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Abstract: Cytostatic chemotherapeutics provide a classical means to treat cancer, but conventional
treatments have not increased in efficacy in the past years, warranting a search for new approaches to
therapy. The aim of the study was, therefore, to obtain methacrylic acid (MAA) (co)polymers and to
study their immunopharmacological properties. 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]
pentanoic acid (CDSPA) and 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT) were used as re-
versible chain transfer agents. Experiments were carried out in Wistar rats. The MTT assay was used
to evaluate the cytotoxic effect of the polymeric systems on peritoneal macrophages. An experimental
tumor model was obtained by grafting RMK-1 breast cancer cells. Serum cytokine levels of tumor-
bearing rats were analyzed. The chain transfer agents employed in classical radical polymerization
substantially reduced the molecular weight of the resulting polymers, but a narrow molecular weight
distribution was achieved only with CDSPA and high CPDT concentrations. Toxicity was not ob-
served when incubating peritoneal macrophages with polymeric systems. In tumor-bearing rats, the
IL-10 concentration was 1.7 times higher and the IL-17 concentration was less than half that of intact
rats. Polymeric systems decreased the IL-10 concentration and normalized the IL-17 concentration
in tumor-bearing rats. The maximum effect was observed for a MAA homopolymer with a high
molecular weight. The anion-active polymers proposed as carrier constituents are promising for
further studies and designs of carrier constituents of drug derivatives.

Keywords: (co)polymers of methacrylic acid; molecular weight characteristics of (co)polymers;
immune system; interleukins; cytokines

1. Introduction

Cytostatic chemotherapeutics that target nucleic acids and signaling pathways regulat-
ing cell proliferation provide a classical means to treat cancer [1,2]. Conventional treatments
(surgery, chemotherapy, and radiotherapy) have not increased in efficacy in the past years,
warranting a search for new approaches to therapy [3,4]. Polymeric carrier constituents are
promising as vehicles for drug delivery because they increase the solubility of hydrophobic
agents, prolong the drug life in circulation, and may improve the biodistribution profile of
a low-molecular-weight drug [5].

Various forms of polymeric carrier constituents have been developed and investigated
throughout the world to deliver anticancer drugs [6]. For example, polymeric nanogels,
which are capable of a reversible response to minor changes in external factors (temper-
ature, ion strength, pH, electrical field, etc.) and may incorporate and release an active
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drug substance in a controlled manner, and amphiphilic polymeric micelles, which can
harbor a drug in their core [7]. Systems based on polyethylene glycol, polylactides, and
polyglutamic acid have been described in the literature, and polyacrylic acid has been
noted as a potential drug carrier [8]. Polymeric systems are tested for cytotoxicity and an-
titumor efficacy in vivo in the course of their development [9]. However, it is still poorly
understood how the structures and molecular weight characteristics of polymeric carrier
constituents are associated with their biopharmaceutical properties.

An important current problem is the design of anticancer drug delivery systems
that enhance, rather than just retain, the cytotoxic effect of a drug on tumor tissue and
simultaneously reduce its toxic effect on other organs, as well as the design of the means
to activate the immune antitumor mechanisms [10–13]. Polymethacrylic acid combined
with gold nanoparticles and joined with doxorubicin through an acid-labile cysteine bond
was tested for anticancer properties in vitro and in vivo. A high efficacy of the conjugate
was demonstrated with a human cervical adenocarcinoma cell line in both chemotherapy
and radiotherapy [14]. A copolymer of polymethacrylic acid and polyethylene glycol was
synthesized and used as a coating of magnetic nanoparticles to deliver cisplatin, which is
a potent anticancer agent with a nonselective effect. Polymer-based cisplatin derivatives
displayed higher anticancer activity and lower toxicity as compared with pure cisplatin.
However, the study did not detect a substantial increase in the cisplatin concentration in the
tumor site. The finding indicates that the enhanced anticancer effect was due to mechanisms
other than higher cisplatin accumulation in the tumor [15]. Combinations of anticancer
and immunomodulatory agents are often used to treat cancer. They improve the efficacy
of therapy, and the immunomodulatory component often possesses anti-inflammatory
activity [16–18].

The mechanisms that activate anticancer immunity include a regulation or stimulation
of each step in cancer–immunity interactions and are aimed, in particular, at increasing the
amounts and functional activities of cytotoxic T cells and natural killers, the production
of antibodies in B cells, and cell secretion of cytokines, factors stimulating immune cell
proliferation, or factors suppressing the growth of tumor cell clones [19–21].

Polymeric particles are of particular interest in this respect when used as anticancer
drug carrier constituents [22]. Synthetic polyelectrolytes are not antigenic. However, they
are known to enhance the immune response when administered together with antigens, act-
ing as adjuvants. Advantage of this property has been taken in designing vaccines [23–25].
Immunostimulatory activity of polymeric adjuvants is based on their macromolecular na-
ture. One of the relevant properties is that polymeric adjuvants are capable of cooperative
interactions with chemically complementary molecules to produce stable interpolymer
complexes or tight multipoint cooperative adsorption on chemically complementary sur-
faces [26,27]. The immune response starts with recognition of alien antigens and results in
an accumulation of effector immune cells and antibodies. B cells, T cells, and macrophages
are the main cells involved in the immune response. Linear polyelectrolytes can mediate ad-
hesion between B and T helper cells via their multipoint adsorption on the cell membranes.
Synthetic polyelectrolytes increase the effect of T–B cell cooperation [28]. Immunostim-
ulatory and anticancer activity of polyanions is due to their direct effect and the ability
to activation macrophages [29]. Activated macrophages selectively ingest cancer cells, in
contrast to nonactivated macrophages. The role that macrophages play in carcinogenesis
has been considered in many works, including systematic reviews [30–32].

Tumor-associated macrophages (TAMs) have received special attention over the past
30 years, starting from the formulation of the macrophage dichotomy concept [33,34].
TAMs are classed as type II-activated macrophages (M2). Stein et al. (1992) have initially
characterized TAMs as alternatively activated macrophages [35,36]. Data on TAM markers
and TAM-suppressing factors have accumulated in further research. The M2 population is
highly heterogeneous [37,38]. Macrophages of the M2 phenotype play an important role in
the development of the tumor process by suppressing the immune response, remodeling
the extracellular matrix, and stimulating angiogenesis [35]. Macrophages of the M1 pheno-
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type (classically activated macrophages) are characterized by expression of bactericidal
molecules and receptors [39]. Macrophages acquire the M1 phenotype in response to
endogenous inflammatory stimuli, such as the Th1-asscoiated cytokine interferon gamma,
or exogenous inflammatory stimuli, such as lipopolysaccharide [40]. M1 macrophages
facilitate tumor cell elimination, while M2 macrophages promote carcinogenesis [41].

Expression of inhibitory cytokines by tumor cells or macrophages is one of the mecha-
nisms responsible for resistance to anticancer therapy. A therapeutic strategy that targets
macrophages or macrophage-derived cytokines may hold promise for effective cancer
treatment [42]. Increasing the efficacy of anticancer therapy, expanding the therapeutic
ranges of current drugs, improving the selectivity of their effects, overcoming multiple
drug resistance, and stimulating the immune system to more efficiently fight cancer in
tumor bearers are pressing problems of modern science and medicine.

Based on these premises, the aim of the study was to obtain methacrylic acid (MAA)
(co)polymeris and to study their immunopharmacological effects. Anion-active polymers
proposed as carrier constituents normalize the cytokine levels and are, therefore, promising
for the further study and design of drug derivatives.

2. Results
2.1. Synthesis of Polymers and Their Molecular Weight Characteristics

Two approaches were used to obtain MAA-based polymers. One was direct MAA
polymerization in a dioxane solution to ensure homogeneous polymerization, and the other
included tert-Butyl methacrylate (TBMA) polymerization and subsequent modification
(acid hydrolysis) of ester groups in the polymer. All polymers were synthesized via re-
versible addition–fragmentation chain transfer polymerization (RAFT). Molecular weight
characteristics of polyMAA obtained in the presence of CDSPA and CPDT are summarized
in Table 1. The RAFT agents substantially reduced the molecular weight of polymers
synthesized by classical radical polymerization and narrowed their molecular weight dis-
tributions, but a narrow molecular weight distribution was achieved only with CDSPA and
high CPDT concentrations. As is well known, pseudoliving RAFT (co)polymerization of
unsaturated carboxylic acids is difficult to achieve. [43] We therefore used RAFT polymer-
ization of TBMA with subsequent acid hydrolysis of ester groups in the polymer to obtain
MAA-based polymers.

Table 1. Molecular weight characteristics of polyMA polymers synthesized in the presence of CPDT
and CDSPA, AIBN = 0.002 mol/L, T = 70 ◦C.

RAFT, mol/L
CPDT CDSPA

Mn·103 Mw·103 Mw/Mn Mn·103 Mw·103 Mw/Mn

0.01 87.8 149.8 1.71 99.2 160.4 1.57
0.04 31.3 45.9 1.47 31.5 40.0 1.27
0.08 19.0 27.7 1.45 19.5 23.6 1.19
0.10 16.0 22.7 1.47 14.6 16.6 1.13

As is seen from Table 2, a narrow molecular weight distribution was observed for the
polymers synthesized in the presence of CPDT throughout the RAFT concentration range.

When polyTBMA polymers were subjected to acid hydrolysis, the extent of hydrolysis
was 77.87 ± 1.65%.

The cytotoxic effect of synthetic polymers on immune system cells (peritoneal
macrophages) was tested using polyMAA (system 1: Mn·103 = 16.0, Mw/Mn = 1.47;
system 2: Mn·103 = 99.2, Mw/Mn = 1.57; and system 3: Mn·103 = 19.0, Mw/Mn = 1.45) and
TBMA–MAA copolymers produced via hydrolysis (system 4: Mn·103 = 21.5, Mw/Mn = 1.33;
system 5: Mn·103 = 13.8, Mw/Mn = 1.13).

Because the synthetic polymers are intended for use as potential anticancer drug
carrier constituents, they will interact with the immune system in circulation. To study the
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immune cell response to the (co)polymers, we determined their concentrations at which
50% of cells lost their viability (IC50). Peritoneal macrophages were incubated with various
polymers at their various concentrations for 4 h, and all of the systems tested were found
to be nontoxic when used at 1 mg/mL (Figure 1).

Table 2. Molecular weight characteristics of polyTBMA synthesized in the presence of CPDT,
AIBN = 0.002 mol/L, T = 70 ◦C.

RAFT, mol/L
CPDT

Mn·103 Mw·103 Mw/Mn

0.01 46.9 53.5 1.14
0.04 21.5 28.7 1.33
0.08 13.8 15.6 1.13
0.10 11.5 13.2 1.15
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Figure 1. Metabolic activity measured in the MTT assay for peritoneal macrophages incubated with
the polymers for 4 h. Data presented are the mean ± SD of eight independent experiments each
performed in triplicate. System 1, polyMAA (Mn·103 = 16.0 Da, Mw/Mn = 1.47); system 2, polyMAA
(Mn·103 = 99.2 Da, Mw/Mn = 1.57); system 3, polyMAA (Mn·103 = 19.0 Da, Mw/Mn = 1.45); system 4,
TBMA–MAA copolymer (Mn·103 = 21.5 Da, Mw/Mn = 1.33); system 5, TBMA–MAA copolymer
(Mn·103 = 13.8 Da, Mw/Mn = 1.13).

When peritoneal macrophages were incubated with various polymers at their various
concentrations for 24 h, all of the systems tested were nontoxic at 0.5 mg/mL, which is a
high concentration (Table 3).

Table 3. IC50 (mg/mL) measured for the polymeric systems in 24 h incubation with macrophages.

Polymer IC50, mg/mL

System 1 0.707
System 2 0.612
System 3 0.652
System 4 0.657
System 5 0.567

2.2. Effects of the MAA Polymers on the Cytokine Levels during Tumor Development

Immunostimulatory activity of the synthetic MAA (co)polymers were evaluated
in vivo, using a RMK-1 breast cancer cell graft model in rats.

The polymeric carrier constituents were tested for effect on cytokine production
in rats with RMK-1 tumors. Experiments were carried out with system 5, which was a
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TBMA–MAA copolymer and had the lowest molecular weight and the narrowest molecular
weight distribution, and system 2, which was a MAA homopolymer with a relatively high
molecular weight (99 kDa). The aim was to evaluate the effect of the molecular weight on
immune system parameters.

The MAA (co)polymers were administered on day 10 of tumor development. The
results showed that the IL-10 and IL-17 concentration tended to change (normalize) in rats.

On day 10 of tumor development, the serum IL-10 concentration increased in tumor-
bearing rats by a factor of 1.7, to 55.00 ± 17.30 pg/mL, compared with 33.26 ± 4.27 pg/mL
in intact rats (control). Administration of the polymeric systems decreased the IL-10
concentration in the tumor-bearing rats to 45.45 ± 9.02 pg/mL in the case of system 2 and
42.40 ± 5.21 pg/mL in the case of system 5 (Figure 2).
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Figure 2. Changes in IL-10 concentration in response to administration of the polymeric systems.
Rats were administered i.p. with 9 mg/kg polymeric system (System 2 or System 5) once on the
10th day, which corresponded to the beginning of oncogenesis and formation of tumor nodes,
and the activation of the immune system. Control rats received PBS. Results are representative
of four independent assays and show the Median (Me) with interquartile range (25th percentile;
75th percentile) of triplicate determinations for one of four experiments. Differences from (*) intact
rats were significant at p < 0.05.

The IL-17 concentration decreased more than twice in tumor-bearing rats compared
with intact rats (147.13 ± 45.96 pg/mL vs. 356.53 ± 120.58 pg/mL, respectively) and
was normalized after administration of the polymeric systems. Normalization was more
efficient in the case of the MAA homopolymer with a high molecular weight (Figure 3).
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Figure 3. Changes in IL-17 concentration in response to administration of the polymeric systems.
Rats were administered i.p. with 9 mg/kg polymeric system (System 2 or System 5) once on the
10th day, which corresponded to the beginning of oncogenesis and formation of tumor nodes,
and the activation of the immune system. Control rats received PBS. Results are representative of
four independent assays and show the Median (Me) with interquartile range (25th percentile; 75th
percentile) of triplicate determinations for one of four experiments. Differences from (*) intact rats or
(**) control tumor-bearing rats were significant at p < 0.05.

3. Discussion

RAFT polymerization was used to obtain MAA (co)polymers with controlled molecu-
lar weight characteristics. The method has several apparent advantages over other radical
processes with reversible chain deactivation. For example, atom transfer radical poly-
merization (ATRP) inevitably leads to undesirable contamination of the polymer with
transition metal complexes, which are used as catalysts, and stable free radical polymer-
ization (SFRP) often requires a temperature higher than 100 ◦C. Among all pseudoliving
radical processes, RAFT has apparent advantages of being efficient, simple, and universal,
being compatible with virtually all monomers that are capable of radical polymerization,
and allowing efficient control over the molecular weight characteristics of the resulting
polymers. Moreover, RAFT offers great opportunities for macromolecular design and
makes it possible to obtain specific materials with diverse functional potentials, such as
block, graft, star-like, comb-like, and gradient copolymers.

Radical polymerization was studied for TBMA and MAA in the presence of the RAFT
agents CPDT and CDSPA. Polymerization was shown to follow a pseudoliving mechanism,
which is evident from the fact that the number average molecular weight increases with
increasing conversion. Low dispersity was observed for the resulting polymers, together
with lack of a gel effect.

The synthetic MAA (co)polymers, which are proposed as drug carrier constituents, were
found to exert no toxic effect on immune system cells when incubated with macrophages at
1 mg/mL for 4 or 0.5 mg/mL for 24 h. The (co)polymers did not change the metabolic ac-
tivity of macrophages and are thus promising for the further investigation and construction
of drug derivatives.

It should be noted that PMAA itself has antitumor effects [44]. PMAA is known as a
potential carrier of antitumor drugs. In 2016, a study was carried out to study the antitumor
properties in vitro and in vivo of PMAA, combined with gold-containing nanoparticles,
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as well as with doxorubicin through an acid-labile cysteine bond [45]. On the cell line of
human cervical adenocarcinoma the high efficiency of the conjugate both in chemotherapy
and radiation therapy has been demonstrated.

However, there was no assessment of the independent influence of PMAA on the
tumor process, or on the state of immune system in the development of the tumor process.
This fact defines the prospects of the presented research.

Cytokines are an important element of the immune system. Cytokines regulate the
intercellular and intersystemic interactions that determine the cell viability, stimulate or
suppress the cell growth, differentiation, functional activity, and apoptosis, and ensure the
concerted functions of the immune, endocrine, and nervous systems in normal conditions
and in response to pathological factors [46].

The IL-10 and IL-17 levels tended to change in response to administration of MAA
(co)polymers. Both of the cytokines are known to play a dual role in the tumor process
according to published data [47–49].

The pro-oncogenic effects most commonly mentioned for IL-10 are that IL-10 reduces
the antitumor immune response in the tumor microenvironment, thus helping tumor cells
to evade the effects of immune cells and stimulates angiogenesis [50–52]. Stimulation of
natural killer cells and inhibition of reactive oxygen species are noteworthy among the
antitumor effects of the cytokine [52].

Activation of angiogenesis is a prooncogenic effect of IL-17. Its antitumor effects
include stimulation of the antitumor cytotoxic T-cell response [53].

Summarizing the literature data, the following scheme might be assumed for the ef-
fects of IL-10 and IL-17 on the tumor process. IL-10 promotes conversion of M1 macrophages
(classically activated, with phagocytosis as a main function) to M2 macrophages (alterna-
tively activated macrophages, TAMs, which facilitate tumor cell evasion from the immune
system) [44]. Moreover, M2 macrophages are known to express ample IL-10 receptors and
to secrete IL-10 [53]. As a proinflammatory cytokine, IL-10 stimulates the suppressor cells,
the main function of which is to inhibit secretion of cytokines, including IL-17. Stimula-
tion of the antitumor cytotoxic T-cell response is thus suppressed, and the tumor process
spreads [48] (Figure 4).
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4. Materials and Methods
4.1. Chemicals and Reagents

Tert-Butyl methacrylate (TBMA) and MAA monomers (Sigma-Aldrich, Munich, Germany)
were used to synthesize polymers. TBMA and MAA were purified by distillation under reduced
pressure before use. The initiator azoisobutyric acid dinitrile (AIBN) (Sigma-Aldrich, Mu-
nich, Germany) was recrystallized from methyl-tert-butyl ester, dried under reduced pres-
sure, and stored at 0 ◦C. The purity was checked by 1H NVR spectroscopy. 1H NMR (CDCl3,
δ, ppm): 1.73 (s, 11H). 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid
(CDSPA) (97%, TCI, Tokyo, Japan) and 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT)
(Sigma-Aldrich, Munich, Germany) were used as reversible addition–fragmentation chain
transfer (RAFT) agents. The latter was synthesized according to a published protocol [54].
The solvents dioxane, methanol, tetrahydrofuran (THF), and dimethyl sulfoxide were
purified by conventional methods [55].

The RAFT-prepared polyMAA polymers were characterized by 1H NMR techniques.
In cases in which the CDSPA terminated polymer 1H NMR (400 MHz, DMSO-d6) spectra
shows resonance peaks at δ (ppm): 3.6 (s, -COOH), 3.3 (m, -CH2-COOH), 2.6 (m, -CH2-CH2-
COOH), 2.4-2.5 (tr, -CH2-S-), 1.7 (m, -CH2-CH2-S-), 1.8 (s, -C(CH3)CN-), 1.3 (s, -(CH2)10-),
0.8 (tr, -CH3). In cases in which the CPDT terminated polymer 1H NMR (400 MHz, DMSO-
d6) spectra shows resonance peaks at δ (ppm): 3.3 (tr, -CH2-S-), 1.7 (m, -CH2-CH2-S-),
1.9 (s, -C(CH3)2CN), 1.3 (s, -(CH2)10-), 0.8 (tr, -CH3).

4.2. Polymerization

Batch polymerization of TBMA was carried out in the presence of CPDT. MAA was
polymerized in a dioxane solution (monomer: solvent = 2:1 v/v) in the presence of CPDT
and CDSPA at 70 ◦C. Polymerization was carried out in ampoules sealed after a prelimi-
nary degassing via three rounds of freezing–thawing under vacuum. The polymerization
durations were 6 h in the case of TBMA and 8 h in the case of MAA. The initiator concen-
tration relative to the monomer was 2·10−3 mol/L. The RCT agent concentration varied
from 0.01 to 0.1 mol/L. The resulting polymers were purified via precipitation with chilled
methanol from a chloroform solution (in the case of polyTBMA) or chilled diethyl es-
ter from an ethanol solution (in the case of polyMAA); the purification procedure was
repeated three times. The polymers were dried under vacuum to a constant weight at
room temperature.

In addition to the elementary reactions of classical radical polymerization (chain
initiation, growth, and termination), RAFT includes reversible chain transfer to a sulfur
compound, Z−C(=S)−S−R, where Z is the stabilizing group and R is the leaving group,
which is easily cleaved via a radical mechanism (reactions 1–2):

Molecules 2021, 26, x  8 of 13 
 

 

4. Materials and Methods 
4.1. Chemicals and Reagents 

Tert-Butyl methacrylate (TBMA) and MAA monomers (Sigma-Aldrich (Munich, 
Germany) were used to synthesize polymers. TBMA and MAA were purified by distilla-
tion under reduced pressure before use. The initiator azoisobutyric acid dinitrile (AIBN) 
(Sigma-Aldrich (Munich, Germany) was recrystallized from methyl-tert-butyl ester, 
dried under reduced pressure, and stored at 0 °C. The purity was checked by 1H NVR 
spectroscopy. 1H NMR (CDCl3, δ, ppm): 1.73 (s, 11H). 
4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CDSPA) (97%, TСI, 
Tokyo, Japan) and 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT) (Sigma-Aldrich 
(Munich, Germany) were used as reversible addition–fragmentation chain transfer 
(RAFT) agents. The latter was synthesized according to a published protocol [56]. The 
solvents dioxane, methanol, tetrahydrofuran (THF), and dimethyl sulfoxide were puri-
fied by conventional methods [57]. 

The RAFT-prepared polyMAA polymers were characterized by 1H NMR tech-
niques. In cases in which the CDSPA terminated polymer 1H NMR (400 MHz, DMSO-d6) 
spectra shows resonance peaks at δ (ppm): 3.6 (s, ‒COOH), 3.3 (m, ‒CH2‒COOH), 2.6 (m, 
‒CH2‒CH2‒COOH), 2.4-2.5 (tr, ‒CH2‒S‒), 1.7 (m, ‒CH2‒CH2‒S‒), 1.8 (s, ‒C(CH3)CN‒), 1.3 
(s, ‒(CH2)10‒), 0.8 (tr, ‒CH3). In cases in which the CPDT terminated polymer 1H NMR 
(400 MHz, DMSO-d6) spectra shows resonance peaks at δ (ppm): 3.3 (tr, ‒CH2‒S‒), 1.7 
(m, ‒CH2‒CH2‒S‒), 1.9 (s, ‒C(CH3)2CN), 1.3 (s, ‒(CH2)10‒), 0.8 (tr, ‒CH3). 

4.2. Polymerization 
Batch polymerization of TBMA was carried out in the presence of CPDT. MAA was 

polymerized in a dioxane solution (monomer: solvent = 2:1 v/v) in the presence of CPDT 
and CDSPA at 70 °C. Polymerization was carried out in ampoules sealed after a prelim-
inary degassing via three rounds of freezing–thawing under vacuum. The polymeriza-
tion durations were 6 h in the case of TBMA and 8 h in the case of MAA. The initiator 
concentration relative to the monomer was 2∙10−3 mol/L. The RCT agent concentration 
varied from 0.01 to 0.1 mol/L. The resulting polymers were purified via precipitation 
with chilled methanol from a chloroform solution (in the case of polyTBMA) or chilled 
diethyl ester from an ethanol solution (in the case of polyMAA); the purification proce-
dure was repeated three times. The polymers were dried under vacuum to a constant 
weight at room temperature.  

In addition to the elementary reactions of classical radical polymerization (chain in-
itiation, growth, and termination), RAFT includes reversible chain transfer to a sulfur 
compound, Z−C(=S)−S−R, where Z is the stabilizing group and R is the leaving group, 
which is easily cleaved via a radical mechanism (reactions 1-2): 

S C S R S C S R S C S⋅⋅ ⋅Pn + Pn Pn + R

Z ZZ
Int 1    (1) 

S C S S C S S C SPn ++ PnPmPnPm
Z Z

⋅⋅⋅ Pm
Z

Int 2     (2) 

(1)

Molecules 2021, 26, x  8 of 13 
 

 

4. Materials and Methods 
4.1. Chemicals and Reagents 

Tert-Butyl methacrylate (TBMA) and MAA monomers (Sigma-Aldrich (Munich, 
Germany) were used to synthesize polymers. TBMA and MAA were purified by distilla-
tion under reduced pressure before use. The initiator azoisobutyric acid dinitrile (AIBN) 
(Sigma-Aldrich (Munich, Germany) was recrystallized from methyl-tert-butyl ester, 
dried under reduced pressure, and stored at 0 °C. The purity was checked by 1H NVR 
spectroscopy. 1H NMR (CDCl3, δ, ppm): 1.73 (s, 11H). 
4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CDSPA) (97%, TСI, 
Tokyo, Japan) and 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT) (Sigma-Aldrich 
(Munich, Germany) were used as reversible addition–fragmentation chain transfer 
(RAFT) agents. The latter was synthesized according to a published protocol [56]. The 
solvents dioxane, methanol, tetrahydrofuran (THF), and dimethyl sulfoxide were puri-
fied by conventional methods [57]. 

The RAFT-prepared polyMAA polymers were characterized by 1H NMR tech-
niques. In cases in which the CDSPA terminated polymer 1H NMR (400 MHz, DMSO-d6) 
spectra shows resonance peaks at δ (ppm): 3.6 (s, ‒COOH), 3.3 (m, ‒CH2‒COOH), 2.6 (m, 
‒CH2‒CH2‒COOH), 2.4-2.5 (tr, ‒CH2‒S‒), 1.7 (m, ‒CH2‒CH2‒S‒), 1.8 (s, ‒C(CH3)CN‒), 1.3 
(s, ‒(CH2)10‒), 0.8 (tr, ‒CH3). In cases in which the CPDT terminated polymer 1H NMR 
(400 MHz, DMSO-d6) spectra shows resonance peaks at δ (ppm): 3.3 (tr, ‒CH2‒S‒), 1.7 
(m, ‒CH2‒CH2‒S‒), 1.9 (s, ‒C(CH3)2CN), 1.3 (s, ‒(CH2)10‒), 0.8 (tr, ‒CH3). 

4.2. Polymerization 
Batch polymerization of TBMA was carried out in the presence of CPDT. MAA was 

polymerized in a dioxane solution (monomer: solvent = 2:1 v/v) in the presence of CPDT 
and CDSPA at 70 °C. Polymerization was carried out in ampoules sealed after a prelim-
inary degassing via three rounds of freezing–thawing under vacuum. The polymeriza-
tion durations were 6 h in the case of TBMA and 8 h in the case of MAA. The initiator 
concentration relative to the monomer was 2∙10−3 mol/L. The RCT agent concentration 
varied from 0.01 to 0.1 mol/L. The resulting polymers were purified via precipitation 
with chilled methanol from a chloroform solution (in the case of polyTBMA) or chilled 
diethyl ester from an ethanol solution (in the case of polyMAA); the purification proce-
dure was repeated three times. The polymers were dried under vacuum to a constant 
weight at room temperature.  

In addition to the elementary reactions of classical radical polymerization (chain in-
itiation, growth, and termination), RAFT includes reversible chain transfer to a sulfur 
compound, Z−C(=S)−S−R, where Z is the stabilizing group and R is the leaving group, 
which is easily cleaved via a radical mechanism (reactions 1-2): 

S C S R S C S R S C S⋅⋅ ⋅Pn + Pn Pn + R

Z ZZ
Int 1    (1) 

S C S S C S S C SPn ++ PnPmPnPm
Z Z

⋅⋅⋅ Pm
Z

Int 2     (2) 

(2)



Molecules 2021, 26, 4855 9 of 13

Fragmentation of an intermediate formed in the last reaction yields new microradicals,
which are involved in the chain growth reaction until the next addition of the RAFT agent to
the polymer, leading to a conversion increase in polymer molecular weight and a narrower
molecular weight distribution.

4.3. Molecular Weight Characteristics of Polymers

Molecular weight characteristics of polyMAA were studied by gel permeation chro-
matography (GPC); carboxyl groups were preliminarily methylated with diazomethane.
GPC was carried out on a Shimadzu Prominence LC–20VP system with Tosoh Bioscience
columns packed with polystyrene gel with pore sizes of 1 × 105 and 1 × 104 Å, using THF
as an eluent at a flow rate of 0.7 mL/min at 40 ◦C. A differential refractometer was used as
a detector. Chromatograms were analyzed using LCsolution software. Narrow-disperse
PMMA standards were used for calibration.

4.4. PolyTBMA Hydrolysis

PolyTBMA was hydrolyzed in dioxane supplemented with diluted (1:2) HCl at 2 mL
of the solvent per 1 g polymer at 100 ◦C, using a flask fitted with a reflux condenser.
After polyTBMA hydrolysis, the MAA unit content in the copolymer was determined by
potentiometric titration of acidic groups in methanol with 0.1 N KOH.

4.5. Experimental Animals

Experiments were carried out in Wistar rats (females; weight: 260.0 ± 10 g; age at the
beginning of the experiment: 3 months). Animal rearing at the certified breeding facility
of the Central Research Laboratory of the Privolzhsky Research Medical University (RF
Ministry of Health) complied with the Health and Hygiene Standards SP 2.2.1.3218-14.
All experiments were performed in accord with the Guide for the Care and Use of Labo-
ratory Animals (National Research Council, 2011) and the European Convention for the
Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes
(Strasbourg, 2006) and were approved by the Ethics Committee at the Privolzhsky Research
Medical University.

4.6. Primary Peritoneal Macrophage Cultures

To obtain a macrophage suspension, 20 mL of sterile physiological solution was
injected into rats intraperitoneally. After 20 min, the animals were decapitated under
isoflurane anesthesia. Peritoneal fluid was collected with sterile pipette in tube, centrifuged
and diluted to working concentration. A cell suspension (2 × 106 cells/mL) in RPMI-1640
(Biosera, Nuaille. France) supplemented with 10% fetal bovine serum (Biosera, Nuaille,
rance) was transferred into culture plates for cell visualization and analysis. The plates
were incubated in a CO2 incubator for 60 min to allow cell adhesion. A macrophage
monolayer was washed twice with phosphate-buffered saline to remove nonadherent
cells and incubated in an atmosphere containing 5% CO2 at 37 ◦C for 1 h. The medium
was changed, test polymers were added to various concentrations (5 × 10−4 mg/mL,
1 × 10−3 mg/mL, 5 × 10−3 mg/mL, 1 × 10−2 mg/mL, 5 × 10−2 mg/mL, 0.1 mg/mL,
0.5 mg/mL, 1 mg/mL) to determine the IC50, and the cultures were incubated for 4 or 24 h.

4.7. Cytotoxicity of Polymers to Immune System Cells (Peritoneal Macrophages) In Vitro;
MTT Analysis

Cytotoxicity of polymeric systems to peritoneal macrophages was evaluated in the
MTT assay [56]. The assay takes advantage of the fact that mitochondrial dehydrogenases
of viable cells are capable of reducing the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolim bromide (MTT) to formazan, which forms crystals within cells. The
purple color intensity (optical density) at 595 nm was measured on a plate spectropho-
tometer. The MTT assay results were evaluated by comparing the optical density between
test and control wells. The optical density is proportional to the viable cell count in a well.
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Cytotoxic activity of an agent was inferred from the changes in optical density. A difference
in optical density from a control was tested for significance using the Mann–Whitney test.
A difference that was significant at p < 0.05 suggested a negative effect on cell viability for
the test polymeric system. Saline (0.9% sodium chloride) was used as a control.

4.8. The ExperimentalModel of Cancer In Vivo

The experimental model of neoplasia was obtained by transplantation of the tumor
strain of breast cancer cells RMK-1 obtained from Blokhin Cancer Research Center. Trans-
plantation began with anesthesia of the donor rat, then the subcutaneous tumor was cut out
and crushed, as a result of which cancer cells were suspended in sterile Hanks’ solution at a
ratio of 50 mg per 0.5 mL. Cell suspension was injected to the recipient rat subcutaneously
into the armpit area axillary region. The day of transfusion of injection was taken as 0 days
of tumor development. Test compounds were injected intraperitoneally with 9 mg/kg
polymeric system (System 2 and System 5) once on the 10th day, which corresponded to
the beginning of oncogenesis and formation of tumor nodes and activation of the immune
system [57]. Control rats received PBS. On the 16th day, animals were decapitated under
isoflurane anesthesia. The tumor size was measured, using a caliper on the 16th day; the
volume was calculated as: V = a · b · b/2, where a—length of tumor; b—width of tumor.

To assess the level of cytokines, blood was collected in a test tube, centrifuged and
serum was taken away. Suspension of peritoneal macrophage cultures was obtained in the
same way as for primary peritoneal macrophage cultures.

To assess the effect of methacrylic acid polymers on the immune system, the animals
were divided into the following groups: healthy animals without tumors (Intact control) in
the amount of 4; animals with RMK-1 (Tumor control) in the amount of 4; animals with
RMK-1, which were administered system 2 (System 2), in the amount of 4; animals with
RMK-1, which were administered system 5 (System 5), in the amount of 4.

4.9. Serum Cytokine Level Measurements in Tumor-Bearing Rats by Flow Cytometry

IL-10 and IL-17 were measured in the blood serum by ELISA, using Cloud-Clone kits
(United States) and an Epoch spectrophotometer (BioTek, United States).

4.10. Statistical Analysis

The mean values (M) and standard deviations (SD) were calculated to express the
data. Quantitative variables were described by median (Me) with interquartile range
(25th percentile; 75th percentile) in the case of a non-normal distribution or the mean (M)
and standard deviation (SD) if the distribution was normal. The Mann–Whitney test
was used to assess the significance of differences between the two groups (p < 0.05 was
considered statistically significant).

5. Conclusions

The anion-active polymers that we propose as carrier constituents normalize the levels
of cytokines (IL-10, IL-17) and are, therefore, promising for the further research and design
of drug derivatives.

Polymers with high molecular weights and charges are capable of activating the
immune system and, in particular, the macrophage system, thus exerting an indirect
antitumor effect. Polymers that possess intrinsic immunostimulatory activity may help to
eliminate the side effects that chemotherapy exerts on the immune system. The role that
the immune system plays in tumorigenesis and tumor suppression is currently receiving
particular attention.

A transition from the small molecules currently used as anticancer drugs to polymeric
systems makes it possible to combine the drugs with polymeric carrier constituents pos-
sessing intrinsic pharmacological activity. This may help to optimize anticancer therapy in
medicine by increasing the specificity of drug interactions with cancer cells, reducing the
side effects, and thus expanding the therapeutic ranges of drugs.
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