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Abstract 

Background: Non‑alcohol fatty liver disease (NAFLD) is the most common liver disease and an unhealthy lifestyle 
can lead to an increased risk of NAFLD. The present study aims to evaluate the association of meat consumption with 
NAFLD risk and liver‑related biochemical indexes in middle‑aged and elderly Chinese.

Methods: A cross‑sectional study was conducted in individuals who were 45 years or older and underwent a physi‑
cal examination from April 2015 to August 2017 in Southeast China. To evaluate associations between meat intake 
and NAFLD risk, inverse probability of treatment weighting and subgroup analyses were performed with logistic 
regressions. Spearman’s rank correlation was carried out to examine the relationship between meat consumptions 
and liver‑related biochemical indexes.

Results: High consumptions of red meat (28.44–49.74 and > 71.00 g/day) (ORadjusted = 1.948; P < 0.001; ORad‑

justed = 1.714; P = 0.002) was positively associated with NAFLD risk on inverse probability of treatment weighting analy‑
sis, adjusting for smoking, tea intake, weekly hours of physical activity and presence of hypertension, dyslipidemia 
and diabetes. Exposure–response relationship analysis presented that red meat intake was positively associated with 
NAFLD risk. Significant associations of red meat intakes with serum levels of γ‑glutamyl transferase, alanine transami‑
nase, aspartate aminotransferase, total triglyceride and high‑density lipoprotein cholesterol were found (rs = 0.176; 
P < 0.001; rs = 0.128; P < 0.001; rs = 0.060; P = 0.016; rs = 0.085; P = 0.001; rs = − 0.074; P = 0.003).

Conclusions: These findings suggest that the reduction of meat consumption may decrease NAFLD risk and should 
warrant further investigations.
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Background
Non-alcoholic fatty liver disease (NAFLD) is the most 
common liver disease associated with the metabolic syn-
drome or its components and is becoming a major global 

health and economic burden, with a 25% prevalence 
worldwide [1]. It is defined as the presence of more than 
5% of hepatic steatosis, with little or no secondary causes 
of fatty liver, such as alcohol, virus, and drugs. Besides, 
NAFLD is associated not only with adverse hepatic out-
comes including cirrhosis and liver cancer, but also with 
non-liver-associated adverse outcomes, such as cardio-
vascular diseases and diabetes [2–4]. Elderly individuals 
are the fastest-growing age group worldwide due to great 
improvements in medications and medical treatments, as 
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well as quality of life. Aging promotes the development of 
hepatocellular injury and inflammation [5], and the prev-
alence of NAFLD increases with age [1]. These data high-
light a serious concern for the future, and the enormous 
increasing health burden of NAFLD.

Lifestyle including dietary habits positively influ-
enced the development and progression of NAFLD [6, 
7]. Unhealthy dietary patterns including high intakes of 
soft drinks and meat have been demonstrated to be sig-
nificantly increased the NAFLD risk [8–11]. Meat is an 
important source of energy and some indispensable 
nutrients, including proteins and some micro-nutrients 
such as iron, zinc, selenium and B-vitamins [12, 13]. 
However, increased consumption of meat contributes 
to high intakes of dietary cholesterol, saturated fat, and 
other harmful compounds, which are closely connected 
to the NAFLD [14]. The global average per capita con-
sumption of meat is rising, especially in China [12]. 
Chinese meat consumption increased from 58.9  g/d to 
89.7  g/d from 1992 to 2012, which was far beyond the 
recommendation for Chinese adults [14]. Moreover, high 
consumption of meat was related to insulin resistance, 
type 2 diabetes, lipodystrophy, cardiovascular diseases, 
hepatocellular carcinoma and hypertension[15–18], 
which coexist and share similar pathogenesis of NAFLD 
[19, 20]. Therefore, it is important to examine the rela-
tionship of meat intake with NAFLD among the Chinese 
population, especially in middle-aged and elders, who are 
predisposed to NAFLD [21, 22].

Furthermore, liver-related biochemical parameters 
such as γ-glutamyl transferase (GGT), aspartate ami-
notransferase (AST), and alanine transaminase (ALT) 
were associated with NAFLD [23]. TG/HDL-C was found 
to be independently associated with fatty liver diseases 
[24, 25]. However, epidemiological studies regarding 
the associations of meat subtypes intake with NAFLD 
risk and liver-related biochemical indexes were not fully 
addressed.

This cross-sectional study, therefore, is intended to 
evaluate the associations of meat subtypes intake with 
the risk of NAFLD and liver-related biochemical indexes 
among the middle-aged and elder Chinese population.

Methods
Study subjects and design
This was a cross-sectional study, conducted in the health 
examination center of the Affiliated Nanping First Hos-
pital, Fujian Medical University from April 2015 through 
August 2017. As shown in Fig. 1, we included individu-
als aged ≥ 45  years old and who permanently resided in 
Nanping. Further exclusion criteria in our study were 
as follows: (A) Individuals whose daily consumptions of 
alcohol > 40  g (men) or > 20  g (women). (B) Individuals 

who had any other liver disease history, such as drug-
induced liver disease, viral hepatitis, Wilson’s disease, 
autoimmune hepatitis and total parenteral nutrition. (C) 
Individuals who were taking hypolipidemic or weight 
reduction drugs. (D) Individuals who did not answer 
more than 25 food-related items on the questionnaire. (E) 
Individuals who did not provide information on smoking 
and tea consumption. All subjects provided their written 
informed consent before participating in this study.

The current study was carried out in compliance with 
the Declaration of Helsinki, and the Ethics Committee of 
Fujian Medical University approved the study protocol 
(ethics number 2014096).

Data collection
NAFLD ascertainment
NAFLD was diagnosed by abdominal ultrasonography 
using established criteria [26]. An abdominal ultrasonog-
raphy examination was done by experienced radiologists 
who were unaware of the laboratory and clinical data.

Meat intakes assessment
Dietary information on typical food consumption of par-
ticipants was collected using a semi-quantitative food 
frequency questionnaire consisting of 110 food-related 
items, which was developed and validated in a sam-
ple from southern China [27]. And the information was 
obtained from participants interviewed face to face by 
trained investigators. For each food item, participants 
used the following response options to indicate how 
often they ate the selected food on average: 3 times/day, 
twice/day, once/day, 5–6  times/week, 3–4  times/week, 
1–2  times/week, 1–3  times/month, < once/month and 
rarely. Red meat consisted of pork, beef and lamb. Poul-
try was composed of chicken and duck. Processed meat 

Fig. 1 Flowchart of the study population. NAFLD, non‑alcoholic fatty 
liver disease
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contained fried and smoked meat. Fish included: fish, 
shellfish and crab. The nutritional components of each 
food item were taken from the China Food Composition 
[28].

Covariate assessment
The following variables were self-reported: age, sex, 
marital status, income, educational level, smoking sta-
tus, tea intake status, physical activity, medication use 
and medical conditions. All subjects underwent physi-
cal examinations (height, weight, waistline, hipline and 
blood pressure) and blood tests (fasting plasma-glucose, 
low-density lipoprotein cholesterol, total cholesterol, 
TG, HDL-C, AST, ALT and GGT) performed by trained 
physicians. BMI was calculated as weight/ (height) 2. 
Fatty liver index (FLI), a simple and accurate predictor 
of hepatic steatosis in the general population, was cal-
culated according to the previous studies: FLI = e [0.953 × 
ln (TG) + 0.139 × BMI + 0.718 × ln (GGT) + 0.053 × WC − 15.745]/ 
(1 + e [0.953 × ln (TG) + 0.139 × BMI + 0.718 × ln (GGT) + 0.053 × 
WC − 15.745]) × 100. The FLI score range is 0–100, val-
ues < 30 rule out and values ≥ 60 rule in steatosis [29]. 
Participants with a systolic blood pressure ≥ 140 mmHg 
or diastolic blood pressure ≥ 90  mmHg were defined as 
having hypertension. And subjects who had one or more 
of the following abnormalities were diagnosed as dyslipi-
demia: total cholesterol ≥ 6.2 mmol/L, TG > 2.25 mmol/L, 
low-density lipoprotein cholesterol > 4.13  mmol/L or 
HDL-C < 1.03  mmol/L [30]. Diabetes was diagnosed as 
follows: fasting plasma glucose of 7.0 mmol/L or greater 
or 2-h postprandial glucose greater than or equal to 
11.1 mmol/L.

Statistical analysis
Participants were classified into 4 groups based on the 
quartile of total meat consumption. The baseline char-
acteristics of subjects were analyzed using the Nonpara-
metric Kruskal–Wallis test for non-normal continuous 
variables and Chi-Square test for nominal variables. Con-
tinuous variables were expressed as median (interquar-
tile range, IQR). Propensity scores were used to explain 
potential confounders by observed characteristics at 
baseline [31]. Age, gender and BMI were used to calcu-
late the propensity score. Inverse probability of treat-
ment weighting analysis was performed to evaluate 
associations of red meat, processed meat, poultry and 
fish intakes with NAFLD, adjusting for smoking status, 
tea intake status, weekly hours of physical activity, and 
presence of hypertension, dyslipidemia and diabetes. 
The lowest quartile (Q1) of each type of meat intake was 
served as the reference group and P for trend was calcu-
lated by setting the meat intake quartiles as a continu-
ous variable. To evaluate dose–response relationships 

between continuous exposure variables (red meat, pro-
cessed meat, poultry and fish intakes) and NAFLD, a 
logistic model with restricted cubic spline using five 
knots at 0.05, 0.275, 0.5, 0.725 and 0.95 was built, adjust-
ing for age, sex, BMI, smoking status, tea intake status, 
weekly hours of physical activity, and presence of hyper-
tension, dyslipidemia and diabetes.

We also performed subgroup analysis to examine rela-
tionships of red meat, processed meat, poultry, and fish 
with NAFLD by the following subgroups: age (< 60 years 
or ≥ 60 years), gender (men or women), BMI (< 24 kg/m2 
or ≥ 24 kg/m2), smoking status (never, former or current), 
tea consumption status (yes or no), hypertension (yes or 
no), dyslipidemia (yes or no), diabetes (yes or no), and 
weekly hours of physical activity (< 9  h/week or ≥ 9  h/
week). P value for interaction was calculated. Two sen-
sitivity analyses were conducted: (1) logistic regression 
analysis without IPTW; and (2) propensity score-match-
ing logistic regressions. Furthermore, to investigate the 
associations of meat subtypes intakes with the concentra-
tions of serum GGT, ALT, AST, fasting plasma glucose, 
total cholesterol, TG, low-density lipoprotein cholesterol 
and HDL-C, spearman’s rank correlation was performed.

For statistical analyses, SPSS, version 19.0.0.1(IBM 
SPSS, 2010, Chicago, IL, USA) and R, version 4.0.0 (R 
Project for Statistical Computing) were performed. All P 
values were two-tailed and results were considered to be 
statistically significant at P values < 0.05.

Results
Baseline characteristics
A total of 1594 individuals were included in this analy-
sis. In the entire study sample, 53.5% were men, the aver-
age age was 53.54 ± 6.90 years and the average body mass 
index (BMI) was 23.77 ± 2.99 kg/m2. As shown in Table 1, 
compared with participants with lower total intakes of 
red, processed meat, poultry and fish, participants with 
higher total intakes (1) were younger and more likely to 
be married persons, male, smokers, and tea drinkers; (2) 
had higher educational level, higher income, higher BMI, 
higher waist and hip circumference; (3) had higher levels 
of plasma γ-glutamyl transferase and alanine aminotrans-
ferase; and (4) had a higher prevalence rate of NAFLD 
(each P < 0.05).

Meat subtypes consumptions and NAFLD
As presented in Table  2, after propensity score weight-
ing, red meat intake was positively related to the risk of 
NAFLD (OR per 50  g/day of red meat: 1.128, 95% CI: 
1.005–1.266). After further adjustment for smoking sta-
tus, tea intake status, weekly hours of physical activity 
and the presence of hypertension, dyslipidemia, and dia-
betes, the association with NAFLD remained significant 
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(ORadjusted = 1.143). High consumptions of red (Q2 and 
Q4) were significantly relevant to higher odds for NAFLD 
(ORadjusted = 1.948 and 1.716, respectively), adjusting for 
those potential confounders. Furthermore, the results did 

not change appreciably after further adjusted for energy 
and cholesterol intakes (see Additional file 1: Table S1).

The restricted cubic splines analysis was applied to 
explain the exposure–response association between 

Table 1 Baseline characteristics of the study population by quartiles of the total intake of red, processed meat, poultry and fish

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; GGT, γ-glutamyl transferase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; FPG, fasting plasma-glucose; TC, total cholesterol; TG, total triglyceride; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NAFLD, non-
alcoholic fatty liver disease; M (IQR) = Median (Interquartile range); Q = quartile

Q1 (< 65.12 g/day) Q2 (65.12–95.00 g/day) Q3 (95.01–150.80 g/day) Q4 (> 150.80 g/day) P

Age (years), M (IQR) 53 (49–59) 52 (49–58) 52 (48–57) 52 (48–57) 0.010

Gender, n (%) < 0.001

 Male 129 (39.7) 223 (47.2) 237 (59.4) 263 (66.1)

 Female 196 (60.3) 249 (52.8) 162 (40.6) 135 (33.9)

NAFLD, n (%) 84 (25.8) 151 (32.0) 136 (34.1) 152 (38.2) 0.005

Educational level, n (%) < 0.001

 Primary school and less than 71 (21.8) 71 (15.0) 40 (10.00) 34 (8.5)

 Junior middle and high school 154 (47.4) 228 (48.3) 197 (49.4) 209 (52.5)

 Junior college or above 100 (30.8) 173 (36.7) 162 (40.6) 155 (38.9)

Income (yuan/month), n (%)  < 0.001

 < 2000 52 (16.0) 36 (7.6) 28 (7.0) 24 (6.0)

 2000–3000 131 (40.3) 167 (35.4) 121 (30.3) 120 (30.2)

 > 3000 142 (43.7) 269 (57.0) 250 (62.7) 254 (63.8)

Marital status, n (%) < 0.001

 Married 312 (96.0) 469 (99.4) 391 (98.0) 397 (99.7)

 Single or other 13 (4.0) 3 (0.6) 8 (2.0) 1 (0.3)

Smoking status, n (%) < 0.001

 Never 264 (81.2) 382 (80.9) 283 (70.9) 248 (62.3)

 Former 17 (5.2) 20 (4.2) 24 (6.0) 34 (8.55)

 Current 44 (13.5) 70 (14.8) 92 (23.11) 116 (29.1)

Tea intake status, n (%)  < 0.001

 No 168 (51.7) 218 (46.2) 147 (36.8) 136 (34.2)

 Yes 157 (48.3) 254 (53.8) 252 (63.2) 262 (65.8)

BMI (kg/m2), M (IQR) 22.72 (21.06–24.98) 23.60 (21.64–25.40) 23.41 (21.48–25.64) 24.10 (22.49–26.09) < 0.001

Waist circumference (cm), M (IQR) 83 (76–89) 83 (77–90) 85 (78–91) 86 (80–92) < 0.001

Hip circumference (cm), M (IQR) 94 (91–98) 95 (91–99) 96 (92–99) 97 (93–101) < 0.001

SBP (mmHg), M (IQR) 124 (112–140) 120 (110–132) 120 (110–131) 122 (112–134) 0.124

DBP (mmHg), M (IQR) 80 (74–88) 80 (77–88) 80 (75–88) 80 (76–90) 0.317

Hypertension, n (%) 132 (40.6) 170 (36.0) 148 (37.1) 157 (39.4) 0.528

Dyslipidemia, n (%) 121 (37.2) 165 (35.0) 144 (36.1) 162 (40.7) 0.345

Diabetes, n (%) 66 (20.3) 96 (20.3) 77 (19.3) 74 (18.6) 0.909

GGT (U/L), M (IQR) 22 (17–33) 24 (17–36) 26 (18–39) 28 (20–44) < 0.001

ALT (U/L), M (IQR) 19 (14–25) 20 (15–27) 21 (16–29) 21 (16–30) 0.001

AST (U/L), M (IQR) 22 (19–26) 22 (19–26) 22 (19–26) 23 (19–27) 0.318

FPG (mg/dL), M (IQR) 469.44 (441.98–513.73) 467.67 (443.76–516.39) 467.67 (438.44–505.76) 469.44 (441.10–510.19) 0.708

TC (mg/dL), M (IQR) 460.58 (410.98–505.76) 467.67 (416.30–513.73) 465.90 (420.73–528.79) 460.58 (420.73–523.47) 0.328

TG ( mg/dL), M (IQR) 119.57 (85.92–170.95) 127.55 (91.23–174.49) 126.66 (92.12–178.03) 130.20 (93.00–183.35) 0.354

LDL (mg/dL), M (IQR) 293.18 (239.15–339.24) 296.72 (248.89–344.55) 293.18 (248.89–350.75) 294.07 (239.15–336.58) 0.610

HDL (mg/dL), M (IQR) 116.92 (101.86–129.32) 116.92 (100.97–129.32) 116.92 (100.97–129.32) 114.26 (98.32–127.55) 0.124

Physical activity (hours/week), M 
(IQR)

10.5 (4.5–17.5) 9.5 (4.0–15.3) 8.9 (4.1–15.0) 7.0 (3.5–15.6) 0.051
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meat subtypes intakes and the risk of NAFLD (Fig. 2). 
The ORs of NAFLD increased with red meat and poul-
try consumptions but decreased with the fish intake 
(Fig. 2a, c, d). Moreover, the trend for OR of processed 
meat intake was not found (Fig. 2b).

Stratified analyses
The positive association between meat intake and 
NAFLD was consistent across strata of age, sex, smoking 
status, tea intake status, BMI, weekly hours of physical 
activity, and the presence of hypertension, dyslipidemia 
and diabetes. Significant associations between red meat 
intake and the risk of NAFLD were not only found in 
males but also existed in people whose BMI ≥ 24 kg/m2, 
tea-drinkers, people with hypertension and people with-
out dyslipidemia. Adjusted ORs were estimated to be 
1.177, 1.195, 1.229, 1.304 and 1.203, respectively. Moreo-
ver, fish intake was found positively relevant to NAFLD 
in people with diabetes (ORadjusted = 1.447). Nonetheless, 
no significant interactions of meat subtypes intakes and 
potential confounders were identified (Table 3).

Sensitivity analyses
Results from unweighted analysis was similar to those 
from propensity score-weighted analysis. Compared 
with the lowest quartile of meat intake, high intakes of 
red meat (Q2 and Q4) were significantly associated with 
NAFLD risk without the inverse probability of treatment 
weighting (ORadjusted = 1.484 and 1.558, respectively) (see 
Additional file 2: Table S2). Nonetheless, positive associa-
tions of red meat (Q4) and processed meat (Q3) consump-
tions with NAFLD risk were observed on propensity 
score matching analysis, with adjusted OR of 1.673 and 
1.800, respectively (see Additional file 3: Table S3).

Meat subtypes intakes and liver‑related biochemical 
indexes
Associations between meat subtypes intakes and liver-
related biochemical indexes were shown in Fig.  3. Red 
meat intake was positively correlated with levels of GGT, 
ALT, AST and total triglyceride (TG), but inversely with 
high-density lipoprotein cholesterol (HDL-C) (Spear-
man test correlation coefficient = 0.176, 0.128, 0.060, 
0.085 and − 0.074, respectively). Processed meat intake 
was significantly associated with GGT, ALT, TG and 
HDL-C (Spearman test correlation coefficient = 0.141, 
0.115, 0.081 and − 0.067, respectively). Similarly, signifi-
cant associations were observed between poultry intake 
and GGT, ALT, TG and HDL-C (Spearman test correla-
tion coefficient = 0.111, 0.104, 0.085 and − 0.066, respec-
tively). Besides, GGT was also found to be significantly 
related to the consumption of fish (Spearman test corre-
lation coefficient = 0.063).

Table 2 Propensity score weighted univariable and 
multivariable analysis of associations between meat subtypes 
consumptions and NAFLD

NAFLD, non-alcoholic fatty liver diseases
a Adjusted by smoking status, tea intake status, weekly hours of physical activity 
and the presence of hypertension, dyslipidemia and diabetes. Q = quartile

Variable Crude OR (95%CI) Adjusted OR (95%CI)a

Red meat

Continuous variable

 Per 50 g/day increase 1.128 (1.005–1.266) 1.143 (1.010–1.294)

Categorical variables

 Q1(< 28.44 g/day) 1 (Reference) 1 (Reference)

 Q2(28.44–49.74 g/day) 1.901 (1.386–2.609) 1.948 (1.399–2.714)

 Q3 (49.75–71.00 g/day) 1.221 (0.872–1.710) 1.190 (0.833–1.698)

 Q4 (> 71.00 g/day) 1.659 (1.199–2.295) 1.716 (1.214–2.424)

P for trend 0.043 0.043

Processed meat

Continuous variable

 Per 50 g/day increase 1.003 (0.806–1.247) 0.965 (0.766–1.216)

Categorical variables

 Q1 (< 2.26 g/day) 1 (Reference) 1 (Reference)

 Q2 (2.26–4.61 g/day) 1.159 (0.828–1.622) 1.146 (0.806–1.629)

 Q3 (4.62–6.59 g/day) 1.521 (1.104–2.096) 1.389 (0.992–1.946)

 Q4 (> 6.59 g/day) 1.376 (0.986–1.921) 1.335 (0.938–1.901)

 P for trend 0.020 0.059

Poultry

Continuous variable

 Per 50 g/day increase 0.974 (0.666–1.424) 1.021 (0.681–1.531)

Categorical variables

 Q1(< 7.00 g/day) 1 (Reference) 1 (Reference)

 Q2 (7.00–9.00 g/day) 1.145 (0.829–1.582) 1.131 (0.805–1.589)

 Q3 (9.01–14.00 g/day) 1.086 (0.806–1.462) 0.998 (0.730–1.364)

 Q4 (> 14.00 g/day) 1.052 (0.774–1.431) 1.078 (0.779–1.493)

 P for trend 0.753 0.801

Fish

Continuous variable

 Per 50 g/day increase 0.967 (0.868–1.077) 0.989 (0.883–1.108)

Categorical variables

 Q1 (< 11.01 g/day) 1 (Reference) 1 (Reference)

 Q2 (11.01–25.15 g/day) 0.865 (0.632–1.184) 0.870 (0.625–1.211)

 Q3 (25.16–50.42 g/day) 1.007 (0.735–1.379) 1.013 (0.727–1.411)

 Q4 (> 50.42 g/day) 0.922 (0.669–1.271) 0.943 (0.671–1.324)

 P for trend 0.870 0.976
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Discussion
In this cross-sectional study, we observed that NAFLD 
was associated with higher intake levels of red meat. Sig-
nificant associations of serum levels of GGT, ALT, AST, 
TG and HDL-C with meat subtypes intakes were found 
as well. Additionally, no significant interactions between 
meat consumptions and potential confounders for 
NAFLD were detected.

Significant associations between high meat consump-
tions and NAFLD were demonstrated in a few studies [8, 
10, 11, 32]. Our results are in accordance with the pre-
vious studies, indicating a positive association between 
high red meat intake and NAFLD. Two cross-sectional 
studies have presented that red meat was significantly 

correlated with NAFLD [8, 11]. In another cross-sectional 
study, high intakes of total meat, especially red meat and/
or processed meat were positively linked to NAFLD 
and insulin resistance, while processed meat alone was 
only relevant to insulin resistance. This is mainly due to 
a relatively low level of processed meat consumption in 
their research set [10]. In addition, a nested case–control 
study also showed that high consumptions of red meat, 
processed red meat and poultry were positively asso-
ciated with NAFLD [32]. Due to the better accuracy of 
the continuous ORs [33], the dose–response analysis we 
have employed can better measure the overall trends 
of the ORs for meat intakes. The 95% CI for red meat 
intake beyond 200 g/day was slightly wider, because that 

Fig. 2 Restricted cubic spline model of the odds ratios of non‑alcoholic fatty liver diseases (NAFLD) with intakes of (a) red meat (Pnonlinearity = 0.63), 
(b) processed meat (Pnonlinearity = 0.24), (c) poultry (Pnonlinearity = 0.69) and (d) fish (Pnonlinearity = 0.55). Gray area, 95% confidence interval. Each model 
was adjusted for age, gender, body mass index (BMI), smoking status, tea intake status, weekly hours of physical activity and the presence of 
hypertension, dyslipidemia and diabetes
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less than 2% of participants had red meat intake > 200 g/
day, that was, the tendency of red meat intake within the 
range 0–200 g/day was relatively reliable and stable.

There are several plausible mechanisms by which 
meat intake is related to NAFLD. NAFLD was reported 
to be closely linked to hepatic insulin resistance, which 
had a strong correlation with liver-related biochemi-
cal indexes such as ALT, AST and GGT [34]. GGT and 
ALT had been considered as biomarkers of hepatic fat 
accumulation, which can lead to hepatic insulin resist-
ance and increase the contribution of gluconeogenesis 
to total endogenous glucose production [35]. A cross-
sectional study of 2198 European reported a significant 
positive association between red meat and GGT. As GGT 

is also a potential nonspecific marker of oxidative stress, 
the author suggested that oxidative stress may play a vital 
role underlying the development of chronic diseases with 
red meat intake [36]. Another cross-sectional study indi-
cated that TG/HDL-C was independently relevant to the 
risk of NAFLD. The author attributed this result to insu-
lin resistance [37]. Positive associations of serum levels 
of GGT, ALT and TG with red meat intakes were found 
in this study. Inversely, serum HDL-C concentration 
was negatively relevant to red meat and processed meat 
intakes. Hence, it’s plausible that increased hepatic lipid 
accumulation and insulin resistance play a substantial 
role in the relationship of meat intakes with the devel-
opment of NAFLD. In addition, a study by Avila et  al. 
found that red meat was positively relevant to serum 

Fig. 3 Heatmap of associations between meat subtypes intakes and liver‑related biochemical indexes. GGT, γ‑glutamyl transferase; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; FPG, fasting plasma‑glucose; TC, total cholesterol; TG, total triglyceride; LDL, low‑density 
lipoprotein; HDL, high‑density lipoprotein. *P < 0.05
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ferritin [38], which can increase the risk of NAFLD [39, 
40]. Fried food will produce some hazardous chemicals, 
such as advanced glycation end products and trans fatty 
acids [41, 42], which were reported to play a critical role 
in NAFLD [43, 44].

Significant associations were found in several sub-
groups. A positive association was observed between red 
meat and NAFLD in males, perhaps it is because males 
had higher meat intakes and a higher prevalence of fatty 
liver than females [45]. Moreover, several studies had 
found significant associations of high meat intakes with 
obesity, type 2 diabetes and hypertension [15, 18, 46], 
which were considered as risk factors in the development 
of NAFLD [20, 47, 48]. In our study, a positive association 
of red meat intake with NAFLD was found in people with 
BMI ≥ 24 kg/m2 and people with hypertension.

This study, however, had several limitations. Firstly, 
because of the cross-sectional study design, the casual 
inference was not allowed. Secondly, measurement 
error was unavoidable for self-reported diet and other 
data. Nevertheless, since all participants and research-
ers in this study were blinded to the results of abdominal 
ultrasonography and blood test, a reporting bias without 
differences is likely only to attenuate our observed asso-
ciation. Thirdly, since the study subjects were middle-
aged and elders, it should be cautious in generalizing our 
findings to the wider population. And population-wide 
prospective studies were needed. Fourthly, in our study, 
the evaluation of the presence of NAFLD was performed 
only by an abdominal ultrasonography examination, 
which is not sensitive enough to detect mild steatosis. As 
the absence of the information on the severity of hepatic 
steatosis, we were unable to investigate the association 
of NASH with meat consumption. However, ultrasonog-
raphy examination can provide a non-invasive predic-
tion of liver histology which in moderate and severe 
steatosis and advanced fibrosis can be both highly sen-
sitive and specific. Moreover, ultrasonography exami-
nation was done by the same experienced radiologists 
who were unaware of the laboratory and clinical data in 
our study. Hence, this potential non-differential bias can 
only weaken the observed associations. Besides, we have 
evaluated the association between meat consumptions 
and FLI, the results remained the same (see Additional 
file 4: Table S4). Lastly, although a comprehensive set of 
confounders were considered, as an observational study, 
the presence of unmeasured confounders is possible. For 
example, as thyroid function was reported to be associ-
ated with NAFLD risk [49, 50], related data were lack in 
our study. Although we have excluded participants who 
were taking hypolipidaemic or weight reduction drugs, as 
well as individuals who had any other liver disease his-
tory, such as drug-induced liver disease, viral hepatitis, 

Wilson’s disease, autoimmune hepatitis and total paren-
teral nutrition, the possible interference of other drugs 
may exist. However, we have performed subgroup analy-
sis to examine the relationships of meat consumption 
with NAFLD by the following subgroups: age, sex, BMI, 
smoking status, tea consumption status, hypertension, 
dyslipidemia, diabetes, and weekly hours of physical 
activity. Sensitivity analyses were also used to examine 
the association of meat intakes with NAFLD.

Conclusions
In conclusion, a positive relationship between high 
consumptions of red meat and the risk of NAFLD was 
observed. In addition, serum levels of liver-related 
biochemical indexes were significantly relevant to red 
meat intake. Our findings suggested that the reduction 
of meat consumption may decrease the risk of NAFLD.

Abbreviations
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