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Hepatocellular carcinoma (HCC), the major type of liver cancer, is among the most lethal cancers owing to its
aggressive nature and frequently late detection. Therefore, the possibility to identify early diagnostic markers
could be of significant benefit. Urine has especially become one of the most attractive body fluids in biomarker
discovery as it can be obtained non-invasively in large quantities and is stable as compared with other body
fluids. To identify potential protein biomarker for early diagnosis of HCC, we explored protein expression profiles
in urine from HCC patients and normal controls (n = 44) by shotgun proteomics using nano-liquid chromatog-
raphy coupled tandem mass spectrometry (nanoLC–MS/MS) and stable isotope dimethyl labeling. We have
systematically mapped 91 proteins with differential expressions (p b 0.05), which included 8 down-regulated
microtubule proteins and 83 up-regulated proteins involved in signal and inflammation response. Further
integrated proteogenomic approach composed of proteomic, genomic and transcriptomic analysis identified
that S100A9 and GRN were co-amplified (p b 0.001) and co-expressed (p b 0.01) in HCC tumors and urine
samples. In addition, the amplifications of S100A9 or GRN were found to be associated with poor survival in
HCC patients, and their co-amplification was also prognosed worse overall survival than individual ones. Our
results suggest that urinary S100A9 and GRN as potential combinatorial biomarkers can be applied to early
diagnosis of hepatocellular carcinoma and highlight the utility of onco-proteogenomics for identifying protein
markers that can be applied to disease-oriented translational medicine.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hepatocellular carcinoma (HCC), the most common type of liver
cancer, is the third leading cause of cancer related mortality worldwide
[1]. A major etiological factor for HCC is cirrhosis, frequently caused by
chronic infection with hepatitis B or C virus (HBV, HCV), nonalcoholic
fatty liver disease, and alcohol abuse [2]. Many patients detected with
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HCC were initially found to have chronic liver disease and cirrhosis,
leading to an increase in the replacement of normal tissue with fibrous
tissue leading to the development of HCC [3]. HCC encompasses
different pathological manifestations and etiology coupled with
multiple genomic aberrations leading to high heterogeneity and intrac-
table treatment. Although the introduction of the multikinase inhibitor
sorafenib represents the biggest therapeutic advancement in the past
decade, extending life expectancy from 8 to 11 months [4], its limited
therapeutic efficacy emphasizes an urgent need for improved targeted
therapies, such as CDK9 [5] or MET [6] inhibition. Moreover, these
hurdles in developing therapies against HCC highlight the importance
of the early detection and biomarker development for non-invasive
diagnosis and prognosis.

An abdominal ultrasonography and measurement of serum alpha-
fetoprotein (AFP) are two of major tools to detect HCC at an early
stage [7]. However, the need of an operator's expertise generally
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required on the ultrasonographic evaluation coupled with poor
sensitivity as well as specificity of AFP has limited their prognostic use
[7]. Recent developments in proteomic technologies have enabled the
reliable and high-throughput identification of protein mixtures in bio-
logical tissues, building a solid foundation on which to understand the
complex proteome profiles from various sample sources such as tissues,
cells, plasma and urine [8,9]. Furthermore, the qualitative and quantita-
tive studies of proteins by means of fast-evolving and state-of-the-art
proteomic methodologies, such as shotgun proteomics, have provided
comprehensive global analysis of protein expression profiles for various
types of cancers, including HCC [10–12]. Although onco-proteomics has
been extensively applied to biomarker discovery, there is still a limita-
tion to identify tumor-specific peptides due to the complexities of
tumor genomes and transcriptomes such as copy-number aberrations,
point mutations, unusual splicing variants and gene fusions [13].

Recent exhaustive genomic studies have identified novel genomic
amplifications, mutations, and deletions as frequent events in HCC [14,
15]. For example, a novel HCC-promoting gene, FGF19, was previously
found to be amplified in HCC cells harboring the 11q13.3 amplicon
[16]. Sawey et al. further showed that 11q13.3 amplification could be
an effective biomarker for patients most likely to respond to anti-
Fig. 1.Using an onco-proteogenomic approach to identify potential urinary biomarkers for HCC
lected and analyzed by quantitative proteomics together with urine from normal controls (
transcriptomic approaches. (B) Experimental scheme of the procedures used for quantitative p
yl-labeled and combined prior to desalting and fractionation. The quantitative shotgun analysis
carried out by using HILIC-C18 peptide separation and nanoLC–MS/MS coupled with stable iso
FGF19 therapy [16]. In addition, advances in gene-expression profiling
technologies have enabled the molecular classification of HCCs into
defined subclasses, forming a firm basis on which to build more infor-
mative clinical trials [17]. To link cancer proteomics to genomics and
transcriptomics, onco-proteogenomics as a new research tool and
strategy to integrate these different approaches and revolve around
detecting various tumor-specific changes in the proteome, leading to
the in-depth understanding of tumor initiation, progression and
responses to treatment [13,18]. In addition, by incorporatingMS-gener-
ated data with genomic information can provide a more complete out-
look on how cellular networks and canonical signaling pathways are
dysregulated in various types of cancers. Several previous studies have
applied multiple proteogenomic strategies to characterize cell lines
and primary tumors from colorectal cancer, gastric cancer, etc. [19–21].

In the present study, we aim to identify effective and noninvasive
diagnostic biomarkers for early detection of HCC. To attain this goal,
we have characterized and compared the urinary proteins between
diseased and control groups in order to identify potential biomarker
candidates by means of gel-free shotgun proteomic analysis coupled
with stable isotope dimethyl labeling [8,12,22] and nanoLC–MS/MS
[22–24]. Using an integrated proteogenomics, we have investigated
. (A) Urine samples from patients whowere diagnosed as cases of HCC incidence were col-
n = 44). Identified candidates were further investigated and selected using genomic/
roteomics. Upon enzymatic digestion, peptides were differentially stable isotope dimeth-
of proteome changes from clinical urine samples of HCC patients and normal controls was
tope dimethyl labeling.
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and selected potential candidates based on their changes on genomic
and transcriptomic levels. Gene amplification, mRNA expression and
urinary protein levels of both S100A9 and GRN are found to be
significantly higher in HCC patients than normal controls. HCC patients
with amplification of these two identified genes or their combination
also showed poor survival. Our studies establish urinary S100A9 and
GRN as potential combinatorial biomarkers for early diagnosis of hepa-
tocellular carcinoma and highlight the utility of onco-proteogenomics
for identifying protein biomarkers that can be applied to disease-
oriented translational medicine.
Fig. 2. Hierarchical clustering (HCL) of the proteins differentially expressed (p-value b 0.05) in
culated byWilcoxon signed-rank testwith paired setting. Heatmapwas donebyR package “phe
H) of peptides identified in urine from HCC patients (deuterium labeling) and normal controls
2. Materials and methods

2.1. Sample collection

All the procedures used in this study were approved by the ethical
committee of clinical research at the Kaohsiung Medical University
Hospital. We collected urine from 44 patients who were diagnosed as
cases of HCC incidence and never underwent cholecystectomy as the dis-
ease group. We also got signed agreements from 44 patients diagnosed
with non-HCC incidence but underwent cholecystectomy for urine
the urine sample pairs from HCC patients and healthy controls (n= 44). p-Value was cal-
atmap”with default setting. The value shown in theheatmap is the quantification ratio (D/
(hydrogen labeling).
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collection as the normal control. 50mL urine for each individual was har-
vested, concentrated by centrifugation and assayed for determination of
total protein concentration using Coomassie protein assay reagent, and
subsequently was stored at−80 °C until being analyzed.
2.2. Dimethyl labeling and peptide preparation

Volumes of urine containing 100 μg of total proteins were adjusted
to 60 μL and treated with 0.7 μL of 1 DTT and 9.3 μL of 7.5% SDS at
95 °C for 5min before reduction. After the reaction, lysates were further
treated with 8 μL of 50 mM IAM at room temperature for alkylation in
the dark for 30min; subsequently proteins were precipitated by adding
52 μL of 50% TCA and incubated on ice for 15 min. After removing the
supernatant by centrifugation at 13,000 ×g for 5 min, the collected
proteinswerewashedwith 150 μL of 10% TCA, vortexed and centrifuged
at 13,000 ×g for 10 min. The precipitated proteins were washed again
with 250 μL distilled H2O, vortexed and centrifuged thrice under the
same condition. The resultant pellets were resuspended with 50 mM
NH4HCO3 (pH 8.5), then digested with 4 μg of trypsin for 8 h at 37 °C
and further dried in a vacuum centrifuge to remove NH4HCO3. The
lyophilized peptides from HCC and normal urine re-dissolved in
180 μL of 100 mM sodium acetate at pH 5.5 were treated with 20 μL of
4% formaldehyde-H2 and 20 μL 4% formaldehyde-D2, respectively
[22–24] and mixed thoroughly. The mixtures were vortexed for 5 min,
immediately followed by the addition of 10 μL of 0.6 M sodium
cyanoborohydride and vortexed for 1 h at room temperature. The resul-
tant liquids were acidified by 10% TFA/H2O to pH 2.0–3.0 and applied
onto the in-house reverse-phase C18 column pre-equilibrated with
200 μL of 0.1% TFA/H2O (pH 2.0–3.0) for desalting. The column was also
washed with 200 μL of 0.1% TFA/H2O (pH 3.0) and then eluted with a
stepwise ACN gradient from 50% to 100% in 0.1% TFA at room
Fig. 3. Identification of top up-regulated proteins in urine samples from HCC patients (n = 44)
among (A) 82 up-regulated (D/H N 1.5, p b 0.05) and (B) 7 down-regulated (D/H b 0.5, p b 0.05
regulated proteins showing at least 50% penetrance. The y-axis is the frequency of up-regulated
candidates from individual sample pairs.
temperature. Trichloroacetic acid (TCA), trifluoroacetic acid (TFA), dithio-
threitol (DTT), iodoacetamide (IAM), ethylenediaminetetraacetic acid
(EDTA), sodium deoxycholate, sodium fluoride (NaF), formaldehyde-H2,
formaldehyde-D2 and ammonium bicarbonate (NH4HCO3), and Triton
X-100 were purchased from Sigma Aldrich (St. Louis, MO). Acetonitrile
(ACN) and sodium phosphate were obtained from Merck (Darmstadt,
Germany). Formic acid (FA), sodium acetate, sodium cyanoborohydride
and sodium chloride (NaCl) were purchased from Riedel-de Haven
(Seelze, Germany). Protease inhibitors (Complete™ Mini) were
purchased from Roche (Mannheim, Germany). Sodium dodecyl sulfate
(SDS) and urea were purchased from Amresco (Solon, OH). Modified
sequencing-grade trypsin for in-gel digestion was purchased from
Promega (Madison, WI). Quantitative reagent for protein contents was
purchased from Bio-Rad (Hercules, CA). Water was deionized to 18 MΩ
by a Milli-Q system (Millipore, Bedford, MA).
2.3. Hydrophilic interaction chromatography (HILIC) for peptide separation

HILIC was performed on an L-7100 pump system with quaternary
gradient capability (Hitachi, Tokyo, Japan) using a TSK gel Amide-80
HILIC column (2.0 × 150 mm, 3 μm; Tosoh Biosciences, Tokyo, Japan)
[25–27] with a flow rate of 200 μL/min. Two buffers were used for
gradient elution: solvent (A), 0.1% TFA in water, and solvent (B), 0.1%
TFA in 100% ACN. The eluted fractions after being desalted from the
in-house reverse-phase C18 column were each dissolved in 25 μL of
solution containing 85% ACN and 0.1% TFA and then injected into the
20 μL sample loop. The gradient was processed as follows: 98% (B) for
5 min, 98–85% (B) for 5 min, 85–0% (B) for 40 min, 0% (B) for 5 min,
0–98% (B) for 2 min and 98% (B) for 3 min. A total of 10 fractions
were collected (1.2 mL for each fraction) and dried in a vacuum
centrifuge.
. (A, B) Gene ontology (GO) analysis was employed to classify major functional processes
) proteins. All identified GO term, p-value are shown in Table S2. (C) Identification of up-
proteins (D/H N 1.5) identified in urine samples fromHCC patients. (D) D/H values of top 6



Table 1
The top 6 up-regulated proteins in urine samples from HCC patients. The value shown in
the table is the quantification ratio (D/H) of peptides identified in urine fromHCC patients
(deuterium labeling) and normal controls (hydrogen labeling). The candidates were
identified in at least 20 HCC urine sample pairs and the ratio of D/H N 1.5 were over
58%. p-Value was calculated by Wilcoxon signed-rank test with paired setting.

Protein names Gene
names

Uniprot Mass
(kDa)

D/H
N1.5

Ratio
(%)

p-Value

Roundabout homolog 4 ROBO4 Q8WZ75 107.457 17/23 73.9 0.0004
Tyrosine-protein kinase
receptor UFO

AXL P30530 98.336 20/28 71.4 0.0002

Protein S100-A9
(calgranulin-B)

S100A9 P06702 13.242 18/27 66.7 0.0004

Trefoil factor 2 TFF2 Q03403 14.284 27/41 65.9 0.00005
Arylsulfatase A ARSA P15289 53.588 13/20 65 0.0001
Granulins GRN P28799 63.544 21/36 58.3 0.001
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2.4. NanoLC–MS/MS analysis

The lyophilized powders were reconstituted in 10 μL of 0.1% FA in
H2O and analyzed by LTQ Orbitrap XL (Thermo Fisher Scientific, San
Jose, CA). Reverse-phase nanoLC separation was performed on an
Agilent 1200 series nanoflow system (Agilent Technologies, Santa
Clara, CA). A total of 10 μL sample from collected fractions was loaded
onto an Agilent Zorbax XDB C18 precolumn (0.35 mm, 5 μm), followed
by separation using in-house C18 column (i.d. 75 μm × 15 cm, 3 μm).
The mobile phases used were (A) 0.1% FA in water and (B) 0.1% FA in
100% ACN. A linear gradient from 5% to 95% of (B) over a 70-min period
at a flow rate of 300 nL/minwas applied. The peptides were analyzed in
the positive ion mode by applying a voltage of 1.8 kV to the injection
needle. The MS was operated in a data-dependent mode, in which one
Fig. 4.Genomic analysis of identifiedbiomarkers inHCC tumor samples (n=193). (A) Putative
TFF2 and ROBO4 in each individual sample, with dark red indicating amplification and light red
Fisher's exact test was used for statistical calculations. Data analysis is based on available TCGA
full scan with m/z 400–1600 in the Orbitrap using a scan rate of
30 ms/scan. The fragmentation was performed using the CID mode
with collision energy of 35 V. A repeat duration of 30 s was applied to
exclude the same m/z ions from the reselection for fragmentation. The
Xcalibur software (version 2.0.7, Thermo Fisher Scientific, San Jose,
CA) was used for the management of instrument control, data acquisi-
tion, and data processing.

2.5. Protein database search, characterization and quantification

Peptides were identified by peak lists converted from the
nanoLCMS/MS spectra by bioinformatics searching against Homo
sapiens taxonomy in the Swiss-Prot databases for exact matches using
the Mascot search program (http://www.matrixscience.com) [28,29].
Parameters were set as follows: a mass tolerance of 10 ppm for
precursor ions and 0.8 Da for fragment ions; no missed cleavage site
allowed for trypsin; carbamidomethyl cysteine as fixed modification;
dimethylation specified as standard of the quantification; oxidized
methionine and deamidated asparagine/glutamine as optional modifi-
cation. Peptides were considered positively identified if their Mascot
individual ion score was higher than 20 (p b 0.05). Subsequently, the
analysis of peptide quantification ratio (D/H) for normal (hydrogen
labeling) and HCC (deuterium labeling) from urine was carried out by
Mascot Distiller program (version 2.3, Matrix Science Ltd., London,
U.K.) using the average area of the first 3 isotopic peaks across the
elution profile. The Mascot search data as well as quantification
resulting from each fraction were also merged by this program that
combined the peptide ratios matching the same sequence obtained
from different fractions or at different retention times and charge states
[22]. The identifiedproteinswith up- and down-regulationwere further
copy-number alterations from copynumber (GISTIC) algorithm for S100A9,GRN,AXL,ARSA,
indicating gain. (B, C) Analysis of co-occurrence of candidate genes in HCC tumor samples.
data processed by the MSKCC cBio Core (www.cbioportal.org).

http://www.matrixscience.com
http://www.cbioportal.org
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categorized based on their biological process and molecular function
using the PANTHER classification system (http://www.pantherdb.org)
as described in the previous studies [30–32].

2.6. Gene ontology (GO) and pathway analysis

By employingDAVID Bioinformatics Resources [33], GO analysis was
performed to determine which functional processes were differentially
represented in the protein list from quantitative proteomic analysis of
urine samples from HCC patients and normal controls. 83 up-
regulated and 8 down-regulated proteins from proteomic analysis
were used for GO analysis.

2.7. Genomic and transcriptomic data analysis

All cancer genome datasets and bioinformatics tools for visualizing
different parameters for analysis of genomic and transcriptomic data
are accessible through the MSKCC cBio Core homepage (www.
cbioportal.org) [34,35]. Co-occurrence of gene amplifications in HCC
was performed as described previously [36] by analyzing The Cancer
Genome Atlas (TCGA) (193 tumor samples). In brief, statistically signif-
icant CNAs in HCCs were analyzed for frequency and co-occurrence in
individual samples, and Fisher's exact test was used to calculate p-
values for co-occurrence of identified candidate genes. Comparison of
Fig. 5. Co-expression of S100A9 and GRN in tumor and urine samples from HCC patients. (A–C)
expression and copy number (GISTIC) algorithm for (A) S100A9 and (B) GRN indicates that amp
based on available TCGA data processed by the MSKCC cBio Core (www.cbioportal.org). (C) S
tumor samples (n = 193). (D) Scatter plot illustrating the correlation between S100A9 and GR
copy number aberrations and gene expression was also based on
available TCGA datasets for HCC.

2.8. Survival analysis of human HCC patients

Survival data analysis of patients with gene amplifications is based
on available TCGA data processed by the MSKCC cBio Core (www.
cbioportal.org) [34,35]. Statistical analysis was performed as described
previously [37].

3. Results and discussion

One-year survival rates for newly diagnosed hepatocellular carcino-
ma (HCC) are lower than 50% owing to its unresectability that results
from late detection. Although numerous investigations on the abnor-
malities of HCC based on genetic, biochemical and pathological charac-
terization have been conducted, non-invasive and sensitive diagnostic
or prognostic markers are very limited. In this regard, quantitative
proteomics is an ideal tool to identify potential biomarkers in urine as
it can systematically monitor protein variation on a large scale. In the
current study, we employ an optimized shotgun-based quantitative
proteomic strategy for analyzing the urinary proteins from 44 pairs of
HCC patients and normal controls (Fig. 1A). Further cross-analyzing
these proteomic results together with genomic and transcriptomic
Transcriptomics analysis of identified biomarkers in HCC tumor samples (n= 193). Gene
lification and gain on genomic levels correspond to their gene expression. Data analysis is
catter plot illustrating the correlation between S100A9 and GRN expression levels in HCC
N protein levels in urine samples from HCC patients (n = 44).

http://www.pantherdb.org
http://www.cbioportal.org
http://www.cbioportal.org
http://www.cbioportal.org
http://www.cbioportal.org
http://www.cbioportal.org
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data was used to identify potential urinary HCC biomarkers, alone or
their combinations (Fig. 1A).

3.1. Quantitative proteomic analysis of differentially expressed proteins in
urine samples from HCC patients by a shotgun approach

Bymeans of gel-free shotgun proteomic analysis coupledwith stable
isotope dimethyl labeling [8,12,22] and nanoLC–MS/MS [22–24], we
have characterized and compared the urinary proteins between
diseased and control groups (n=44) (Fig. 1B). The process for identify-
ing differentially released proteins including dimethyl labeling, enzyme
digestion and peptide mass fingerprinting (PMF), followed by the
analysis of urinary-peptide quantification ratio (D/H) for HCC patients
Fig. 6. Survival association of gene amplification and gain of S100A9, GRN and their combi-
nation in HCC patients (n = 193). (A) Survival curves of HCC patients comparing cases
with and without S100A9 amplification/gain. (B) Survival curves of HCC patients compar-
ing cases with and without GRN amplification/gain. (C) Survival curves of HCC patients
comparing cases with and without both S100A9 and GRN amplification/gain. Statistical
tests were performed as described previously [31]. Data analysis is based on available
TCGA data processed by the MSKCC cBio Core (www.cbioportal.org).
(deuterium labeling) and normal controls (hydrogen labeling) (Fig.
1B) [22,23,38]. In total, we have systematically mapped around 1000
proteins among the 44 pairs of urine samples (Table S1). As shown in
Fig. 2 and Table S1, expression levels of 91 identified proteins were
significantly different (p b 0.05), which included 83 up-regulated (red
color) and 8 down-regulated (green color) proteins. In addition, by
clustering the D/H ratio, we found that there are two subgroups
among all the 44 patients, i.e. 34 patients with many up-regulated
proteins while 10 patients with more distinct expression profiles,
suggesting that early diagnosis using multiple biomarkers may give
better prediction than single one.

The quantitative proteomic result was further subjected to gene
ontology (GO) analysis to pinpoint proteins and processes that might
underlie the change of urinary proteome in HCC patients (Fig. 3A, B
and Table S2). Interestingly, proteins overexpressed (D/H N 1.5,
p b 0.05) in HCC patients compared with healthy controls were linked
to “signal,” “response to wounding,” “acute inflammatory response,”
“calcium ion binding,” and “alpha-amylase activity” (Fig. 3A and
Table S2). This analysis also revealed a significant correlation between
down-regulated proteins (D/H b 0.5, p b 0.05) and microtubule motor
activity (Fig. 3B and Table S2). The roles of signal peptides, cytokines
and secreted proteins have been extensively studied due to their impor-
tance on the tumor microenvironment of HCC [39]. Therefore, the
peptides in urine may reflect the signals involved in cancer cell-host
interaction and inflammatory process [40,41]. The wound repair
process was also shown to be essential for the growth of cancer stem
cells in solid tumors [42]. Interestingly, calcium ion binding proteins
were previously identified in another proteomic study that compared
HCV-induced HCC with cirrhosis [43].

For a “hit” to undergo further analysis we used the scoring criterion
of at least 50% penetrance and D/H value is more than 1.5; these includ-
ed 25 proteins (Fig. 3C) in total and the top six proteins are ROBO4, AXL,
S100A9, TFF2, ARSA, and GRN (Fig. 3D and Table 1). ROBO4 expression
has been found to be confined to vasculature and it was overexpressed
in tumor endothelial cells in comparison to normal adult endothelial
cells [44]. Also, several candidates were related to HCC proliferation
and invasion. AXL promotes tumor invasion through the transcriptional
activation of Slug in HCC, and its inhibition was sufficient to suppress
Slug expression and decreased the invasiveness of HCC cell lines [45].
S100A9 can activate the MAPK signaling pathway to also promote the
proliferation and invasion of HCC cells [46]. Granulin (GRN)–epithelin
precursor (GEP) is shown to be a potential therapeutic target owing to
its overexpression promotes growth and invasion of HCC [47,48].
Taken together, the comparative proteome data from urine samples
not only systematically mapped up- and down-regulated proteins that
reflect the dysfunction of liver cells but also identified potential and
valuable candidates for further investigations.

3.2. Genomic amplification of S100A9 and GRN co-occurs in tumors from
HCC patients

Recent advances in proteogenomics which integrates MS-generated
data with genomic and transcriptomic information are able to link DNA,
RNA and protein data together to improve our understanding of biology
in various fields [13]. This integrated approach has been also applied to
study cancer biology as it can systematically identify tumor specific-
peptides andmonitor variation on a large scale of cancer cells' genomic,
transcriptional and translational landscape. Here, by employing both
onco-genomic and transcriptomic analyses, we aim to identify reliable
biomarkers from our candidates as revealed in the proteomics result
for HCC patients (Fig. 1A).

To better define the potential of identified hits, we determined the
extent of their gene amplifications from cancer genome datasets at
cBioPortal at the Memorial Sloan-Kettering Cancer Center derived
from The Cancer Genome Atlas (TCGA) project, totaling 193 primary
tumor samples of HCC (Fig. 4A). According to these data, these top six

http://www.cbioportal.org
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hits harbor varied characteristics at genomic levels, for example, S100A9
(70%), GRN (27%), and AXL (23%) are amplified in over 20% HCC tumor
samples while amplification of ROBO4 is only 7% (Fig. 4A). The high
complexity and heterogeneity of HCCs of both etiological and genetic
aspects result in some difficulties for finding appropriate diagnosis
and therapy [49]. Chromosomegainswere very common inHCC, prefer-
entially affecting chromosomes 1, 8, 17 and others [50,51]. The amplifi-
cations of S100A9 and GRN with their detected locations correspond to
chromosomes 1 and 17, respectively.

To further understand the association between these genomic events,
Fisher's exact test was used to calculate the relevance of their co-
occurrence (Fig. 4B and C). Interestingly, 5 out of 6 candidate genes
were significantly co-amplified with each other, such as S100A9/GRN
(p = 0.001), and AXL/TFF2 (p = 0.002). These results, which establish
the amplification of S100A9 and GRN genes, may serve as co-indicators
for detecting HCC tumors.

3.3. Co-expression of S100A9 and GRN in tumor and urine samples from
HCC patients

Previous clinical and histopathological evidences suggest that HCC is
a heterogeneous disease. Although genomic approaches to the analysis
of HCC hold promise for identifying disease-related markers, the
genomic aberrations, such as amplification and deletion, cannot usually
reflect the change of mRNA or protein expression. Therefore, an alter-
nate approach is to study tumors at the level of their gene expression
profiles [17]. Also, combing data of the alterations on the genomic,
transcriptional and translational levels may help us identify the most
valuable markers for disease diagnosis.

By analyzing gene expression together with copy number (GISTIC)
algorithm, copy number gain and amplification were correlated with
S100A9 and GRN mRNA overexpression in primary HCC tumors, as
shown in Fig. 5A and B, respectively. Since these 2 geneswere identified
to be co-amplified on genomic levels, we next askedwhether their gene
expression also co-occurs on mRNA levels. We found that there is a
significant correlation between the mRNA expression levels of S100A9
and GRN (r = 0.3651, p b 0.0001) (Fig. 5C), suggesting that they may
cooperate with each other during the hepatocarcinogenesis. To further
validate this finding on protein levels, we analyzed the D/H ratio of
S100A9 and GRN among 44 pairs of HCC patients and normal controls,
the urinary protein level of S100A9 was found highly correlated with
GRN (r = 0.5732, p = 0.0066). Thus, these results establish that the
S100A9 and GRN may serve as combinatorial biomarkers on genomic,
transcriptional, and protein levels and can be co-detected in both
tumor and urine samples.

3.4. Amplifications of S100A9/GRN and their combination are associated
with poor survival of HCC patients

To substantiate our findings in survival benefit of patients, we next
asked whether amplifications of S100A9 and GRN are associated with
survival outcome in human HCC. We analyzed genomic data from a
cohort of 193 HCC patients with available survival data from TCGA [37,
52]. We found that amplifications of either S100A9 or GRNwere signifi-
cantly correlated with poor survival (Fig. 6A and B) and thus might
predict more aggressive disease progression. More importantly, co-
amplification of S100A9 or GRN is associated with worse overall survival
than that of individual ones, suggesting they can potentially serve as
combinatorial biomarkers for early diagnosis of HCC.

Overexpression of S100A9 and GRN can promote both growth and
invasion of HCC cells through different signaling pathways [46–48].
Previous studies have shown that HCC tumor invasion and metastasis
predict poor survival in patients [53,54]. Therefore, the amplification
and expression of S100A9 and GRN may result in poor survival in
patients with HCC thorough tumor metastasis in different organs.
Together, this result indicates that amplification of these two individual
genes or their combination can predict not only a high risk of extrahe-
patic metastasis but also a worse survival of HCC patients.

4. Conclusions

In this study, the utility of shotgun-based quantitative proteomics
has been adapted and extended to compare the urinary proteins
between diseased and control groups in order to identify potential
biomarker candidates. This proteomic approach can be coupled with
genomic and transcriptomic analysis to be applied as a powerful onco-
proteogenomic tool for the detection of important protein markers
involved in the tumorigenesis of HCC. Among these, S100A9 and GRN
were shown to be co-amplified and co-expressed in tumor and urine
samples from HCC patients with poor survival. Our results pinpoint
that urinary S100A9 and GRN as potential combinatorial biomarkers
for early detection of HCC and highlight the utility of proteogenomics
for identifying protein markers that may be valuable to diagnosis and
prognosis of diverse types of cancers and other diseases.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbacli.2015.02.004.
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