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A B S T R A C T   

Background: Hepatocellular carcinoma (HCC) is a common cancer that is increasingly becoming a 
global health problem and a major public health concern. In order to improve patient outcomes, 
additional biomarkers and targets must be explored. Ubiquitination-related genes (URGs), as 
tumor regulators, exhibit multiple functions in tumor development. Our objective was to examine 
the influence of URGs on the prognosis of patients with HCC. 
Methods: By utilizing unsupervised cluster analysis, we were able to identify URGs in the database 
and create a risk score profile for predicting the prognosis of patients with HCC. The model’s 
clinical application was explored using subject operating characteristic curves, survival analysis, 
and correlation analysis. We additionally examined the variances in clinical traits, immune 
infiltration, somatic genetic alterations, and responsiveness to treatment among high- and low- 
risk populations identified by the prognostic model. Scores for immune cell infiltration and 
immune-related pathway activity were determined by performing ssGSEA enrichment analysis. 
Additionally, to investigate potential mechanisms, we utilized GO, KEGG and GSVA analyses. 
Results: We developed a risk scoring model that relies on genes associated with ubiquitination. As 
the risk score increased, the malignancy and prognosis of the tumor worsened. The high-risk and 
low-risk groups exhibited notable disparities in relation to the immune microenvironment, genes 
associated with immune checkpoints, sensitivity to drugs, and response to immunotherapy. 
Conclusion: The utilization of a risk model that relies on genes associated with ubiquitination can 
serve as a biomarker to assess the prognosis of patients with HCC, and aid in the selection of 
suitable therapeutic agents.   

1. Introduction 

Hepatocellular carcinoma (HCC), as the sixth most common tumor in the world, is currently the fourth leading cause of cancer- 
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related mortality [1,2]. According to the most recent epidemiological information, HCC is closely associated with the following risk 
factors: infection with the hepatitis virus, exposure to Aflatoxin, non-alcoholic fatty liver disease, excessive alcohol intake, and obesity 
[3,4]. At present, the main treatment methods for liver cancer include surgical resection, liver spread, thermal expansion, 
intra-arterial, radiation and systemic therapies [5]. Although the therapeutic outcome in the majority of patients with HCC is still 
unsatisfactory. Hence, there is an urgent need for the identification of novel crucial genes that can serve as therapeutic targets and 
enhance the clinical outcomes of individuals diagnosed with HCC. 

Post-translational modification (PTM) is a crucial mechanism that precisely regulates protein activity, influencing cellular meta-
bolism and facilitating adaptation to genetic and environmental variations. Ubiquitination stands out as a pivotal PTM, essential for 
upholding the cellular protein homeostasis and represents a prominent focus of current research endeavors [6]. The ubiquitination 
pathways play a key role in regulating the anti-tumor immunity of immune cells and the immunosuppression of tumor cells in the 
tumor microenvironment (TME) of patients, primarily involving the DNA damage repair, p53 activation, cell cycle, and apoptosis [7, 
8]. In addition, targeting the ubiquitin pathway is becoming a promising cancer treatment strategy [8]. According to Zhang et al., 
ubiquitination related genes (URGs) serve as the standard for classifying molecular subtypes and stratifying patient risk [9]. 
Furthermore, several drugs depending on ubiquitin-related pathways has been approved by Food and Drug Administration (FDA) for 
cancer therapy [10,11]. 

URGs have been considered as controllers of tumors, impacting the regulation of tumor cell cycle, expression of genes, and 
advancement [12]. Nowadays, many scholars have applied URGs related characteristics to forecast the future course and immune 
reaction of various types of cancer, such as lung adenocarcinoma and endometrial cancer, the prognostic signature based on URGs 
performed well in predicting the infiltration of immune cells and the level of tumor mutation burden (TMB) within the TME and the 
effectiveness of immunotherapy for cancer treatment [13,14]. There were several studies have uncovered the relationship of URGs and 
the initiation and development of HCC, nevertheless, the role of URGs in HCC has not been systematically analyzed [15,16]. 

To investigate the correlation between URGs and the outlook of individuals with HCC, we discovered URGs in a database and 
created a risk score profile using unsupervised cluster analysis to forecast the prognosis of HCC patients. The model’s clinical appli-
cation was explored using subject operating characteristic curves, survival analysis, and correlation analysis. To offer clinical treat-
ment guidance, we conducted a comprehensive analysis of clinical characteristics, immune infiltration, somatic mutations, and 
treatment sensitivity in high- and low-risk populations identified by the prognostic model. Our results indicate that URGs have served 
as potential prognostic biomarkers and therapeutic targets for liver cancer patients. The URGs screened and the model constructed in 
this study will aid in formulating liver cancer treatment strategies and provide new insights. 

2. Materials and methods 

2.1. Data preparation 

We obtained transcriptome expression data, clinicopathologic information, somatic mutations, and copy number variation data 
from The Cancer Genome Atlas (TCGA) for 377 patients with hepatocellular carcinoma (https://portal.gdc.cancer.gov/). Data on 260 
HCC patients from the International Cancer Genome Consortium (ICGC) were obtained as validation (https://dcc.icgc.org/). URGs 
were obtained from the iUUCD database (http://iuucd.biocuckoo.org/). Utilizing the TCGA dataset, we applied the “limma” R package 
to examine the differential expression of Upregulated Genes (URGs) (logFC >1 or logFC < − 1, P < 0.05) between normal and tumor 
tissues of HCC for further exploration. 

2.2. Consensus clustering analysis 

Consensus clustering of HCC patients was performed using the "ConsensusClusterPlus" R package [17]. We achieved consistent 
results by evaluating the optimal number of clusters within the range of k = 2–9 over 1000 iterations. Cumulative distribution function 
(CDF) curves and consensus matrix were used to determine the optimal number of clusters. Survival differences between clusters were 
compared through Kaplan-Meier (KM) analysis using the R packages “survminer” and “survival”. 

2.3. Gene set enrichment analysis 

The functional annotation and enrichment pathway of differentially expressed URGs were explored. Annotations for Gene Ontology 
(GO) categories include biological process (BP), cellular component (CC), and molecular function (MF) [18]. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway was used exclusively to store information about gene pathways between different species [19]. 
The “ClusterProfiler” package was used for GO and KEGG analysis. In addition, GSVA enrichment analysis was performed to inves-
tigate functional differences between different groups [20]. 

2.4. Model construction and validation 

The URGs related to the prognosis of HCC patients were selected using univariate Cox regression analysis. To avoid overfitting, we 
employed the “glmnet” R package for model optimization using the least absolute shrinkage and selection operator (LASSO) regression 
with 1000 iterations [21]. Using the expression values of each gene, a risk scoring formula was developed. The regression coefficients 
were estimated and weighted in the LASSO regression analysis. The formula for calculating the risk score was as follow: 
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∑n
i=1(Coefi ∗ Expi). In the equation, Coefi represents the coefficients of the feature genes, while Expi denotes the expression levels of 

individual feature genes. Using the median risk score as the cutoff, patients were divided into low-risk and high-risk groups using the 
risk scoring formula. We assessed the disparities in survival rates between the two patient groups by utilizing the KM methond and 
comparing them through the log-rank examination. Principal component analysis (PCA) was employed to investigate the prognostic 
model’s capability to accurately classify patients into distinct risk groups. Moreover, the findings were confirmed by utilizing HCC 
individuals from the ICGC repository. The independent prognostic value of the risk scoring was assessed using both univariate and 
multivariate Cox regression analyses. ROC curve analyses were conducted for 1-, 3-, and 5- years using the “survivalROC” R package, 
with calculation of the respective areas under the curve (AUC). 

2.5. Tumor microenvironment characteristics 

Within the TME, the two primary categories of non-tumor elements consisted of immune cells and stromal cells. The immune and 
stromal components of the TME were assessed and scored using the R package “ESTIMATE”, followed by a comparison of the variances 
between the high-risk and low-risk cohorts. The stemness index serves as a measure that characterizes the resemblance between tumor 
cells and stem cells. Moreover, the correlation between risk scoring and stemness index was investigated, where mRNAsi represents an 
index computed using expression data and mDNAsi represents an index computed using methylation data. 

2.6. Evaluation of immune cell components and immune checkpoint-related genes 

Based on single-sample gene set enrichment analysis (ssGSEA), the level of immune cell infiltration and immune activity pathways 
of HCC patients were evaluated. The expression of immune checkpoint-related genes between high-risk and low-risk groups was 
further analyzed since immune checkpoints regulate immune system responses. 

Analysis of somatic mutations and copy number variations. 
Tumor mutational burden (TMB) refers to the quantity of genetic coding mistakes, base substitutions, and mutations in the genome, 

measured as the ratio per million bases [22]. The "MAF tools" R package was used to compare the differences in gene mutations 
between high and low-risk groups [23]. Correlation analysis was conducted to examine the relationship between TMB and risk scores. 
Abnormal DNA copy number variations (CNVs) were an important molecular mechanism in cancer. Therefore, we further analyzed the 

Fig. 1. Enrichment analysis of differentially expressed URGs and consistency clustering analysis. (A) GO enrichment analysis of differentially 
expressed URGs. (B) KEGG enrichment analysis of differentially expressed URGs. (C) Consensus clustering CDF for k = 2 to 9. (D) Relative change in 
area under the cumulative CDF curve for k = 2 to 9. (E) The overall survival (OS) probability of the patients in the two clusters. 
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Table 1 
Screening of prognosis-related URGs.  

gene HR HR.95L HR.95H pvalue 

TRIM27 1.050561809 1.00986304 1.092900791 0.014411635 
RNF2 1.264293116 1.160873553 1.376926091 7.21E-08 
UBE2T 1.068071867 1.037648563 1.099387166 7.95E-06 
RNF216 1.138535028 1.06168405 1.220948935 0.000274076 
RNF8 1.234383139 1.071643751 1.421836066 0.003509105 
ZBTB45 1.127050701 1.022824845 1.241897173 0.01570047 
TRIM25 1.191995022 1.089085237 1.304628953 0.000137608 
FANCD2 1.380224953 1.157404818 1.645941757 0.000334199 
RNF44 1.06550795 1.031418943 1.100723619 0.000130959 
PACSIN2 1.015213343 1.001399831 1.029217402 0.030765768 
ZBTB40 1.50100581 1.282329277 1.756973409 4.29E-07 
ARHGEF37 1.124451706 1.047276255 1.207314338 0.001223787 
UIMC1 1.29136688 1.155106724 1.443700729 6.98E-06 
WSB2 1.03025964 1.004584896 1.056590568 0.020600247 
TRAIP 1.239661679 1.115371589 1.377801886 6.73E-05 
KDM5B 1.248970549 1.084849046 1.43792119 0.001981424 
RNF148 8.401541962 1.731793107 40.75885685 0.008253865 
BMI1 1.113043097 1.066957807 1.161118956 6.91E-07 
USP21 1.126372035 1.064617182 1.191709079 3.53E-05 
NLE1 1.112408971 1.037475181 1.19275501 0.002754014 
OTUB2 1.454632113 1.014448388 2.085817879 0.041552462 
CHFR 1.439816664 1.091123644 1.899942356 0.009985371 
DCAF16 1.127999649 1.060191916 1.200144229 0.000140195 
HGS 1.061989098 1.007138505 1.119826954 0.026225242 
KCTD6 1.120489664 1.05953215 1.184954216 6.72E-05 
NCF2 1.036267651 1.014755381 1.058235971 0.000873189 
BUB3 1.107058608 1.051188483 1.165898202 0.000118413 
USP46 1.776744617 1.309977874 2.409828055 0.0002187 
UBE2C 1.014649067 1.008760132 1.020572381 9.74E-07 
RRP9 1.038008956 1.018178772 1.058225355 0.000150321 
CUL4B 1.088278262 1.045158291 1.13317723 4.11E-05 
DTL 1.065237848 1.015866608 1.117008536 0.009051041 
CHAF1B 1.174273021 1.069711435 1.289055239 0.000734909 
TMEM183A 1.105910219 1.03956912 1.176484939 0.001425436 
ABL1 1.040318751 1.004783351 1.077110903 0.025809231 
PLCG1 1.064953038 1.013965065 1.118504977 0.011937448 
WDR70 1.205829597 1.054144596 1.379341148 0.006358349 
NAE1 1.155849104 1.082993003 1.233606448 1.30E-05 
TRIM37 1.10627399 1.035869409 1.181463735 0.002609269 
ESR1 0.759499277 0.578829665 0.99656114 0.047164709 
TRAF3 1.27677023 1.13181687 1.440287968 7.07E-05 
ANKRD13B 1.30434736 1.120548796 1.518293573 0.000606444 
BARD1 1.644364284 1.284094975 2.105711766 8.09E-05 
UBE2M 1.009430177 1.001662327 1.017258266 0.017248274 
LLGL1 1.18888776 1.073174838 1.317077194 0.000927247 
NUP62 1.084507323 1.044981487 1.125528201 1.85E-05 
CDC23 1.107073939 1.047548489 1.169981837 0.00030938 
USP14 1.05294275 1.015915357 1.091319692 0.004736053 
UBE2O 1.159484526 1.078363198 1.246708315 6.37E-05 
RNF26 1.040280392 1.007799464 1.073808166 0.014687129 
FBXL19 1.201865246 1.07206693 1.347378628 0.001613919 
SRM 1.009281676 1.003806274 1.014786946 0.000872338 
MAP3K9 1.507232913 1.169329961 1.942780165 0.001536048 
UBE2A 1.043801464 1.008868478 1.079944036 0.013573912 
WDR62 1.229804861 1.063460169 1.422168916 0.00527469 
CDCA3 1.217065122 1.128314807 1.312796308 3.68E-07 
WDR76 1.121822454 1.040190675 1.209860507 0.002861845 
SAE1 1.026393295 1.013293542 1.039662401 7.04E-05 
ZBTB39 1.414028839 1.087848311 1.838011365 0.009617715 
STRN4 1.07324659 1.02961519 1.118726931 0.000843178 
CUEDC1 1.05400899 1.009123937 1.100890496 0.017835254 
TMUB2 1.047130009 1.009460166 1.086205571 0.013752315 
SKP2 1.235358952 1.111357138 1.373196506 8.99E-05 
ANAPC7 1.156730347 1.089268624 1.228370181 2.05E-06 
PCGF1 1.060833192 1.005421199 1.119299117 0.030967842 
FBXL7 1.121184247 1.036258252 1.213070308 0.004424646 
TRIM59 1.978764583 1.397966027 2.800861538 0.000118225 
POC1A 1.043822364 1.000122414 1.089431766 0.04934787 

(continued on next page) 
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Table 1 (continued ) 

gene HR HR.95L HR.95H pvalue 

KDM5C 1.058479433 1.018170049 1.100384667 0.004118275 
NUP43 1.161749341 1.090939462 1.237155295 2.97E-06 
FBXO45 1.284263228 1.133221446 1.455436662 8.89E-05 
TRIM65 1.095219876 1.032047589 1.16225898 0.002694175 
ZBTB41 1.078861312 1.025456251 1.135047672 0.003384986 
OTUD6B 1.238260898 1.08303637 1.415732743 0.001764589 
UBA2 1.024551941 1.007710153 1.041675203 0.004128279 
WRAP53 1.151186715 1.021245839 1.297660958 0.02122279 
SOCS2 0.80778699 0.726180641 0.898564054 8.55E-05 
STAM 1.185704924 1.107780283 1.269111022 9.05E-07 
SPSB2 1.076120965 1.028494261 1.12595313 0.001490878 
BRCA1 1.33572832 1.128317737 1.581265707 0.000773302 
WDR27 1.788219297 1.147320405 2.7871275 0.010260999 
PSMD14 1.09064265 1.057531219 1.124790803 3.47E-08 
DCAF13 1.110217627 1.067453596 1.154694858 1.82E-07 
USP1 1.079332256 1.045944943 1.113785315 1.92E-06 
SRC 1.04852851 1.018773153 1.079152933 0.001254401 
ZMIZ2 1.044888406 1.013519832 1.077227842 0.004750459 
MARK2 1.163010075 1.045920743 1.293207391 0.005283203 
RFWD3 1.193252256 1.07841756 1.32031506 0.000621019 
ATG10 1.463188165 1.124920438 1.903174247 0.004546677 
GGA3 1.10302719 1.03158642 1.179415468 0.004101984 
WDR45B 1.028044193 1.013222449 1.043082754 0.000189367 
DCAF7 1.059467941 1.027613142 1.092310201 0.000208286 
SSR3 1.027919659 1.015204665 1.040793903 1.45E-05 
HDAC4 1.590905038 1.242475132 2.037045873 0.000232016 
NEDD1 1.234667755 1.092230926 1.395679639 0.000750104 
ING5 1.282336169 1.13337685 1.45087316 7.91E-05 
WDHD1 1.483005635 1.272560944 1.728251776 4.49E-07 
CDC20 1.0230007 1.015173471 1.030888279 6.52E-09 
RAE1 1.169425018 1.096074443 1.247684299 2.18E-06 
DPF2 1.248088671 1.112675697 1.399981445 0.000155531 
KCTD2 1.067438714 1.012178044 1.125716385 0.016116498 
USP39 1.110386484 1.060270552 1.162871252 8.85E-06 
TRIO 1.161452003 1.036918727 1.300941646 0.009696715 
PRKCI 1.127789276 1.030371257 1.234417831 0.009078812 
OTUD3 1.64669298 1.138023785 2.382725041 0.008149128 
KLHL17 1.216719021 1.058105454 1.399109295 0.005914345 
PPP2R2C 1.137247499 1.02915801 1.256689314 0.011602421 
WDR75 1.188524217 1.116259359 1.265467386 6.80E-08 
UBAP2 1.319238098 1.174059114 1.482369276 3.20E-06 
RNF34 1.173471559 1.086102008 1.267869399 5.07E-05 
STXBP5 1.349603103 1.082751665 1.682221874 0.007646484 
UBE2S 1.038148566 1.018918002 1.057742077 8.69E-05 
AURKA 1.021187445 1.003972699 1.038697365 0.015647189 
RNF32 4.6430039 1.690846188 12.74952468 0.002891265 
PRKAA2 1.072714658 1.006485022 1.143302396 0.030868282 
DNAJC6 1.168319525 1.026637532 1.329554463 0.018347574 
BTBD3 1.071016354 1.014444193 1.130743355 0.013215371 
PAK1IP1 1.080783394 1.047666477 1.114947144 9.95E-07 
CCNF 1.405874243 1.228751591 1.608528852 7.11E-07 
ASB14 12.8461937 1.208218026 136.5851933 0.0342777 
WDR53 1.271731085 1.153819193 1.40169271 1.29E-06 
RBBP7 1.046979475 1.019822824 1.074859275 0.000617371 
WDR4 1.11588855 1.055705985 1.179501939 0.000106018 
SOCS7 1.328356372 1.123861582 1.570060476 0.000871547 
PJA1 1.086250947 1.040448574 1.134069621 0.000167249 
TRIM16 1.046366494 1.019476141 1.073966123 0.000644687 
TRIM36 2.0599438 1.369889322 3.097599487 0.000516473 
UBE2Z 1.031834095 1.012396822 1.051644551 0.001238969 
UBQLN4 1.033012498 1.010800498 1.0557126 0.003404854 
NPLOC4 1.040593884 1.014305155 1.067563964 0.002304148 
TRIM62 1.221765354 1.010182355 1.477664477 0.038981823 
GGA1 1.045072281 1.007678143 1.083854085 0.017721087 
SENP1 1.439151554 1.198434736 1.728218596 9.69E-05 
RNF24 1.258513343 1.115151835 1.420305097 0.000194337 
RNF220 1.217475886 1.106760079 1.339267255 5.23E-05 
KLHL23 1.086493637 1.023574598 1.153280305 0.006419978 
NUP37 1.274218292 1.148166761 1.414108394 5.12E-06 

(continued on next page) 
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copy number variations of model genes. 

2.7. Drug sensitivity and immunotherapy 

The "oncoPredict" R package can predict drug responses and biomarkers in cancer patients from cell line screening data [24]. It 
generated sensitivity scores using the "oncoPredict" package to predict the median inhibitory concentration (IC50) of chemothera-
peutic agents. The Tumor Immune Dysfunction and Exclusion (TIDE) score was used to assess the potential of tumor immune evasion 
[25]. Additionally, the immune therapy cohort IMVigor210 was utilized to evaluate the effectiveness of immunotherapy. 

2.8. Data statistics 

R (version 4.3.1) was utilized for conducting all statistical analyses. KM survival curves and log-rank tests were used to compare 
differences in survival rates between groups. Cox regression analysis was employed to assess the prognostic value of the model. ROC 
curves were used to evaluate model accuracy. The correlation analysis between two groups of variables was conducted using the 
Spearman correlation coefficient. In all tests, a p-value <0.05 was considered statistically significant. 

3. Results 

3.1. Selection of differential genes and clustering analysis 

1330 URGs were obtained from the iUUCD database. Under the selection criteria (|log2 FC| > 1, P < 0.05), 443 genes were 
identified as differentially expressed between liver cancer tissues and normal tissues (Supplementary Fig. S1). Fig. 1A illustrated that 
the GO enrichment analysis revealed the enrichment of these genes in diverse pathways including protein polyubiquitination, ubiq-
uitin ligase complex, and ubiquitin-like protein transferase activity. According to the KEGG enrichment analysis, it was found that 
these genes had strong connections with pathways like ubiquitin mediated proteolysis, Endocytosis, and polycomb repressive complex 
(Fig. 1B). Based on the CDF value and delta area value, the optimal number of clusters was determined (Fig. 1C and D). When K = 2, the 
HCC population was divided into 2 subgroups, achieving the best allocation effect (Supplementary Fig. S2). The analysis of survival 
indicated a notable disparity in survival rates among the two cohorts (Fig. 1E). 

3.2. The construction of a prognostic model 

Through Cox regression analysis, we identified 155 prognosis-related URGs (Table 1). To enhance the ability to forecast the clinical 
and pathological traits and outlook of patients with hepatocellular carcinoma, the LASSO regression algorithm was employed on these 
prognosis-associated URGs, resulting in the identification of 16 URGs for subsequent examination, determined by the minimum partial 
likelihood deviation (Fig. 2A and B). Fig. 2C depicted the correlation of these URGs constructed by the model. Based on the constructed 
model, a risk score was assigned, and using the median risk value, HCC patients were categorized into high- and low-risk groups. 
Fig. 2D displays the survival status of patients in the high- and low-risk groups, indicating a significantly poorer prognosis in high-risk 
population (Fig. 2E). PCA demonstrated that risk score effectively differentiated patients in different risk groups (Fig. 2F). Likewise, in 
the ICGC database, the group at high risk demonstrated a notable decline in survival, and the score for risk successfully distinguished 
patients of varying categories (Supplementary Figs. S3A and B). In HCC patients, the overall survival (OS) was significantly associated 
with clinical stage and risk score, as indicated by the univariate analysis (Fig. 3A). Furthermore, even after accounting for 

Table 1 (continued ) 

gene HR HR.95L HR.95H pvalue 

MPP7 1.146330235 1.009870782 1.301228861 0.034698657 
TBCB 1.019902655 1.006104473 1.033890071 0.00457302 
RAD18 1.428740291 1.186119084 1.720989778 0.000171594 
WDR12 1.357784684 1.205505707 1.529299477 4.67E-07 
EED 1.300314871 1.104119018 1.531373643 0.001650241 
RNFT2 1.708421896 1.183834042 2.465468362 0.00421401 
WDSUB1 1.117297765 1.033403263 1.208003053 0.005352592 
DTX2 1.164072942 1.040509638 1.302309719 0.007964771 
NXF1 1.057068438 1.003807626 1.113155203 0.035374884 
SUMO2 1.025197741 1.009118314 1.041533379 0.002033173 
ANAPC1 2.342244235 1.540100553 3.562175239 6.93E-05 
SACS 1.694676595 1.279072575 2.245321195 0.000238249 
GTF3C2 1.196686717 1.120946288 1.277544796 7.35E-08 
IFT172 1.817369645 1.372776989 2.40594973 3.00E-05 
TRIM28 1.006138672 1.002340199 1.00995154 0.001518219 
KCTD7 1.634848437 1.293664391 2.066014518 3.86E-05 
DCAF4 1.258576749 1.038936269 1.524651203 0.018756916 
SEC13 1.027542184 1.009695754 1.04570405 0.002370789 

Footnotes: HR, Hazard Ratio; HR.95L, Hazard Ratio 95%CI Low; HR.95H, Hazard Ratio 95%CI High. 
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Fig. 2. Construction of prognostic model. (A) LASSO coefficient profiles of the 155 URGs. (B) LASSO cross-validation for selecting optimal tuning 
parameter (λ). (C) Relevance of URGs involved in model construction. (D) Distribution of risk scores and survival status between low- and high-risk 
groups in the TCGA Cohort. (E) Survival rate of high- and low-risk group in TCGA. (F) PCA analysis in TCGA. 
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clinicopathological factors including age, sex, tumor grade, and tumor stage, the risk score continued to serve as a standalone 
prognostic marker for patients with HCC in multifactorial analyses (Fig. 3B). The ROC curve illustrated that, compared to other clinical 
features, the risk score served as a strong predictor of the 1-year survival in HCC patients (Fig. 3C); similarly, it also demonstrated a 
strong predictive ability for the 3-year and 5-year survival (Supplementary Figs. S4A and B). In addition, risk score was strongly 
associated with worse pathologic grade, and higher clinical stage (Fig. 3D and E). 

3.3. The tumor microenvironment and immune function 

TME is crucial for the development of cancer. In the high-risk group, immune scores, stromal scores, and ESTIMATE scores were 
lower than in the low -risk group (Fig. 4A). In addition, we conducted a comparison of the expression of genes related to immune 
checkpoints and observed a high expression of genes like CTLA4 and HAVCR2 in the high-risk group (Fig. 4B). The stemness index 
indicated that while there was no notable association between mDNAsi and the risk score (Fig. 4C), mRNAsi exhibited a significant 
positive correlation with the risk score (Fig. 4D). The ssGSEA analysis demonstrated that, compared to the low-risk group, the high-risk 
group exhibited a significant decrease in the expression of immune cells such as NK cells, DCs, CD8+ T cells, neutrophils, mast cells, and 
TIL (Fig. 4E). In addition, T cell stimulation, T cell inhibition, Cytolytic activity, APC inhibition, Type II IFN Reponse, and Type I IFN 
Reponse were significantly decreased in high-risk group, but MHC class I was increased (Fig. 4F). GSVA revealed significant 
enrichment of the mTOR signaling pathway, ubiquitin-mediated proteolysis, and various cancer pathways in high-risk group (Sup-
plementary Fig. S5). 

3.4. Somatic mutations and copy number variations 

Additionally, somatic genetic alterations are crucial in the advancement of HCC. In high-risk group, we discovered notable al-
terations in TP53 (Fig. 5A), whereas low-risk group exhibited a higher prevalence of CTNNB1 mutations (Fig. 5B). There is a positive 
correlation between risk score and TMB (Fig. 5C). Similarly, copy number variations have a significant impact on tumor development. 
The copy number variants of the model genes were shown in Fig. 5D, and the locations of the model genes in the chromosomes were 
presented in Supplementary Fig. S6. 

3.5. Drug sensitivity and immunotherapy 

We examined the possible utility of chemotherapeutic drug sensitivity across various risk categories. In high-risk group, 5-Fluoro-
uracil, Cediranib, Crizotinib, and Lapatinib had lower IC50 values (Fig. 6A–D), but Axitinib, Cisplatin, Cytarabine, Gemcitabine, and 
Sorafenib might display heightened sensitivity in the low-risk cohort (Supplementary Figs. S7A–E). According to the TIDE scoring, the 

Fig. 3. Evaluation of URGs signatures as independent prognostic factors for HCC. (A) Univariate Cox regression analysis. (B) Multivariate Cox 
regression analysis. (C) ROC curve for 1-year survival in HCC patients. (D) The correlation between risk score and pathological grade. (E) The 
correlation between risk score and tumor stage. 
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high-risk category exhibited greater responsiveness to immunotherapy and a lower probability of immune evasion in comparison to 
the low-risk category (Fig. 7A). Furthermore, in the IMVigor210 immunotherapy cohort, we observed a similar trend where the high- 
risk group exhibited greater responsiveness to immunotherapy (Fig. 7B). 

4. Discussion 

HCC, a prevalent form of cancer, greatly affects the well-being of individuals [26]. Although some research has confirmed the 
crucial importance of tumor size, pathological grading, clinical staging, and distant metastasis in predicting patient prognosis, the 
establishment of prognostic markers based on the genetic level may provide a more accurate assessment of patient prognosis and guide 

Fig. 4. (A) The TME component analysis. (B) Immune checkpoint differences between high and low risk groups. (C) association between mDNAsi 
and risk score. (D) association between mRNAsi and risk score. (E) The analysis of differences in immune cell infiltration between the two groups 
with ssGSEA. (F) The analysis of differences in immune functions between the two groups with ssGSEA. 
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targeted and immune therapies for the tumor [27,28]. The occurrence and development of malignant tumors have been confirmed to 
be significantly influenced by protein ubiquitination, according to recent research [29,30].Therefore, we developed a predictive model 
utilizing URGs, which offers specific recommendations for the clinical management of patients in this research. 

Using the LASSO regression technique, we discovered 16 URGs that were strongly linked to the prognosis of patients with HCC. 
Previous studies have confirmed that these URGs were closely associated with progression of HCC. TRIM25 has been shown to promote 
the growth of cancer cells through the Keap1-Nrf2 pathway [31]. Overactivation of ARHGEF37 can promote the metastasis of liver 
cancer [32]. BMI1 is associated with the prognosis and recurrence of liver cancer and is a new target for its treatment [33]. Liver cancer 
patients with elevated levels of NCF2 exhibit increased infiltration of M2 macrophages within the TME, leading to a negative prognosis 
[34]. High expression of SOCS2 can promote ubiquitination degradation of SLC7A11 and induce ferroptosis, affecting the sensitivity of 
liver cancer to radiotherapy [35]. Silencing ATG10 can suppress the growth and movement of liver tumor cells, thereby decelerating 
the advancement of cancer [36]. The expression of SSR3 and WDR12 is closely related to the size, differentiation degree, and clinical 
staging of tumors [37,38]. CDC20 protein is highly expressed in liver cancer cells and is connected to P53 mutations [39]. Lowering its 
expression can increase the sensitivity of liver cancer to radiotherapy [39]. Similarly, overexpression of UBE2S increases the resistance 
of liver cancer cells to 5-FU and oxaliplatin, serving as a prognostic marker for liver cancer patients [40]. There may be important 
effects of CNVs of these URGs on the function of tumor cells [41]. 

According to the risk score model constructed by URGs, HCC patients were divided into high-risk and low-risk groups, and the 
prognosis of the high-risk group was significantly lower than that of the low-risk group, which was confirmed in the ICGC database. 
The ROC curves confirmed that the risk score served as a reliable prognostic marker for patients with HCC, and was closely correlated 
with the patients’ pathologic grading and clinical staging. The high-risk group had a lower level of stromal and immune cell infil-
tration, which was associated with a poor prognosis [42]. The imbalance of the immune microenvironment has an important impact on 
immune escape in hepatocellular carcinoma [43]. In addition, we found that expression of immune checkpoints CTLA4 and HAVCR2 
was elevated in high-risk group. It has been reported that CTLA4 is an inhibitory immune checkpoint, and blocking CTLA4 increases 
anti-tumor responses [44]. In a mouse model of colorectal cancer, blocking HAVCR2 increased anti-tumor responses and promoted 
tumor clearance [45]. 

Additional research revealed a higher occurrence of TP53 mutations in the high-risk category. TP53 mutations are the most 

Fig. 5. (A) The somatic gene mutations in the high-risk group. (B) The somatic gene mutations in the low-risk group. (C) Correlation of risk scores 
with TMB. (D) The CNV gain and loss of URGs. 
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Fig. 6. Drug sensitivity analysis in the high-risk group. (A) 5-Fluorouracil. (B) Cediranib. (C) Crizotinib. (D) Lapatinib.  

Fig. 7. Prediction of immunotherapy. (A) TIDE analysis revealing the difference of tumor immune dysfunction and exclusion in two groups. (B) 
Prediction immunotherapy response in IMVigor210. 
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common mutations in HCC, and some studies have reported that mutations in TP53 can lead to a worse prognosis for HCC patients [46, 
47]. However, CTNNB1 mutations were more frequent in low-risk group. CTNNB1 is a key factor in Wnt/β-catenin signaling pathway 
and is one of common cancer driver genes in HCC [48]. In HCC patients, CTNNB1 mutations are associated with longer survival [48]. 
The analysis of drug sensitivity revealed varying IC50 values in the high and low risk groups, suggesting that different chemothera-
peutic agents may be appropriate for each group. TIDE scoring and the immunotherapy cohort IMVigor210 provided important 
guidance for immunotherapy [49,50]. Our study confirmed that people in high-risk group may have less immune evasion and higher 
efficacy for immunotherapy, which was consistent with some of the previous studies [51,52]. 

Currently, there is insufficient research on URGs in patients with liver cancer. Some previous studies have confirmed the prognostic 
role of URGs in certain cancers, such as pancreatic cancer and prostate cancer [53,54]. The research validated the prognostic sig-
nificance of URGs in liver cancer and investigated the potential use of immunotherapy, offering valuable guidance for tailored clinical 
interventions. However, our study still has some limitations. Our study was based on the RNA level, and further studies at the protein 
level may be needed. In addition, this was a retrospective study, and prospective biological experiments and clinical studies might be 
needed to validate the clinical application of this risk scoring model based on URGs. 

5. Conclusion 

In conclusion, our study delved into molecular clustering and prognostic signals using URGs, facilitating survival prediction for 
HCC patients and providing guidance for their immunotherapy, potentially advancing the development of more precise treatments for 
liver cancer. 
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