microbial genome in the two datasets, suggesting their novelty 
(Fig. 1d; Table S4). 

An attempt was made but failed to identify P-8 genome in any of the 
metagenomic DNA samples by mapping the P-8 reference genome across 
the metagenomic DNA using a genome coverage breadth of 40%. In 
general, at least 5-fold sequencing coverage would be required for 
tracing a specific bacterial strain. Thus, the failure was likely due to the 
inadequate levels of sequencing amount and genome coverage applied 
in this work, which were used in similar metagenomic studies (Fig. S1b). 

3.2. Probiotic administration modulated gut microbiota composition 

To assess the effect of probiotic consumption on the intestinal 
microbiome of stressed adults, an NMDS analysis was performed. Sym-
bols representing samples at week 0 for both the placebo and P-8 groups 
were mainly distributed to the lower quadrants, while symbols repre-
senting samples at week 12 located mostly at the upper quadrants 
(Fig. 2a), suggesting obvious difference between the microbiota struc-
ture at weeks 0 and 12. Further analysis by ANOSIM found no significant 
difference between the probiotic and placebo groups at week 0 (R =
0.003, P = 0.354), but the two groups displayed significant difference at 
week 12 though with a relatively low R value (R = 0.041, P = 0.028). 
Interestingly, the placebo-receivers showed a significantly larger dif-
ference in the Aitchison distance between weeks 0 and 12 than the 
probiotic-receivers (P = 0.001; Fig. 2b). Moreover, comparing with 
week 0, the Shannon diversity index of the placebo-receivers decreased 
significantly at week 12 (P < 0.05), but such decrease was non- 
significant for the probiotic-receivers (Fig. 2c). These results together 
suggested that although both the P-8 and placebo groups exhibited 
changes in alpha-/beta-diversity after the 12-week-trial, the probiotic- 
treatment resulted in smaller changes in the gut microbiota diversity 
and structure. 

The “core microbiota” comprised stable key microorganisms of the 
human intestine, and it is closely related to human health (Astudillo--
García et al., 2017). This study applied the concept of “core microbiota” 
to identify the “core SGBs” in the current dataset (i.e., SGBs present in 
>80% of the total sample number). Thirteen core SGBs were identified. 
No significant difference was observed in the core SGBs, S24A.M011 and 
S14A.M004 (both belonged to Fecalibacterium prausnitzii), P08.M042 
(Agathobaculum butyriciproducens), S37B.M011 (uncultured Blautia sp.), 
S25A.M021 (Ruminococcus sp. CAG:9-related_41_34), and H2_119.37 
(Bacteroides vulgatus), between the probiotic and placebo groups. Dif-
ferential abundant SGBs were also identified by comparing the abun-
dance of all SGBs in the probiotic group before and after probiotic 
treatment. 

The abundances of six core SGBs and seventeen non-core SGBs 
changed significantly responding to the probiotic treatment; SIMPER 
analysis found that these SGBs together accounted for 13.65% of the 
microbial community variation (Table S5). Meanwhile, the abundances 
of one core SGB and twelve non-core SGBs changed significantly in the 
placebo group, together accounting for 4.85% of the microbial com-
munity variation (Table S5). At week 12, the probiotic-receivers had 
significantly more (P < 0.05 in all cases) S33A.M036 (B. adolescentis), 
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S4A.M008 (B. longum), H1_08.M012 (F. prausnitzii), and S34B.M002 
(Subdoligranulum sp. 60_17), while significantly less (P < 0.05 in both 
cases) H2_09.M016 (Roseburia faecis) and S22A.M013 (Fusicatenibacter 
saccharivorans), contributing to 11.15% of the microbial community 
variation (Fig. S1c; Table S5). Moreover, ten SGBs (e.g., B. longum, 
Megamonas funiformis, Subdoligranulum sp. 60_17, Bacteroides sp., and 
three uncultured species) showed no significant difference between the 
placebo and probiotic groups at week 0, but they became significantly 
differential abundant at week 12, accounting for 5.41% of the microbial 
community variation (Table S5). The results of SIMPER analysis sug-
gested that the microbial community variations between probiotic/ 
placebo treatments or different time points were contributed mainly by 
overall shifting of the microbial communities but not changes in indi-
vidual dominating species. 

3.3. Probiotic administration modulated gut microbiota-encoded 
neuroactivity-related pathways 

A genome-centric metabolic reconstruction was performed to iden-
tify changes in neuroactivity-related pathways of the 589 identified 
SGBs using the MetaCyc and KEGG databases, focusing mainly on the 
human intestinal microbial metabolic pathways relating to the sugar 
fermentation, amino acid utilization, short-chain fatty acids (SCFAs), 
gut enzyme conversion, and metabolism of human neuroactive com-
pounds. The identified pathways belonged to 12 phyla, distributed 
mainly to Firmicutes (53.47%), Bacteroidetes (18.79%), and Actino-
bacteria (12.20%) (Fig. 2d). The three most ubiquitous pathways 
(prevalence >80% among the SGBs) were corrinoid dependent enzymes 
(96.69%), acetyl-CoA to acetate (95.93%), and glutamine degradation II 
(89.98%). Some neuroactive compound pathways were detected in <5% 
of all SGBs, e.g., propionate degradation I, nitric oxide degradation II 
(NO reductase), and kynurenine synthesis; these scarce pathways were 
mainly found in Proteobacteria and Actinobacteria (Table S6). 

3.4. Probiotic administration modulated gut microbiota-related 
neuroactive compounds 

A module-based analysis framework developed by Valles-Colomer 
et al. (2019) was used to characterize the neuroactive compounds of our 
samples. Thirty-two and seventeen differential abundant modules were 
related with neuroactivity synthesis and degradation, respectively 
(Fig. 3a and b). The synthesis-/degradation-related GBMs could each be 
classified into six functional subgroups according to their potential of 
metabolic pathway. Significant differences were found in the total 
abundance of SGBs encoding synthesis-related GBMs (SGBMs) between 
the two groups (P < 0.001) only at week 12 but not at week 0. Moreover, 
the abundances of SGBs encoding SGBMs I (amino acid and derivatives 
synthesis) and SGBMs IV (SCFAs synthesis) varied greatly between the 
P-8 and placebo groups at week 12 (P < 0.01; Fig. S1d). Additionally, the 
abundance of SGBs involved in SGBMs II [neurotransmitter I synthesis; 
contained three synthetic pathways of gamma-aminobutyric acid 
(GABA)] was higher in the probiotic group at week 12. On the other 
hand, significant difference was found in the total abundance of 
degradation-related GMBs (DGBMs)-possessing SGBs between the two 
groups at week 12. The abundances of SGBs that encoded DGBMs II 
(neurotransmitter I degradation) and DGBMs III (neurotransmitter II 
degradation) were significantly different between weeks 0 and 12 in the 
probiotic group. The other subgroups of DGBMs, e.g., DGBMs I (amino 
acid degradation), DGBMs IV (SCFAs degradation), and DGBMs VI 
(vitamin degradation), only fluctuated mildly after the trial (Table S7). 

To profile the key potential neuroactive compounds, GBMs encoded 
by differential SGBs that showed significant differences between the 
probiotic and placebo groups were analyzed (Fig. S2a). At week 12, 
samples of the probiotic-receivers had more diverse SGBs participating 
in menaquinone synthesis (vitamin K2) I synthesis, GABA and SCFAs 
metabolism, while the placebo group had more diverse SGBs partici-
pating in inositol degradation. Moreover, the probiotic-receivers had 

Fig. 1. Metagenomic reconstruction pipeline and genomic characteristics. (a) The stepwise pipeline of metagenomic assembly, binning, reconstruction, and de- 
replication resulted in a total of 589 high-quality species-level genome bins (SGBs). (b) Phylogenetic placement of the 589 high-quality SGBs. The heatmap of 
the tree shows the log2-fold change of the SGBs in reads per kilobase per million (RPKM) during the trial. (c) Among the 589 SGBs, 539 and 50 were previously 
cultured and uncultured, respectively. (d) The novelty of the dataset and the 78 SGBs were confirmed by genomic comparison across the IGG database (a collection of 
16,136 non-redundant representative human gut genomes) and the Pasolli et al. MAGs database (a dataset collection of 154,723 non-redundant genomes from gut 
and other body parts of the global population). These 78 SGBs were genomes reconstructed here and without overlapping with existing isolates or metagenomically 
assembled genomes of the compared human microbiome datasets. 
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more cortisol-degrading SGBs at week 12 than the placebo-receivers. 
Interestingly, more probiotic-receivers had histamine-synthesizing 
SGBs at week 12 (8 at week 0 versus 19 at week 12, respectively; 
Table S8). 

3.5. Probiotic administration modulated predicted gut neurometabolome 

MelonnPan was applied to find correlation between SGBs and po-
tential neurometabolites. Eighty metabolites were predicted; deoxy-
cholic acid, glutamate, and cholate were the three most abundant 
metabolites. Changes in the subjects’ predicted fecal metabolomes were 
evaluated by NMDS analysis. Although some overlapping occurred on 
the NMDS score plot, samples collected at different time points formed 
clear clustering pattern (stress = 0.0862; Fig. 4a). Procrustes analysis is a 
statistical technique that displays multi-omics datasets in the low- 
dimensional space after data dimensionality reduction, and it has been 
increasingly used in microbiome research to evaluate the similarities 
and differences between datasets (Chong and Xia, 2017). Procrustes 
analysis was performed in this study, which found a positive coopera-
tivity between the microbiome and metabolome profiles (correlation =
0.386; P = 0.001; Fig. 4b), suggesting that the metabolite output of the 
samples was consistent with the SGBs that produced it. Significant 
changes in the intestinal metabolite profiles occurred after the 12-week--
trial for both the P-8 and placebo groups (P < 0.001; comparing between 
datasets of weeks 0 and 12 of each group), while ANOSIM found no 
significant difference between the metabolite profiles of the two groups 
at week 0. 

Forty-one and twelve differential abundant metabolites were iden-
tified in the P-8 and placebo groups, respectively. These differential 
abundant metabolites showed significant differences in the predicted 
levels of abundance between weeks 0 and 12. Some metabolites shared 
the same trend of change after the clinical trial, e.g., at week 12, both 
groups had significantly lower predicted abundances of pantothenate, 
nicotinate, and lithocholate, while significantly increased predicted 
cytosine level (P < 0.05 in all cases; Table S9). These changes were likely 
non-specific to the probiotic treatment. In contrast, the average pre-
dicted abundances of cholate, arachidonic acid, creatine, threo- 
sphingosine, erythronic acid, and C18: 0 sphingomyelin were signifi-
cantly higher for the probiotic-receivers (P < 0.05; Fig. 4c), representing 
probiotic-specific changes of some neuro-related metabolites. 

4. Discussion 

The present research observed probiotic-driven changes in the in-
testinal microbiota structure of moderately stressed subjects after the 
administration of the P-8 strain. The alleviation effect of probiotics on 
stress-related symptoms like anxiety and depression through gut 
microbiota modulation has been reported in previous studies (Westfall 
et al., 2017; Foster et al., 2017). Interestingly, the Shannon diversity 
index of the placebo group (P < 0.05) but not the probiotic group 
decreased significantly at week 12. In another double-blind, placebo--
controlled clinical trial of probiotics found that the relief of 
stress-related symptoms was accompanied by an increase in volunteers’ 
gut microbiota diversity after 8-week intervention (Kato-Kataoka et al., 

Fig. 2. Structure, diversity, and functional features of intestinal microbiota in stressed adult. (a) Non-metric multidimensional scaling (NMDS) analysis (Bray-Curtis 
similarity index). Symbols representing samples of the placebo (Pla) and probiotic (Pro) groups are shown in different colors. Triangles and circles represent weeks 
0 and 12 samples, respectively. (b) Significantly larger Aitchison distance was observed in the gut microbiota (week 0 versus week 12) of the placebo group than the 
probiotic group. (c) Shannon diversity index of the two groups at two different time points. (d) Distribution of species-level genome bins (SGBs) that possessed 
predicted neuroactive metabolite-related pathways or gut brain modules (GBMs) across different phyla. The number written next to the phylum name indicates the 
quantity of SGBs distributed in that phylum. The purple, light blue, and red triangles represent rare, general, and ubiquitous pathways, respectively. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2016). Generally, a high gut microbiota diversity is assumed to be 
important for maintaining a healthy physiological state, and unhealthy 
conditions (gastrointestinal discomforts, Crohn’s disease, and some 
cancers) have been associated with reduced gut microbial diversity; and 
gut dysbiosis could even partially perturb normal energy metabolism 
and immunity in athletes (Wosinska et al., 2019). However, Shade 
(2017) pointed out a number of fallacies that strongly argued against the 
assumption that a high microbiota diversity is implicitly a good/-
desirable outcome for emergent properties like stability and 
productivity. 

There are indeed a number of limitations in calculating the microbial 
diversity using currently available methods, including bias in protocols 
like extraction methods and inadequate sequencing depth/coverage. 
Moreover, the Aitchison distance represents differences in microbial 
structure and composition between two microbiota communities, while 
the alpha diversity (e.g., Shannon index) reflects the microbial richness 
and evenness in a sample. Thus, the diversity measures are the outcome 
of ecological processes but not the ecological process itself. Shade 
(2017) concluded that a high diversity is not necessarily ‘better’ or 
‘healthy’, but “a starting point for further inquiry of ecological mecha-
nisms rather than an ‘answer’ to community outcomes”. Therefore, the 
divergent responses in the gut microbiota diversity between the placebo 
and probiotic groups observed in our study could only be interpreted as 
differential responses towards the respective treatments. 

Furthermore, the diversity analysis showed that the placebo had 
significantly greater within-individual beta diversity (measured by 
Aitchison distance) compared with the probiotic treatment, suggesting 
that dynamic microbiome changes not only occurred in the probiotic 
group but also the placebo group. A recent study provided a new concept 
called as volatility to describe the dynamic microbiome, which has been 
characterized relevant to the stress in both animals and humans 

(Bastiaanssen et al., 2021), therefore suggesting the changes in stress 
resilience in both placebo and probiotics groups in present study. The 
placebo subjects received only malodextrin but not the probiotic bac-
teria, while the probiotic subjects received both materials. Maltodextrin 
is a sugar-based excipient material used in clinical trials like the current 
work (Elnaggar et al., 2010), and it is regarded as inert and “generally 
regarded as safe” by the US Food and Drug Administration. However, 
several reports have described adverse effect of intake of maltodextrin 
on the gut environment, worsening chronic inflammatory disorders like 
inflammatory bowel disease and metabolic syndrome (Arnold and 
Chassaing, 2019). Laudisi et al. (2019) found that such detrimental ef-
fect was independent of mucosa-associated microbiota, as no significant 
change was observed in the gut mucosal microbiota composition in mice 
given maltodextrin. On the other hand, Yeo et al. (2010) observed in 
vitro prebiotic effect of maltodextrin in stimulating the growth of mul-
tiple Lactobacilli and Bifidobacteria strains, resulting in significant 
enhancement of lactic acid production (Yeo and Liong, 2010). Changes 
in the gut microbiota structure of the placebo group after the inter-
vention period did not seem to be totally random, which was somewhat 
unexpected. This study was a randomized, double-blind, placebo-con-
trolled trial, which was designed to control the placebo responses, 
incidental factors, and eliminating biases. The sample processing and 
metagenomic DNA extraction of samples of both groups for both time 
points were performed in parallel, so batch effect due to reagents and 
related technical factors did not exist. Instead, it was more likely that the 
gut microbiota response of the placebo group was a combined result of 
directed changes caused by the potential prebiotic effect of maltodex-
trin, temporal variation, and individual heterogeneity. The logical 
interpretation for our observations of the volatility of the fecal micro-
biome structure subject to the interventions was that the 
probiotic-driven regulation of gut microbiota was not drastic. Thus, to 

Fig. 3. Distribution of gut brain modules (GBMs) at 
the phylum level. The prevalence of different types of 
(a) synthesis-related GBMs (SGBMs) and (b) 
degradation-related GBMs (DGBMs), and their com-
positions at the phylum level in the probiotic (pro) 
and placebo (pla) groups are shown. Identified 
SGBMs/DGBMs were classified into six groups (I to 
VI) based on their predicted function of metabolite 
synthesis, respectively, and their associated species- 
level genome bins (SGBs) were assigned to the cor-
responding phyla. The size of the outer circle repre-
sents the average abundance of the corresponding 
SGBs.   
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decipher the probiotic-driven gut microbiota response and its role in the 
beneficial function, it would be necessary to dig deeper to the functional 
metagenome level to gain understanding of changes in genes coding for 
metabolic pathways related to physiological stress. 

Our results showed that the prevalence of some SGBs significantly 
increased (e.g., B. adolescentis, B. longum, F. prausnitzii) at week 12, while 
others decreased significantly (e.g., R. faecis, Fusicatenibacter saccha-
rivorans). Lactobacillus, Bifidobacterium, and Faecalibacterium have been 
found to correlate positively with brain health and exert regulatory and 
protective effects on neurological diseases (Teichman et al., 2020). 
Bifidobacterium adolescentis exerted anxiolytic and antidepressant effect 
by rebalancing the gut microbiota and lowering inflammatory cytokines 
(Guo et al., 2019). Intake of B. longum 1714 ameliorated the physi-
ological/psychological responses to acute stressors and improved the 
visuospatial memory of healthy adults (Allen et al., 2016). Additionally, 
ingesting F. prausnitzii prevented and reduced depression/anxiety-like 
behavior in rats (Hao et al., 2019). Our study also found negative cor-
relations among B. adolescentis, B. longum, and F. prausnitzii with the 
stress/anxiety symptom scores, while R. faecis correlated positively with 
these scores (Fig. S2b). These results suggested that health maintenance 
not only relied on a diverse gut microbiota but also specific gut func-
tional species/strains. 

Bastiaanssen et al. point out the gut microbiota responds to stress 
similarly on the functional level but not on the taxonomical level in 
different host model (Bastiaanssen et al., 2021). Similarly, Tomizawa 
et al. found that the gut microbial function involved in Gut-Brain is 
influenced by the psychotropic consumption (Tomizawa et al., 2020). 
Collectively, the taxa encoded the GBM seemed to be major players 

participating in stress resilience, more work is needed to determine the 
changes of GBM after probiotics consumption. Multiple pathways are 
involved in the gut-brain-axis communication, which is facilitated by 
bidirectional interactions between the vagus nerve, the immune system, 
the endocrine system, and microorganism-originated metabo-
lites/neurotransmitters (e.g., dopamine, serotonin, histamine, SCFAs, 
GABA, and various neurohormones; Fig. 5) (Teichman et al., 2020). This 
study investigated probiotic-specific modulation of the 
neuro-microbiome mediator metabolism by two platforms (i.e., the 
module-based analytical framework developed by Valles-Colomer et al. 
(2019) and MelonnPan (Teichman et al., 2020)). The probiotic treat-
ment significantly increased the diversity of SGBs possessing neuroac-
tive potential-related pathways, namely, menaquinone synthesis 
(vitamin K2) I, SCFAs and GABA metabolism. Vitamin K2 is synthesized 
by human gut bacteria. It is not only important in blood clotting and 
anti-inflammation, but also a neuroprotective agent that reduced the 
severity of relapses in patients with multiple sclerosis (Lasemi et al., 
2018) and rescued drosophila from Parkinson’s disease-associated 
mitochondrial defects (Josey et al., 2013). Gut microbe-originated me-
tabolites like SCFAs, especially acetate, butyrate, proprionate, are 
important neuroimmune endocrine regulators. Our results confirmed 
that Fecalibacterium was desirable gut SCFAs-producers that correlated 
with quality of life indicators (Valles-Colomer et al., 2019). Another gut 
microbe-originated metabolite, GABA, is commonly produced by Bifi-
dobacterium and Lactobacillus (Valles-Colomer et al., 2019). Our data 
showed that probiotic administration enriched GABA synthesis 
pathway-possessing B. adolescentis in the gut. Bravo et al. reported that 
ingesting L. rhamnosus reduced depression/anxiety behavior in mice in a 

Fig. 4. Differences between the predicted intestinal metabolomes of the probiotic (pro) and placebo (pla) groups at two time points. (a) Non-metric multidimensional 
scaling (NMDS, Bray-Curtis similarity index) and (b) Procrustes analyses were performed on the predicted microbiomes and metabolomes of the two groups of 
subjects at week 0 and week 12, showing a positive cooperativity between microbiomic and metabolomic profiles (correlation = 0.386; P = 0.001). (c) Predicted 
differential neuroactive metabolites between week 0 and week 12 of the probiotic group. The p value was corrected by the FDR method, and the threshold P < 0.05 
indicated significant. 
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vagus-dependent manner, as vagotomy abolished the anx-
iolytic/antidepressant effect and the symptom improvement was 
accompanied by increased GABAergic activity (Bravo et al., 2011). 
Transmission of nerve signals, e.g., bacterial derived-neurotransmtters 
like GABA and histamine, via the vagus nerve was the most important 
neural pathway communicating between gut-brain-axis (Pellegrini 
et al., 2018). Moreover, a marginal decline was observed in the plasma 
cortisol level in the probiotic-receivers compared with the 
placebo-receivers; such decline was accompanied by more intestinal 
cortisol-degrading SGBs observed in this work. Cortisol is the primary 
stress hormone that relates with stress response like increasing anx-
iety/depression. Regular intake of probiotics could lower the level of 
urinary free cortisol, suggesting some gut bacteria could reduce plasma 
cortisol (Evrensel and Ceylan, 2015). 

Another group of microbial neuroactive metabolites, bile acids and 
unsaturated fatty acids, also constitutes information flow between the 
gut-brain-axis (Mohajeri et al., 2018). Our data showed that the pre-
dicted levels of cholate, arachidonic acid, and C18:0 sphingomyelin 
increased significantly after probiotic treatment. Bile acids help regulate 
the intestinal permeability and the blood-brain barrier, and secondary 
bile acids like cholate can stimulate 5-hydroxytryptamine biosynthesis 
(Agus et al., 2018). Ingesting probiotics significantly increased arach-
idonic acid concentration in rodents; arachidonic acid is vital for brain 
and optic nerve development, facilitating cognitive processes like 
memory and learning (Dinan et al., 2015). The immune system also 
plays an important role in regulating the gut-brain-axis. The P-8-re-
ceivers exhibited more obvious reduction in plasma pro-inflammatory 
cytokines, e.g. IFN-γ, TNF-α, and IL-1β, compared with the 
placebo-receivers. Consistently, peripheral administration of 
pro-inflammatory cytokines induced depression-like behaviors in ro-
dents (Bilbo and Schwarz, 2012), while probiotics might exert immu-
nomodulatory effects to counter stress response by generating 

T-regulatory cell populations and secreting cytokines (Dinan et al., 
2013). Thus, the balance of intestinal microbiota may closely regulate 
host inflammatory response, activate intestinal and circulating immune 
pathways, subsequently influencing the mood and brain functions of the 
host (Pellegrini et al., 2018). 
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