Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nonapiperidinium monohydrogen decavanadate tetranitrate

Mohsen Graia,* Regaya Ksiksi and Ahmed Driss

Laboratoire de Matériaux et de Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis–El Manar, 2092 El Manar II Tunis, Tunisia Correspondence e-mail: mohseng2002@yahoo.fr

Received 17 May 2009; accepted 7 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; Hatom completeness 99%; disorder in solvent or counterion; R factor = 0.043; wR factor = 0.118; data-to-parameter ratio = 14.6.

The title compound, $(C_5H_{12}N)_9[HV_{10}O_{28}](NO_3)_4$, contains a monoprotonated decavanadate polyanion which lies on an inversion center. All the piperidinium cations adopt chair conformations. In the crystal structure, intermolecular N-H···O hydrogen bonds form chains along [001]. As well as half of a polyanion, the asymmetric unit contains one full and two half-occupancy nitrate ions and four full occupancy and one half-occupancy piperidinium cations; the half-occupancy piperidinium cations is disordered over two general sites with occupancies of 0.32 and 0.18, and is, in turn, disordered over an inversion center.

Related literature

For the biological activity of vanadium, see: Crans (1994); Elvingson *et al.* (1996). For its interactions with nitrogen compounds such as proteins and amino acids and its role in enzymatic reactions, see: Correia *et al.* (2004). For related structures, see: Ferreira da Silva *et al.* (2003); Maciejewska *et al.* (2003); Arrieta (1992); Wang *et al.* (2008); Wery *et al.* (1996).

Experimental

Crystal data	
$(C_5H_{12}N)_9[HV_{10}O_{28}](NO_3)_4$ $M_r = 1981.85$ Griclinic, $P\overline{1}$	a = 11.593 (2) Å b = 13.290 (2) Å c = 14.676 (2) Å

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.14 \text{ mm}$

 $\mu = 1.20 \text{ mm}^{-3}$

T = 293 K

 $\begin{array}{l} \alpha = 105.858 \ (2)^{\circ} \\ \beta = 110.335 \ (2)^{\circ} \\ \gamma = 92.457 \ (2)^{\circ} \\ V = 2015.6 \ (5) \ \text{\AA}^{3} \\ Z = 1 \end{array}$

Data collection

8755 independent reflections
6099 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.047$
2 standard reflections
frequency: 120 min
intensity decay: 2%

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.043 & 262 \text{ restraints} \\ wR(F^2) &= 0.118 & H\text{-atom parameters constrained} \\ S &= 1.04 & \Delta\rho_{\text{max}} = 0.71 \text{ e } \text{ Å}^{-3} \\ 8755 \text{ reflections} & \Delta\rho_{\text{min}} = -0.32 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1		
Hydrogen-bond geometry	(Å.	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$NC1-HC1A\cdots O8$	0.90	1.80	2.693 (3)	174
$NC1-HC1B\cdots ON6A^{i}$	0.90	1.95	2.829 (8)	164
$NC1 - HC1B \cdot \cdot \cdot ON6B$	0.90	2.05	2.876 (9)	153
$NC1-HC1B\cdots ON5A^{i}$	0.90	2.48	3.214 (12)	139
$NC1-HC1B\cdots ON5B$	0.90	2.54	3.355 (13)	151
$NC2-HC2A\cdots ON4A$	0.90	1.95	2.824 (7)	164
$NC2-HC2A\cdots ON4B^{i}$	0.90	2.05	2.909 (8)	159
$NC2-HC2A\cdots ON5B^{i}$	0.90	2.50	3.280 (13)	145
$NC2-HC2A\cdots ON5A$	0.90	2.56	3.251 (12)	134
$NC2-HC2B\cdots O4$	0.90	1.85	2.746 (3)	174
$NC3-HC3A\cdots O5^{ii}$	0.90	1.85	2.749 (4)	175
$NC3-HC3B\cdots ON3$	0.90	2.06	2.885 (5)	152
$NC3-HC3B\cdots ON2$	0.90	2.31	3.095 (5)	145
$NC4-HC4A\cdots O7$	0.90	1.82	2.716 (4)	172
$NC4-HC4B\cdots ON3$	0.90	2.16	2.954 (6)	147
$NC4-HC4B\cdots ON1$	0.90	2.26	3.060 (6)	148
$NC5-HC5A\cdots O6$	0.90	2.40	3.248 (17)	158
$NC6-HC6A\cdots ON4B$	0.90	2.12	2.92 (2)	147
$NC6-HC6B\cdots O6^{i}$	0.90	1.92	2.80(2)	166

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *publCIF* (Westrip, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2828).

References

Arrieta, J. M. (1992). *Polyhedron*, **11**, 3045–3068.
Brandenburg, K. (1998). *DIAMOND*. University of Bonn, Germany.
Correia, I., Avecilla, F., Marcao, S. & Pessoa, J. C. (2004). *Inorg. Chim. Acta*, **357**, 4476–4487.
Crans, D. (1994). *Comments Inorg. Chem.* **16**, 1–33.
Duisenberg, A. J. M. (1992). *J. Appl. Cryst.* **25**, 92–96.

- Elvingson, K., GonzálezBaró, A. & Pettersson, L. (1996). Inorg. Chem. 35, 3388–3393.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Ferreira da Silva, J. L., Piedade, M. F. M. & Duarte, M. T. (2003). *Inorg. Chim.* Acta, **356**, 222–242.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Maciejewska, G., Nosek, M., Glowiak, T., Starosta, J. & Cieslak-Golonka, M. (2003). Polyhedron, 22, 1415–1424.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, 01753.
- Wery, A. S. J., Gutierrez-Zorrila, J. M., Luque, A., Roman, P. (1996). *Polyhedron*, **15**, 4555–4564.
- Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, m953-m954 [doi:10.1107/S1600536809026555]

Nonapiperidinium monohydrogen decavanadate tetranitrate

M. Graia, R. Ksiksi and A. Driss

Comment

Vanadium is a rare metal with exceptional properties. Both its cationic and anionic forms can interact with biomolecules, and its coordination chemistry plays a predominant role in these interactions. Among several biological functions of vanadium, many important therapeutic effects have been described, including hormonal, cardiovascular, anticarcinogenic, sugar lowering activities (Elvingson *et al.*, 1996; Crans, 1994). Because of the physiological relevance of vanadium, a better understanding of its complexation behavior with organic ligands is of vital interest. The interactions of this metal with nitrogen compounds like proteins and amino acids and its role in enzymatic reactions have been studied extensively (Correia *et al.*, 2004). Herein we present the crystal structure of the title compound (I).

The asymmetric unit of (I) contains one half of a monoprotonated decavanadate polyanion $[HV_{10}O_{28}]^{5-}$, 4.5 piperidinum cations $(C_5H_{12}N^+)$, and 2 NO₃⁻anions. The formula unit is generated by a crystallographic inversion centre. The $[HV_{10}O_{28}]^{5-}$ polyanion is composed of ten distorted VO₆ edge-sharing octahedra and is best described as cubic close-packing of oxygen ions, with the octahedral holes filled by vanadium ions. Each VO₆ octahedron is considerably distorted, with bond angles at the V atoms ranging from 1.602 (2) to 2.345 (2) Å. The V—O distance depends upon the type of oxo ligands: V=O_t bond lengths to the terminal oxo O atoms vary from 1.603 (3) to 1.608 (2) Å, V—O_{2b} bond lengths to the O atoms bridging two V atoms vary from 1.693 (3) to 2.059 (3) Å, V—O_{3b} bond lengths to the O atoms bridging three V atoms vary from 1.914 (2) to 2.067 (3) Å and V—O_{6b} bond lengths to the O atoms shared between six V atoms range 2.081 (3) to 2.345 (3) Å. The V—V distances are in the range 3.091 (4) to 3.286 (4) Å. The V—O bond and angles of the [HV₁₀O₂₈]⁶⁻ are in agreement with those reported in literature (Ferreira da Silva *et al.*, 2003; Maciejewska *et al.*, 2003; Arrieta, 1992).

The organic groups are present as cations, $C_5H_{12}N^+$. These piperidinium rings adopt chair conformation (Fig. 2). The bond lengths of C–N and C–C are in the range of 1.468 (6) – 1.502 (7) Å and 1.469 (8) – 1.543 (7) Å, respectively. The C–C–C, C–C–N and C–N–C angles are in the range of 106 (1) – 113 (1) Å, 107 (2) – 111.7 (4) Å and 112.1 (4) – 114.1 (1) Å, respectively. These values are in agreement with those reported in literature (Wang *et al.*, 2008). As a result, we found one of the piperidinium cations in special position; this cation is disordred with a *ca* 16:9 occupancy ratio for its (NC5, $C_5H_{12}N^+$) and (NC6, $C_5H_{12}N^+$) components.

Similarly, we identified one disordered nitrate group, with a similar occupancy ratio for components N2O₃A and N2O₃B. The central N atom of N1O₃, N2O₃A and of N2O₃B nitrate groups is close to coplanarity with the three attached O atoms. The largest deviation from the plane being 0.0004 Å, 0.0062 and 0.0064 respectively. The N–O bond distances and O–N–O angles are in agreement with in the nitrate unit.

The most important feature of this crystal is the presence of N–H···O, hydrogen bonds with D···A distances ranging from 2.693 (3) to 3.355 (13) Å. These interactions connect the various fragments into a supramolecular structure. In fact, it is noted

that piperidinium $C_5H_{12}N^+$ cations are located around the $[HV_{10}O_{28}]$ (Fig. 2). Each $[HV_{10}O_{28}]^{5^-}$ cluster is surrounded by ten $C_5H_{12}N^+$ cations. The N atoms of the organic cations are directing towards the doubly bridging O atoms of the cluster anion there by forming strong H-bonding. The NO₃⁻anions contribute to the cohesion of the structure by hydrogen bonds (Fig 2). In fact, as can be seen from the packing diagram (Fig. 2), there are intermolecular hydrogen bonds between the nitrato O atoms and the N–H group of the piperidinium $C_5H_{12}N^+$ cations.

Experimental

The title compound was prepared by the reaction of vanadium (V) oxide (0.68 g, 3.74 mmol, Fluka, 99,9%), piperidin (1.72 g, 20.23 mmol, Fluka, > 99%), zinc nitrate (1.12 g, 3.77 mmol, Fluka, > 99%) and oxalic acid (1.23 g, 9.77 mmol, Prolabo, > 98%), dissolved in 40 ml ofdistilled water. Orange single crystals were obtained after six days from by slow evaporation at room temperature.

Refinement

The positions of the H atoms attached to the piperidinium cations were placed at geometrically idealized positions (C–H = 0.97 Å, N–H =0.90 Å) and constrained to ride on their parent atoms with $U_{iso}(H)=1.2U_{eq}(\text{carrier atom})$. The hydrogen atom attached to the [V₁₀O₂₈] cluster could not be located but is included in the molecular formula. The disordered model was refined by using the tools available in the *SHELXL97* (Sheldrick, 2008) software.

Figures

Fig. 1. View of the decavanadate unit of the title compound. Thermal ellipsoids are drawn at 35% probability. The purple spheres are vanadium atoms and the red spheres are oxygen atoms.

Fig. 2. Part of the crystal structure of the title compound. The purple spheres are vanadium atoms, the red spheres are oxygen atoms, the cyan spheres are nitrogen atoms, the green spheres are carbon atoms and the white spheres represent hydrogen atoms. Hydrogen bonds are shown as dashed lines.

Nonapiperidinium monohydrogen decavanadate tetranitrate

Crystal data	
(C ₅ H ₁₂ N) ₉ [HV ₁₀ O ₂₈](NO ₃) ₄	Z = 1
$M_r = 1981.85$	$F_{000} = 1020$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.633 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 11.593 (2) Å	Cell parameters from 25 reflections

b = 13.290 (2) Å c = 14.676 (2) Å $\alpha = 105.858 (2)^{\circ}$ $\beta = 110.335 (2)^{\circ}$ $\gamma = 92.457 (2)^{\circ}$ $V = 2015.6 (5) \text{ Å}^{3}$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.047$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.3^{\circ}$
T = 293 K	$h = 0 \rightarrow 14$
$\omega/2\theta$ scans	$k = -16 \rightarrow 16$
Absorption correction: ψ scan (North et al., 1968)	$l = -18 \rightarrow 17$
$T_{\min} = 0.72, \ T_{\max} = 0.90$	2 standard reflections
9193 measured reflections	every 120 min
8755 independent reflections	intensity decay: 2%
6099 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.118$	$w = 1/[\sigma^2(F_o^2) + (0.0517P)^2 + 1.3683P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
8755 reflections	$\Delta \rho_{max} = 0.71 \text{ e } \text{\AA}^{-3}$
598 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
262 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

 $\theta = 11.8 - 15.2^{\circ}$

 $\mu = 1.20 \text{ mm}^{-1}$

Hexagone, orange

 $0.30 \times 0.25 \times 0.14 \text{ mm}$

T = 293 K

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
V1	0.55004 (5)	0.32924 (4)	0.57070 (4)	0.03398 (13)	
V2	0.65119 (4)	0.53839 (4)	0.54702 (4)	0.03033 (12)	
V3	0.53337 (5)	0.33546 (4)	0.35568 (4)	0.03371 (13)	
V4	0.62554 (5)	0.54954 (4)	0.33350 (4)	0.03911 (14)	
V5	0.34440 (5)	0.46252 (4)	0.24253 (4)	0.03735 (14)	
01	0.64328 (19)	0.38796 (15)	0.50197 (15)	0.0347 (5)	
O2	0.75038 (19)	0.56505 (17)	0.66911 (15)	0.0381 (5)	
O3	0.73307 (19)	0.56874 (17)	0.48006 (16)	0.0398 (5)	
O4	0.63901 (19)	0.40224 (17)	0.31868 (16)	0.0402 (5)	
05	0.5792 (2)	0.67820 (17)	0.38378 (16)	0.0405 (5)	
O6	0.4801 (2)	0.50774 (18)	0.21948 (15)	0.0442 (5)	
O7	0.39219 (19)	0.33201 (16)	0.24371 (15)	0.0384 (5)	
08	0.33299 (19)	0.60716 (17)	0.30494 (15)	0.0388 (5)	
09	0.2324 (2)	0.4357 (2)	0.13345 (16)	0.0544 (6)	
O10	0.7271 (2)	0.5810 (2)	0.29078 (19)	0.0591 (7)	
011	0.5568 (2)	0.21462 (17)	0.32664 (17)	0.0479 (6)	
012	0.5744 (2)	0.20838 (17)	0.54415 (18)	0.0493 (6)	
013	0.50819 (17)	0.49809 (15)	0.59153 (14)	0.0329 (4)	
O14	0.41649 (19)	0.32453 (16)	0.43204 (15)	0.0377 (5)	
NO1	0.0877 (6)	0.0576 (4)	0.2869 (3)	0.0928 (15)	
ON1	0.0314 (4)	0.0356 (4)	0.1946 (3)	0.1313 (17)	
ON2	0.0455 (4)	0.0246 (3)	0.3412 (3)	0.1027 (12)	
ON3	0.1908 (5)	0.1153 (3)	0.3274 (3)	0.1214 (17)	
NO2A	0.7294 (9)	0.2038 (8)	-0.0230 (6)	0.067 (4)	0.50
ON4A	0.6735 (8)	0.1750 (5)	0.0262 (5)	0.081 (2)	0.50
ON5A	0.8303 (11)	0.2627 (12)	0.0230 (8)	0.118 (6)	0.50
ON6A	0.6819 (10)	0.1762 (6)	-0.1164 (5)	0.095 (3)	0.50
NO2B	0.3155 (9)	0.7704 (8)	0.0289 (7)	0.069 (3)	0.50
ON4B	0.3787 (7)	0.7673 (7)	-0.0239 (5)	0.088 (2)	0.50
ON5B	0.2040 (8)	0.7800 (15)	-0.0057 (10)	0.111 (5)	0.50
ON6B	0.3636 (8)	0.7675 (8)	0.1167 (5)	0.097 (3)	0.50
NC1	0.1785 (3)	0.7091 (2)	0.1898 (2)	0.0501 (7)	
HC1A	0.2326	0.6740	0.2251	0.060*	
HC1B	0.2150	0.7357	0.1546	0.060*	
C11	0.1520 (4)	0.7977 (3)	0.2628 (3)	0.0617 (10)	
H11A	0.0981	0.8390	0.2259	0.074*	
H11B	0.2291	0.8438	0.3095	0.074*	
C12	0.0900 (4)	0.7552 (4)	0.3221 (4)	0.0780 (13)	
H12A	0.0693	0.8134	0.3672	0.094*	
H12B	0.1472	0.7196	0.3639	0.094*	
C13	-0.0280 (4)	0.6778 (4)	0.2506 (5)	0.0964 (17)	
H13A	-0.0632	0.6474	0.2899	0.116*	
H13B	-0.0890	0.7150	0.2142	0.116*	
C14	0.0021 (4)	0.5903 (4)	0.1746 (4)	0.0895 (16)	
H14A	0.0558	0.5485	0.2109	0.107*	

H14B	-0.0743	0.5440	0.1268	0.107*
C15	0.0651 (4)	0.6333 (3)	0.1166 (3)	0.0719 (12)
H15A	0.0878	0.5758	0.0723	0.086*
H15B	0.0087	0.6690	0.0743	0.086*
NC2	0.7900 (3)	0.2878 (2)	0.2361 (2)	0.0481 (7)
HC2A	0.7548	0.2636	0.1675	0.058*
HC2B	0.7356	0.3223	0.2592	0.058*
C21	0.8144 (4)	0.1962 (3)	0.2766 (3)	0.0592 (10)
H21A	0.8686	0.1558	0.2485	0.071*
H21B	0.7367	0.1501	0.2561	0.071*
C22	0.8749 (4)	0.2352 (3)	0.3914 (3)	0.0674 (11)
H22A	0.8949	0.1753	0.4166	0.081*
H22B	0.8167	0.2687	0.4193	0.081*
C23	0.9934 (4)	0.3139 (3)	0.4281 (4)	0.0705 (12)
H23A	1.0562	0.2785	0.4080	0.085*
H23B	1.0257	0.3423	0.5020	0.085*
C24	0.9644 (4)	0.4038 (3)	0.3813 (3)	0.0666 (11)
H24A	0.9089	0.4438	0.4079	0.080*
H24B	1.0409	0.4512	0.4010	0.080*
C25	0.9051 (4)	0.3631 (3)	0.2668 (3)	0.0665 (11)
H25A	0.8849	0.4217	0.2396	0.080*
H25B	0.9626	0.3277	0.2392	0.080*
NC3	0.2756 (3)	0.1265 (2)	0.5400 (2)	0.0582 (8)
НСЗА	0.3266	0.1885	0.5636	0.070*
НСЗВ	0.2239	0.1196	0.4758	0.070*
C31	0.3514 (4)	0.0395 (3)	0.5372 (3)	0.0701 (12)
H31A	0.3995	0.0433	0.4955	0.084*
H31B	0.2971	-0.0282	0.5069	0.084*
C32	0.4371 (4)	0.0478 (4)	0.6429 (4)	0.0754 (13)
H32A	0.4980	0.1113	0.6696	0.091*
H32B	0.4814	-0.0126	0.6407	0.091*
C33	0.3668 (5)	0.0516 (4)	0.7133 (4)	0.0879 (15)
H33A	0.4257	0.0642	0.7825	0.105*
H33B	0.3151	-0.0162	0.6927	0.105*
C34	0.2857 (5)	0.1383 (4)	0.7110 (4)	0.0842 (14)
H34A	0.2358	0.1340	0.7512	0.101*
H34B	0.3385	0.2067	0.7418	0.101*
C35	0.2012 (4)	0.1296 (4)	0.6038 (4)	0.0799 (14)
H35A	0.1405	0.0658	0.5758	0.096*
H35B	0.1568	0.1898	0.6045	0.096*
NC4	0.2310 (4)	0.1475 (3)	0.1487 (3)	0.0796 (11)
HC4A	0.2795	0.2109	0.1827	0.096*
HC4B	0.1871	0.1355	0.1856	0.096*
C41	0.1427 (5)	0.1505 (4)	0.0468 (5)	0.111 (2)
H41A	0.0856	0.0843	0.0122	0.133*
H41B	0.0943	0.2073	0.0568	0.133*
C42	0.2114 (6)	0.1669 (5)	-0.0166 (5)	0.114 (2)
H42A	0.2619	0.2364	0.0150	0.137*
H42B	0.1526	0.1651	-0.0830	0.137*

C43	0.2948 (6)	0.0835 (5)	-0.0303 (4)	0.119 (2)	
H43A	0.3442	0.1007	-0.0669	0.143*	
H43B	0.2441	0.0150	-0.0701	0.143*	
C44	0.3815 (5)	0.0786 (5)	0.0750 (4)	0.0982 (17)	
H44A	0.4276	0.0200	0.0655	0.118*	
H44B	0.4409	0.1434	0.1102	0.118*	
C45	0.3101 (5)	0.0651 (4)	0.1384 (4)	0.0896 (16)	
H45A	0.2585	-0.0038	0.1075	0.108*	
H45B	0.3676	0.0678	0.2056	0.108*	
NC5	0.4959	0.6247 (10)	0.0557 (12)	0.074 (4)	0.32
HC5A	0.4993	0.6110	0.1133	0.089*	0.32
HC5B	0.4890	0.6935	0.0644	0.089*	0.32
C51	0.3848	0.5597 (14)	-0.0301 (17)	0.070 (6)	0.32
H51A	0.3801	0.5738	-0.0926	0.084*	0.32
H51B	0.3104	0.5774	-0.0173	0.084*	0.32
C52	0.3927	0.4430 (15)	-0.0415 (18)	0.054 (5)	0.32
H52A	0.3941	0.4273	0.0196	0.065*	0.32
H52B	0.3219	0.3988	-0.0993	0.065*	0.32
C53	0.5118	0.4239 (9)	-0.0582 (11)	0.051 (3)	0.32
H53A	0.5073	0.4388	-0.1203	0.061*	0.32
H53B	0.5198	0.3497	-0.0678	0.061*	0.32
C54	0.6266	0.4906 (16)	0.0293 (16)	0.063 (5)	0.32
H54A	0.6338	0.4759	0.0920	0.075*	0.32
H54B	0.7008	0.4749	0.0151	0.075*	0.32
C55	0.6128	0.6047 (15)	0.0395 (16)	0.068 (5)	0.32
H55A	0.6830	0.6503	0.0968	0.081*	0.32
H55B	0.6108	0.6200	-0.0219	0.081*	0.32
NC6	0.493 (2)	0.5751 (14)	-0.0322 (17)	0.061 (5)	0.18
HC6A	0.4901	0.6450	-0.0147	0.073*	0.18
HC6B	0.4911	0.5541	-0.0964	0.073*	0.18
C61	0.383 (2)	0.519 (2)	-0.029 (3)	0.067 (8)	0.18
H61A	0.3071	0.5352	-0.0734	0.080*	0.18
H61B	0.3835	0.5401	0.0403	0.080*	0.18
C62	0.389 (3)	0.402 (2)	-0.064 (2)	0.055 (7)	0.18
H62A	0.3159	0.3613	-0.0652	0.066*	0.18
H62B	0.3897	0.3813	-0.1321	0.066*	0.18
C63	0.505 (3)	0.3777 (17)	0.0089 (19)	0.061 (5)	0.18
H63A	0.5076	0.3023	-0.0104	0.073*	0.18
H63B	0.5062	0.4006	0.0779	0.073*	0.18
C64	0.617 (3)	0.438 (2)	0.003 (3)	0.072 (8)	0.18
H64A	0.6942	0.4223	0.0473	0.087*	0.18
H64B	0.6150	0.4160	-0.0661	0.087*	0.18
C65	0.611 (2)	0.555 (2)	0.038 (3)	0.058 (9)	0.18
H65A	0.6132	0.5762	0.1071	0.070*	0.18
H65B	0.6811	0.5952	0.0359	0.070*	0.18

A 1. 1	(82)
Atomic displacement parameters	(A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.0360 (3)	0.0331 (3)	0.0323 (3)	0.0080 (2)	0.0090 (2)	0.0139 (2)
V2	0.0313 (3)	0.0305 (3)	0.0285 (2)	0.0043 (2)	0.0100 (2)	0.0095 (2)
V3	0.0336 (3)	0.0355 (3)	0.0308 (3)	0.0096 (2)	0.0113 (2)	0.0085 (2)
V4	0.0404 (3)	0.0491 (3)	0.0362 (3)	0.0076 (2)	0.0195 (2)	0.0192 (2)
V5	0.0390 (3)	0.0440 (3)	0.0252 (2)	0.0100 (2)	0.0059 (2)	0.0120 (2)
01	0.0392 (11)	0.0362 (11)	0.0318 (10)	0.0157 (9)	0.0136 (9)	0.0136 (9)
O2	0.0321 (11)	0.0453 (12)	0.0323 (11)	0.0086 (9)	0.0066 (9)	0.0113 (9)
O3	0.0334 (11)	0.0506 (13)	0.0406 (12)	0.0092 (10)	0.0163 (9)	0.0183 (10)
O4	0.0382 (12)	0.0498 (13)	0.0379 (11)	0.0129 (10)	0.0202 (10)	0.0131 (10)
O5	0.0437 (12)	0.0438 (12)	0.0401 (12)	0.0048 (10)	0.0172 (10)	0.0206 (10)
O6	0.0491 (13)	0.0581 (14)	0.0289 (11)	0.0119 (11)	0.0156 (10)	0.0171 (10)
07	0.0400 (12)	0.0407 (12)	0.0281 (10)	0.0099 (9)	0.0086 (9)	0.0057 (9)
08	0.0384 (12)	0.0450 (12)	0.0325 (11)	0.0125 (9)	0.0073 (9)	0.0180 (9)
09	0.0534 (15)	0.0671 (16)	0.0293 (11)	0.0154 (12)	0.0007 (10)	0.0125 (11)
O10	0.0555 (15)	0.0805 (18)	0.0568 (15)	0.0059 (13)	0.0327 (13)	0.0307 (14)
011	0.0520 (14)	0.0419 (13)	0.0459 (13)	0.0170 (11)	0.0162 (11)	0.0085 (10)
012	0.0586 (15)	0.0373 (12)	0.0521 (14)	0.0147 (11)	0.0158 (12)	0.0196 (11)
O13	0.0334 (11)	0.0424 (11)	0.0284 (10)	0.0150 (9)	0.0135 (9)	0.0157 (9)
O14	0.0408 (12)	0.0439 (12)	0.0348 (11)	0.0174 (10)	0.0160 (9)	0.0180 (9)
NO1	0.134 (4)	0.092 (3)	0.064 (3)	0.068 (3)	0.041 (3)	0.030 (3)
ON1	0.117 (3)	0.198 (5)	0.060 (2)	0.044 (3)	0.014 (2)	0.033 (3)
ON2	0.116 (3)	0.110 (3)	0.095 (3)	0.043 (2)	0.049 (3)	0.035 (2)
ON3	0.186 (5)	0.098 (3)	0.058 (2)	-0.006 (3)	0.024 (3)	0.022 (2)
NO2A	0.110 (12)	0.045 (6)	0.053 (6)	0.020 (7)	0.033 (8)	0.019 (4)
ON4A	0.142 (7)	0.053 (4)	0.055 (4)	0.003 (4)	0.048 (4)	0.013 (3)
ON5A	0.111 (8)	0.157 (15)	0.083 (7)	-0.008 (7)	0.033 (6)	0.039 (8)
ON6A	0.178 (10)	0.057 (4)	0.051 (4)	0.002 (5)	0.045 (5)	0.017 (3)
NO2B	0.088 (7)	0.056 (7)	0.063 (6)	0.012 (5)	0.031 (5)	0.017 (4)
ON4B	0.111 (6)	0.091 (6)	0.073 (5)	0.003 (5)	0.051 (4)	0.023 (4)
ON5B	0.093 (10)	0.119 (13)	0.104 (10)	0.026 (9)	0.025 (8)	0.024 (8)
ON6B	0.116 (7)	0.116 (7)	0.060 (5)	-0.001 (6)	0.030 (4)	0.035 (5)
NC1	0.0494 (17)	0.0560 (18)	0.0535 (17)	0.0200 (14)	0.0160 (14)	0.0325 (15)
C11	0.057 (2)	0.055 (2)	0.066 (3)	0.0146 (18)	0.015 (2)	0.0149 (19)
C12	0.073 (3)	0.093 (3)	0.076 (3)	0.024 (3)	0.039 (3)	0.021 (3)
C13	0.057 (3)	0.110 (4)	0.133 (5)	0.014 (3)	0.049 (3)	0.037 (4)
C14	0.055 (3)	0.075 (3)	0.121 (4)	-0.004 (2)	0.022 (3)	0.019 (3)
C15	0.065 (3)	0.066 (3)	0.060 (3)	0.017 (2)	0.000 (2)	0.011 (2)
NC2	0.0444 (16)	0.0531 (17)	0.0442 (16)	0.0118 (13)	0.0191 (13)	0.0071 (13)
C21	0.051 (2)	0.047 (2)	0.073 (3)	0.0094 (17)	0.020 (2)	0.0117 (19)
C22	0.056 (2)	0.070 (3)	0.074 (3)	0.015 (2)	0.011 (2)	0.035 (2)
C23	0.045 (2)	0.065 (3)	0.082 (3)	0.0108 (19)	0.005 (2)	0.019 (2)
C24	0.043 (2)	0.053 (2)	0.085 (3)	0.0018 (17)	0.010 (2)	0.011 (2)
C25	0.063 (3)	0.066 (3)	0.084 (3)	0.013 (2)	0.041 (2)	0.026 (2)
NC3	0.0533 (19)	0.0462 (17)	0.0531 (18)	-0.0058 (14)	0.0070 (15)	-0.0004 (14)

C31	0.073 (3)	0.052 (2)	0.078 (3)	0.009 (2)	0.035 (2)	0.001 (2)
C32	0.080 (3)	0.066 (3)	0.093 (3)	0.027 (2)	0.037 (3)	0.036 (3)
C33	0.112 (4)	0.071 (3)	0.103 (4)	0.017 (3)	0.051 (3)	0.047 (3)
C34	0.105 (4)	0.086 (3)	0.083 (3)	0.023 (3)	0.056 (3)	0.030 (3)
C35	0.066 (3)	0.076 (3)	0.105 (4)	0.012 (2)	0.047 (3)	0.018 (3)
NC4	0.067 (2)	0.054 (2)	0.111 (3)	-0.0089 (18)	0.025 (2)	0.027 (2)
C41	0.063 (3)	0.074 (4)	0.149 (6)	-0.007 (3)	-0.009 (4)	0.028 (4)
C42	0.119 (5)	0.084 (4)	0.097 (4)	0.003 (4)	-0.013 (4)	0.032 (3)
C43	0.145 (6)	0.105 (5)	0.066 (3)	0.008 (4)	0.012 (4)	0.002 (3)
C44	0.095 (4)	0.091 (4)	0.088 (4)	0.022 (3)	0.020 (3)	0.012 (3)
C45	0.087 (4)	0.060 (3)	0.093 (4)	0.006 (3)	0.004 (3)	0.018 (3)
NC5	0.090 (8)	0.066 (8)	0.049 (7)	0.001 (6)	0.019 (6)	0.002 (8)
C51	0.069 (8)	0.056 (10)	0.072 (11)	0.005 (7)	0.024 (7)	0.002 (9)
C52	0.060 (7)	0.056 (9)	0.038 (11)	-0.016 (8)	0.014 (8)	0.009 (10)
C53	0.071 (7)	0.045 (7)	0.039 (6)	0.010 (5)	0.019 (5)	0.020 (6)
C54	0.051 (7)	0.083 (12)	0.048 (10)	0.000 (8)	0.015 (7)	0.017 (12)
C55	0.083 (8)	0.069 (9)	0.041 (9)	-0.022 (8)	0.020 (7)	0.010 (8)
NC6	0.084 (11)	0.044 (9)	0.061 (11)	0.015 (9)	0.037 (9)	0.012 (9)
C61	0.057 (10)	0.040 (13)	0.055 (16)	-0.019 (10)	-0.010 (12)	-0.015 (14)
C62	0.083 (11)	0.046 (12)	0.037 (13)	-0.008 (11)	0.033 (9)	0.003 (12)
C63	0.100 (14)	0.047 (11)	0.038 (11)	0.012 (10)	0.042 (9)	-0.005 (10)
C64	0.075 (11)	0.058 (14)	0.068 (17)	0.006 (12)	0.009 (12)	0.018 (13)
C65	0.061 (10)	0.059 (12)	0.041 (17)	-0.007 (12)	0.022 (12)	-0.006 (16)

Geometric parameters (Å, °)

V1—012	1.608 (2)	C23—C24	1.528 (6)
V1	1.795 (2)	С23—Н23А	0.9700
V1—O5 ⁱ	1.849 (2)	С23—Н23В	0.9700
V1—O1	1.978 (2)	C24—C25	1.502 (6)
V1—014	2.067 (2)	C24—H24A	0.9700
V1—O13	2.277 (2)	C24—H24B	0.9700
V1—V3	3.1180 (8)	C25—H25A	0.9700
V2—O2	1.687 (2)	С25—Н25В	0.9700
V2—O3	1.692 (2)	NC3—C35	1.472 (5)
V2—O1	1.914 (2)	NC3—C31	1.482 (5)
V2—014 ⁱ	2.003 (2)	NC3—HC3A	0.9000
V2—O13	2.081 (2)	NC3—HC3B	0.9000
V2—013 ⁱ	2.1346 (19)	C31—C32	1.493 (6)
V2—V5 ⁱ	3.0747 (8)	C31—H31A	0.9700
V2—V4	3.0887 (8)	С31—Н31В	0.9700
V3—011	1.606 (2)	C32—C33	1.515 (6)
V3—O4	1.793 (2)	С32—Н32А	0.9700
V3—O7	1.861 (2)	С32—Н32В	0.9700
V3—O1	1.981 (2)	C33—C34	1.519 (6)
V3—O14	2.059 (2)	С33—Н33А	0.9700
V3—013 ⁱ	2.2672 (19)	С33—Н33В	0.9700
V3—V5	3.1193 (8)	C34—C35	1.506 (7)

V4—O10	1.602 (2)	C34—H34A	0.9700
V4—O6	1.845 (2)	C34—H34B	0.9700
V4—O5	1.850 (2)	С35—Н35А	0.9700
V4—O4	1.929 (2)	С35—Н35В	0.9700
V4—O3	2.014 (2)	NC4—C45	1.468 (6)
V4—013 ⁱ	2.345 (2)	NC4—C41	1.502 (7)
V4—V5	3.0906 (9)	NC4—HC4A	0.9000
V5—O9	1.606 (2)	NC4—HC4B	0.9000
V5—O6	1.830 (2)	C41—C42	1.469 (8)
V5—O7	1.846 (2)	C41—H41A	0.9700
V5—O8	1.922 (2)	C41—H41B	0.9700
V5—02 ⁱ	2.059 (2)	C42—C43	1.521 (8)
V5—013 ⁱ	2.3366 (19)	C42—H42A	0.9700
V5—V2 ⁱ	3.0747 (8)	C42—H42B	0.9700
O2—V5 ⁱ	2.059 (2)	C43—C44	1.542 (7)
O5—V1 ⁱ	1.849 (2)	C43—H43A	0.9700
O8—V1 ⁱ	1.795 (2)	C43—H43B	0.9700
013—V2 ⁱ	2.1346 (19)	C44—C45	1.482 (7)
O13—V3 ⁱ	2.2672 (19)	C44—H44A	0.9700
013—V5 ⁱ	2.3366 (19)	C44—H44B	0.9700
013—V4 ⁱ	2.345 (2)	C45—H45A	0.9700
O14—V2 ⁱ	2.003 (2)	C45—H45B	0.9700
NO1—ON1	1.224 (5)	NC5—C51	1.475 (12)
NO1—ON2	1.229 (6)	NC5—C55	1.477 (11)
NO1—ON3	1.244 (6)	NC5—HC5A	0.9000
NO2A—ON6A	1.224 (8)	NC5—HC5B	0.9000
NO2A—ON5A	1.233 (8)	C51—C52	1.524 (14)
NO2A—ON4A	1.243 (8)	C51—H51A	0.9700
NO2B—ON6B	1.227 (8)	C51—H51B	0.9700
NO2B—ON4B	1.232 (8)	C52—C53	1.503 (12)
NO2B—ON5B	1.241 (8)	C52—H52A	0.9700
NC1-C11	1.484 (4)	С52—Н52В	0.9700
NC1—C15	1.486 (5)	C53—C54	1.515 (12)
NC1—HC1A	0.9000	С53—Н53А	0.9700
NC1—HC1B	0.9000	С53—Н53В	0.9700
C11—C12	1.504 (6)	C54—C55	1.503 (15)
C11—H11A	0.9700	C54—H54A	0.9700
C11—H11B	0.9700	C54—H54B	0.9700
C12—C13	1.524 (6)	C55—H55A	0.9700
C12—H12A	0.9700	С55—Н55В	0.9700
C12—H12B	0.9700	NC6—C61	1.474 (17)
C13—C14	1.521 (6)	NC6—C65	1.482 (16)
C13—H13A	0.9700	NC6—HC6A	0.9000
C13—H13B	0.9700	NC6—HC6B	0.9000
C14—C15	1.499 (6)	C61—C62	1.516 (17)
C14—H14A	0.9700	С61—Н61А	0.9700

C14—H14B	0.9700	С61—Н61В	0.9700
C15—H15A	0.9700	C62—C63	1.508 (17)
C15—H15B	0.9700	С62—Н62А	0.9700
NC2—C25	1.485 (5)	С62—Н62В	0.9700
NC2-C21	1.491 (5)	C63—C64	1.535 (17)
NC2—HC2A	0.9000	С63—Н63А	0.9700
NC2—HC2B	0.9000	С63—Н63В	0.9700
C21—C22	1.506 (6)	C64—C65	1.514 (17)
C21—H21A	0.9700	С64—Н64А	0.9700
C21—H21B	0.9700	C64—H64B	0.9700
C22—C23	1.525 (6)	С65—Н65А	0.9700
C22—H22A	0.9700	С65—Н65В	0.9700
С22—Н22В	0.9700		
O12—V1—O8 ⁱ	104.18 (11)	С14—С13—Н13А	109.7
O12—V1—O5 ⁱ	101.89 (11)	C12—C13—H13A	109.7
08 ⁱ —V1—O5 ⁱ	95.28 (10)	C14—C13—H13B	109.7
O12—V1—O1	100.96 (11)	C12—C13—H13B	109.7
08 ⁱ —V1—O1	92.68 (9)	H13A—C13—H13B	108.2
O5 ⁱ —V1—O1	153.11 (9)	C15—C14—C13	112.1 (4)
O12—V1—O14	99.69 (10)	C15—C14—H14A	109.2
08 ⁱ —V1—O14	155.02 (9)	C13—C14—H14A	109.2
O5 ⁱ —V1—O14	86.82 (9)	C15—C14—H14B	109.2
O1—V1—O14	75.51 (8)	C13—C14—H14B	109.2
O12—V1—O13	174.38 (10)	H14A—C14—H14B	107.9
08 ⁱ —V1—O13	80.74 (8)	NC1-C15-C14	109.4 (4)
O5 ⁱ —V1—O13	80.13 (8)	NC1-C15-H15A	109.8
O1—V1—O13	75.87 (7)	C14—C15—H15A	109.8
O14—V1—O13	75.10 (7)	NC1-C15-H15B	109.8
O12—V1—V3	90.74 (9)	C14—C15—H15B	109.8
08 ⁱ —V1—V3	130.72 (7)	H15A—C15—H15B	108.3
O5 ⁱ —V1—V3	127.63 (7)	C25—NC2—C21	112.5 (3)
O1—V1—V3	38.07 (6)	C25—NC2—HC2A	109.1
O14—V1—V3	40.83 (6)	C21—NC2—HC2A	109.1
O13—V1—V3	83.92 (5)	C25—NC2—HC2B	109.1
O2—V2—O3	107.57 (11)	C21—NC2—HC2B	109.1
O2—V2—O1	99.52 (9)	HC2A—NC2—HC2B	107.8
O3—V2—O1	97.77 (10)	NC2—C21—C22	109.9 (3)
O2—V2—O14 ⁱ	95.78 (9)	NC2—C21—H21A	109.7
O3—V2—O14 ⁱ	94.86 (10)	C22—C21—H21A	109.7
01—V2—014 ⁱ	156.18 (9)	NC2—C21—H21B	109.7
O2—V2—O13	88.43 (9)	C22—C21—H21B	109.7
O3—V2—O13	163.72 (9)	H21A—C21—H21B	108.2
01—V2—013	82.11 (8)	C21—C22—C23	111.9 (4)
O14 ⁱ —V2—O13	80.16 (8)	C21—C22—H22A	109.2
O2—V2—O13 ⁱ	165.82 (9)	C23—C22—H22A	109.2

O3—V2—O13 ⁱ	86.29 (9)	C21—C22—H22B	109.2
01—V2—013 ⁱ	81.06 (8)	C23—C22—H22B	109.2
O14 ⁱ —V2—O13 ⁱ	79.69 (8)	H22A—C22—H22B	107.9
013—V2—013 ⁱ	77.59 (8)	C22—C23—C24	109.4 (3)
$02-V2-V5^{i}$	39.01 (7)	С22—С23—Н23А	109.8
O3—V2—V5 ⁱ	146.50 (8)	C24—C23—H23A	109.8
$01 - V2 - V5^{i}$	92.17 (6)	C22—C23—H23B	109.8
014^{i} V2 V5 ⁱ	88.30 (6)	C24—C23—H23B	109.8
$013 V2 V5^{i}$	49.42 (5)	H23A—C23—H23B	108.2
$013 - \sqrt{2} - \sqrt{5}$	126.97 (6)	$C_{25}^{25} - C_{24}^{23} - C_{23}^{23}$	111.8 (3)
$013 = \sqrt{2} = \sqrt{3}$	120.97(0) 144.46(8)	C25-C24-H24A	100.3
02—V2—V4	36.99 (7)	C_{23} C_{24} H_{24A}	109.3
03 - V2 - V4	90.73 (6)	$C_{23} = C_{24} = H_{24} R$	109.3
$O14^{i}$ V2 V4	90.79 (6) 87 29 (6)	C23 C24 H24B	109.3
$014 - v_2 - v_4$	87.29 (0) 126.92 (5)		107.0
	120.83 (3)	$\frac{1}{124} \frac{1}{124} \frac{1}$	107.9
013 [•] —V2—V4	49.30 (3)	NC2-C25-C24	109.4 (3)
V5 ¹ —V2—V4	1/4./6(2)	NC2—C25—H25A	109.8
011—V3—04	103.86 (11)	C24—C25—H25A	109.8
011—V3—07	101.51 (11)	NC2—C25—H25B	109.8
04—V3—07	95.26 (10)	C24—C25—H25B	109.8
011—V3—01	100.88 (10)	H25A—C25—H25B	108.2
O4—V3—O1	92.61 (9)	C35—NC3—C31	114.1 (4)
07—V3—01	153.70 (9)	C35—NC3—HC3A	108.7
O11—V3—O14	99.32 (11)	C31—NC3—HC3A	108.7
O4—V3—O14	155.65 (9)	C35—NC3—HC3B	108.7
O7—V3—O14	87.27 (9)	C31—NC3—HC3B	108.7
O1—V3—O14	75.62 (8)	HC3A—NC3—HC3B	107.6
011—V3—013 ⁱ	173.84 (10)	NC3—C31—C32	110.0 (3)
O4—V3—O13 ⁱ	81.88 (8)	NC3—C31—H31A	109.7
07—V3—013 ⁱ	79.94 (8)	C32—C31—H31A	109.7
O1—V3—O13 ⁱ	76.38 (7)	NC3—C31—H31B	109.7
014—V3—013 ⁱ	74.71 (8)	C32—C31—H31B	109.7
O11—V3—V1	90.45 (9)	H31A—C31—H31B	108.2
O4—V3—V1	130.59 (7)	C31—C32—C33	111.6 (4)
O7—V3—V1	128.29 (7)	C31—C32—H32A	109.3
01—V3—V1	37.99 (6)	C33—C32—H32A	109.3
O14—V3—V1	41.02 (6)	C31—C32—H32B	109.3
013 ⁱ —V3—V1	84.03 (5)	C33—C32—H32B	109.3
011—V3—V5	133.84 (8)	H32A—C32—H32B	108.0
04—V3—V5	83.23 (7)	C32—C33—C34	111.2 (4)
07—V3—V5	32.56 (6)	С32—С33—Н33А	109.4
01—V3—V5	124.61 (6)	C34—C33—H33A	109.4
O14—V3—V5	86.12 (6)	C32—C33—H33B	109.4
013 ⁱ —V3—V5	48.29 (5)	C34—C33—H33B	109.4
V1_V3_V5	119.61 (2)	H33A_C33_H33B	108.0
• • • • • • • • •	119.01 (2)	115511 C55 1155D	100.0

O10—V4—O6	103.65 (12)	C35—C34—C33	112.0 (4)
O10—V4—O5	103.03 (12)	C35—C34—H34A	109.2
O6—V4—O5	92.59 (10)	C33—C34—H34A	109.2
O10—V4—O4	100.98 (12)	C35—C34—H34B	109.2
O6—V4—O4	88.62 (10)	С33—С34—Н34В	109.2
O5—V4—O4	154.94 (9)	H34A—C34—H34B	107.9
O10—V4—O3	101.07 (11)	NC3—C35—C34	109.5 (4)
O6—V4—O3	154.99 (9)	NC3—C35—H35A	109.8
O5—V4—O3	85.48 (9)	С34—С35—Н35А	109.8
O4—V4—O3	82.99 (9)	NC3—C35—H35B	109.8
O10—V4—O13 ⁱ	174.85 (11)	С34—С35—Н35В	109.8
O6—V4—O13 ⁱ	81.17 (8)	H35A—C35—H35B	108.2
O5—V4—O13 ⁱ	78.32 (8)	C45—NC4—C41	112.1 (4)
O4—V4—O13 ⁱ	77.15 (8)	C45—NC4—HC4A	109.2
O3—V4—O13 ⁱ	74.01 (8)	C41—NC4—HC4A	109.2
O10—V4—V2	131.42 (10)	C45—NC4—HC4B	109.2
O6—V4—V2	124.76 (7)	C41—NC4—HC4B	109.2
O5—V4—V2	80.44 (7)	HC4A—NC4—HC4B	107.9
O4—V4—V2	78.37 (6)	C42—C41—NC4	110.5 (4)
O3—V4—V2	30.36 (6)	C42—C41—H41A	109.5
013 ⁱ —V4—V2	43.65 (5)	NC4—C41—H41A	109.5
O10—V4—V5	136.23 (10)	C42—C41—H41B	109.5
O6—V4—V5	32.60 (7)	NC4—C41—H41B	109.5
O5—V4—V5	85.55 (7)	H41A—C41—H41B	108.1
O4—V4—V5	82.07 (7)	C41—C42—C43	112.1 (5)
O3—V4—V5	122.51 (6)	C41—C42—H42A	109.2
O13 ⁱ —V4—V5	48.57 (5)	C43—C42—H42A	109.2
V2—V4—V5	92.184 (19)	C41—C42—H42B	109.2
O9—V5—O6	103.89 (12)	C43—C42—H42B	109.2
O9—V5—O7	102.81 (11)	H42A—C42—H42B	107.9
O6—V5—O7	93.08 (10)	C42—C43—C44	109.9 (5)
O9—V5—O8	101.31 (11)	C42—C43—H43A	109.7
O6—V5—O8	89.64 (10)	C44—C43—H43A	109.7
O7—V5—O8	154.30 (9)	C42—C43—H43B	109.7
O9—V5—O2 ⁱ	100.73 (11)	C44—C43—H43B	109.7
O6—V5—O2 ⁱ	155.14 (9)	H43A—C43—H43B	108.2
07—V5—O2 ⁱ	84.73 (9)	C45—C44—C43	111.4 (5)
08—V5—O2 ⁱ	82.19 (9)	C45—C44—H44A	109.3
09—V5—013 ⁱ	174.15 (11)	C43—C44—H44A	109.3
O6—V5—O13 ⁱ	81.70 (8)	C45—C44—H44B	109.3
O7—V5—O13 ⁱ	78.39 (8)	C43—C44—H44B	109.3
08—V5—013 ⁱ	76.73 (8)	H44A—C44—H44B	108.0
O2 ⁱ —V5—O13 ⁱ	73.60 (7)	NC4—C45—C44	111.7 (4)
09—V5—V2 ⁱ	131.76 (10)	NC4—C45—H45A	109.3
06—V5—V2 ⁱ	124.20 (7)	C44—C45—H45A	109.3

07—V5—V2 ⁱ	80.10 (6)	NC4—C45—H45B	109.3
08—V5—V2 ⁱ	77.28 (6)	C44—C45—H45B	109.3
O2 ⁱ —V5—V2 ⁱ	31.04 (6)	H45A—C45—H45B	108.0
$O13^{i}$ V5 V2 ⁱ	42.56 (5)	C51—NC5—C55	112.7 (11)
O9—V5—V4	136.76 (10)	C51—NC5—HC5A	109.0
O6—V5—V4	32.90 (7)	C55—NC5—HC5A	109.0
O7—V5—V4	86.10 (7)	C51—NC5—HC5B	109.0
O8—V5—V4	82.40 (7)	C55—NC5—HC5B	109.0
02 ⁱ —V5—V4	122.33 (6)	HC5A—NC5—HC5B	107.8
013 ⁱ —V5—V4	48.80 (5)	NC5-C51-C52	109.3 (11)
V2 ⁱ V5V4	91.317 (19)	NC5-C51-H51A	109.8
O9—V5—V3	135.45 (9)	C52—C51—H51A	109.8
O6—V5—V3	81.46 (7)	NC5-C51-H51B	109.8
O7—V5—V3	32.87 (6)	С52—С51—Н51В	109.8
O8—V5—V3	123.11 (6)	H51A—C51—H51B	108.3
O2 ⁱ —V5—V3	83.46 (6)	C53—C52—C51	105.9 (10)
O13 ⁱ —V5—V3	46.42 (5)	С53—С52—Н52А	110.6
V2 ⁱ —V5—V3	63.252 (17)	C51—C52—H52A	110.6
V4—V5—V3	60.646 (19)	С53—С52—Н52В	110.6
V2—O1—V1	106.75 (9)	С51—С52—Н52В	110.6
V2—O1—V3	107.80 (9)	H52A—C52—H52B	108.7
V1—O1—V3	103.94 (10)	C52—C53—C54	113.5 (11)
V2—O2—V5 ⁱ	109.95 (11)	С52—С53—Н53А	108.9
V2—O3—V4	112.65 (11)	С54—С53—Н53А	108.9
V3—O4—V4	114.73 (10)	С52—С53—Н53В	108.9
V1 ⁱ —O5—V4	115.14 (11)	С54—С53—Н53В	108.9
V5—O6—V4	114.50 (11)	H53A—C53—H53B	107.7
V5—O7—V3	114.57 (11)	C55—C54—C53	107.3 (10)
V1 ⁱ —O8—V5	115.62 (10)	C55—C54—H54A	110.3
V2—O13—V2 ⁱ	102.41 (8)	C53—C54—H54A	110.3
V2—O13—V3 ⁱ	96.58 (8)	C55—C54—H54B	110.3
V2 ⁱ —O13—V3 ⁱ	91.23 (7)	C53—C54—H54B	110.3
V2—O13—V1	91.44 (7)	H54A—C54—H54B	108.5
V2 ⁱ —O13—V1	95.85 (8)	NC5-C55-C54	108.9 (11)
V3 ⁱ —O13—V1	167.94 (9)	NC5—C55—H55A	109.9
V2—O13—V5 ⁱ	88.02 (7)	C54—C55—H55A	109.9
V2 ⁱ —O13—V5 ⁱ	169.33 (10)	NC5—C55—H55B	109.9
V3 ⁱ —O13—V5 ⁱ	85.29 (7)	С54—С55—Н55В	109.9
V1—013—V5 ⁱ	86.00 (6)	H55A—C55—H55B	108.3
V2—O13—V4 ⁱ	170.19 (9)	C61—NC6—C65	112.0 (19)
V2 ⁱ —O13—V4 ⁱ	87.06 (7)	C61—NC6—HC6A	109.2
V3 ⁱ —O13—V4 ⁱ	85.64 (6)	C65—NC6—HC6A	109.2
V1—O13—V4 ⁱ	84.98 (7)	C61—NC6—HC6B	109.2

V5 ⁱ —O13—V4 ⁱ	82.63 (6)	C65—NC6—HC6B	109.2
V2 ⁱ —O14—V3	106.17 (9)	HC6A—NC6—HC6B	107.9
V2 ⁱ —O14—V1	107.18 (9)	NC6-C61-C62	107.0 (18)
V3—O14—V1	98.15 (9)	NC6—C61—H61A	110.3
ON1—NO1—ON2	122.1 (7)	C62—C61—H61A	110.3
ON1—NO1—ON3	119.3 (6)	NC6-C61-H61B	110.3
ON2—NO1—ON3	118.7 (5)	С62—С61—Н61В	110.3
ON6A—NO2A—ON5A	120.8 (8)	H61A—C61—H61B	108.6
ON6A—NO2A—ON4A	119.7 (7)	C63—C62—C61	109.3 (18)
ON5A—NO2A—ON4A	119.5 (7)	C63—C62—H62A	109.8
ON6B—NO2B—ON4B	120.1 (7)	C61—C62—H62A	109.8
ON6B—NO2B—ON5B	119.9 (8)	С63—С62—Н62В	109.8
ON4B—NO2B—ON5B	120.0 (8)	С61—С62—Н62В	109.8
C11—NC1—C15	113.1 (3)	H62A—C62—H62B	108.3
C11—NC1—HC1A	109.0	C62—C63—C64	107.7 (17)
C15—NC1—HC1A	109.0	С62—С63—Н63А	110.2
C11—NC1—HC1B	109.0	С64—С63—Н63А	110.2
C15—NC1—HC1B	109.0	С62—С63—Н63В	110.2
HC1A—NC1—HC1B	107.8	С64—С63—Н63В	110.2
NC1-C11-C12	110.0 (3)	H63A—C63—H63B	108.5
NC1-C11-H11A	109.7	C65—C64—C63	107.7 (18)
C12-C11-H11A	109.7	С65—С64—Н64А	110.2
NC1-C11-H11B	109.7	С63—С64—Н64А	110.2
C12-C11-H11B	109.7	С65—С64—Н64В	110.2
H11A—C11—H11B	108.2	C63—C64—H64B	110.2
C11—C12—C13	110.9 (4)	H64A—C64—H64B	108.5
C11—C12—H12A	109.5	NC6-C65-C64	108.5 (18)
C13—C12—H12A	109.5	NC6—C65—H65A	110.0
C11—C12—H12B	109.5	С64—С65—Н65А	110.0
C13—C12—H12B	109.5	NC6—C65—H65B	110.0
H12A—C12—H12B	108.0	С64—С65—Н65В	110.0
C14—C13—C12	109.9 (4)	H65A—C65—H65B	108.4
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
NC1—HC1A···O8	0.90	1.80	2.693 (3)	174
NC1—HC1B····ON6A ⁱⁱ	0.90	1.95	2.829 (8)	164
NC1—HC1B···ON6B	0.90	2.05	2.876 (9)	153
NC1—HC1B···ON5A ⁱⁱ	0.90	2.48	3.214 (12)	139
NC1—HC1B···ON5B	0.90	2.54	3.355 (13)	151
NC2—HC2A···ON4A	0.90	1.95	2.824 (7)	164
NC2—HC2A···ON4B ⁱⁱ	0.90	2.05	2.909 (8)	159
NC2—HC2A…ON5B ⁱⁱ	0.90	2.50	3.280 (13)	145
NC2—HC2A···ON5A	0.90	2.56	3.251 (12)	134
NC2—HC2B···O4	0.90	1.85	2.746 (3)	174

NC3—HC3A····O5 ⁱ	0.90	1.85	2.749 (4)	175	
NC3—HC3B···ON3	0.90	2.06	2.885 (5)	152	
NC3—HC3B···ON2	0.90	2.31	3.095 (5)	145	
NC4—HC4A···O7	0.90	1.82	2.716 (4)	172	
NC4—HC4B···ON3	0.90	2.16	2.954 (6)	147	
NC4—HC4B…ON1	0.90	2.26	3.060 (6)	148	
NC5—HC5A···O6	0.90	2.40	3.248 (17)	158	
NC6—HC6A····ON4B	0.90	2.12	2.92 (2)	147	
NC6—HC6B···O6 ⁱⁱ	0.90	1.92	2.80 (2)	166	
Symmetry codes: (ii) $-x+1$, $-y+1$, $-z$; (i) $-x+1$, $-y+1$, $-z+1$.					

