
The Role of High-Density Lipoprotein
in COVID-19
Guyi Wang1, Jiayi Deng1, Jinxiu Li 1, Chenfang Wu1, Haiyun Dong1, Shangjie Wu2 and
Yanjun Zhong1*

1Department of Critical CareMedicine, The Second Xiangya Hospital, Central South University, Changsha, China, 2Department of
Respiratory, The Second Xiangya Hospital, Central South University, Changsha, China

The current Coronavirus disease 2019 (COVID-19) pandemic has become a global
challenge. Managing a large number of acutely ill patients in a short time, whilst
reducing the fatality rate and dealing with complications, brings unique difficulties. The
most striking pathophysiological features of patients with severe COVID-19 are
dysregulated immune responses and abnormal coagulation function, which can result
in multiple-organ failure and death. Normally metabolized high-density lipoprotein (HDL)
performs several functions, including reverse cholesterol transport, direct binding to
lipopolysaccharide (LPS) to neutralize LPS activity, regulation of inflammatory
response, anti-thrombotic effects, antioxidant, and anti-apoptotic properties. Clinical
data shows that significantly decreased HDL levels in patients with COVID-19 are
correlated with both disease severity and mortality. However, the role of HDL in
COVID-19 and its specific mechanism remain unclear. In this analysis, we review
current evidence mainly in the following areas: firstly, the pathophysiological
characteristics of COVID-19, secondly, the pleiotropic properties of HDL, thirdly, the
changes and clinical significance of HDL in COVID-19, and fourthly the prospect of HDL-
targeting therapy in COVID-19 to clarify the role of HDL in the pathogenesis of COVID-19
and discuss the potential of HDL therapy in COVID-19.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), outbroke in Wuhan in late 2019 (Guan W.-J. et al., 2020; Wang et al., 2020a; Huang
C. et al., 2020; Hui et al., 2020; Lu et al., 2020). It has since spread worldwide (Albarello et al., 2020;
Giunta et al., 2020; Young et al., 2020). By June 30, 2021, more than 180 million people have been
infected with SARS-CoV-2, and nearly four million have died globally (WHO, 2021a). The COVID-
19 pandemic has become a significant burden on global healthcare systems. Patients with COVID-19
with underlying metabolic dysfunction, such as type 2 diabetes and non-alcoholic fatty liver disease,
have a higher risk of poor outcomes (Guan W.-j. et al., 2020; Mahamid et al., 2020; Ji et al., 2021). A
decline in total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels
in patients with COVID-19 has been observed in several studies, including our previous research
(Wei et al., 2020a; Wang et al., 2020b). Our data also shows that among the several lipids named
above, only HDLwas associated with the severity of COVID-19 (Wang G. et al., 2020). In this review,
we aim to analyze the available evidence about how HDL dysfunction is associated with infection,
including a focus on COVID-19.
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SARS-COV-2

SARS-CoV-2 is a positive-sense, single-stranded RNA virus,
surrounded by an envelope (Han et al., 2020; Kočar et al.,
2021). SARS-CoV-2 is reported to share 79.6% homology with
SARS-CoV (Zhou F. et al., 2020). The highly pathogenic CoVs,
including Middle East Respiratory Syndrome (MERS) CoV,
SARS-CoV-1, and SARS-CoV-2, mainly invade the lower
respiratory tract through the upper respiratory tract and result
in fatal pneumonia (Han et al., 2020).

SARS-CoV-2 entry into susceptible host tissue cells depends
on the host cell angiotensin-converting-enzyme 2 (ACE2)
receptor via the spike (S) protein, followed by S protein
cleaving and membrane fusion (Chambers et al., 2020). ACE2
is widely expressed in human tissues, including in lung alveolar
epithelial cells, small intestinal epithelial cells, vascular
endothelial cells and smooth muscle cells within the lung,
kidney, intestines, and other organs (Kočar et al., 2021).

PATHOPHYSIOLOGICAL
CHARACTERISTICS OF COVID-19

COVID-19 causes significant infection-related morbidity and
mortality. There have been about 33 million positive cases and
nearly 600 thousand deaths in America (WHO, 2021b), while in
China, there have been about 118 thousand positive cases and
about five thousand deaths (WHO, 2021c). A recent meta-
analysis of 212 studies from 11 countries/regions involving
281,461 individuals showed about 22.9% of patients with
COVID-19 had severe disease and 5.6% patients die (Li
J. et al., 2021). The most striking pathophysiological feature of
patients with severe COVID-19 is a dysregulated immune
response, characterized by lymphopenia and a cytokine storm,
which results in acute respiratory distress syndrome, hepatic
dysfunction, multiple-organ failure, and ultimately death.
Abnormal coagulation function is also a prominent feature in
severe COVID-19 cases (Beltrán-García et al., 2020; José et al.,
2020; Song et al., 2020; Zafer et al., 2021).

Dysregulated Immune Responses
SARS-CoV-2 may activate both innate and adaptive immune
responses in patients, including lymphopenia, cytokine release
syndrome, and abnormal activation of macrophages and their
complement system (Jamal et al., 2021). Lymphopenia, involving
a drastic reduction in T-cells and B cells (Qin et al., 2020a; Tan
et al., 2020; Xu et al., 2020), is a common feature in patients with
severe COVID-19. This is possibly triggered by SARS-CoV-2-
induced activation of apoptosis in lymphocytes (Xiong et al.,
2020).

Patients with COVID-19 have also shown monocyte/
macrophages morphological and physiological changes. These
monocytes were characterized by mixed M1/M2 polarization,
relatively elevated CD80+ and CD206+ expression, and higher
secretion of interleukin (IL)-6, IL-10, and tumor necrosis factor
(TNF)-α (Zhang D. et al., 2021). Macrophages infiltrated into the
lungs of patients with COVID-19 were mostly type 1 (Yao et al.,

2020). Monocytes obtained from patients with COVID-19 were
shown to express ACE2 receptors, suggesting SARS-CoV-2 may
directly infect and affect monocytes andmacrophages in COVID-
19 (Zhang Y. et al., 2021). Additionally, cytokine storms were
common in patients with severe COVID-19. Patients exhibited
increased cytokine secretion, particularly IL-2, IL-4, IL-6, IL-10,
TNF-α, and interferon (IFN)-γ (Qin et al., 2020b). The possible
causes of this cytokine release syndrome could be a dysregulated
immune response incapable of controlling the production of
excessive amounts of cytokines and chemokine.

The complement system was also considered to play a pivotal
role in COVID-19. A recent study showed that complement
components of the classical (C1q, C4d) and alternative (Factor H,
C3d) pathways were deposited in the lungs of people with
COVID-19, indicating the activation of complement system in
COVID-19 (Satyam et al., 2021). Early clinical reports indicates
that C3 inhibition therapy holds potential anti-inflammatory
properties in COVID-19 (Mastaglio et al., 2020; Satyam and
Tsokos, 2020) and anti-complement C5 therapy in patients with
severe COVID-19 lead to a drop in inflammatory markers and a
successful recovery (Diurno et al., 2020; Satyam and Tsokos,
2020).

Abnormal Coagulation
Abnormal coagulation function is also a prominent feature in
severe COVID-19 cases. Severe COVID-19 was associated with
widespread activation of the coagulation system, corroborated
by elevated activated partial thromboplastin time (APTT) and
prothrombin time (PT) along with markedly elevated D-dimer
levels (Tang et al., 2020; Zhou P. et al., 2020). Severe
endothelial injury and widespread thrombosis with
microangiopathy are evident in lungs from patients with
COVID-19 (Ackermann et al., 2020). Possible causes
include a direct attack by the virus on the endothelial cells
via ACE-2 receptors (Ackermann et al., 2020), and cytokine
storms such as TNF and IL-6, which are potent activators of
the tissue factor (TF)-dependent coagulation cascade (Tijburg
et al., 1991; Kerr et al., 2001).

COMPOSITION, METABOLISM AND
FUNCTION OF HDL

HDL is a type of lipoprotein with an extremely heterogeneous
composition, density, and particle size, containing cholesterol,
phospholipids, triglycerides, and apolipoproteins. It was first
isolated from blood in the 1960s by ultracentrifugation.
Among all types of human plasma lipoproteins, HDL, mainly
synthesized in the liver and small intestine, has the highest
density and smallest volume in the circulatory system.
Apolipoprotein A-I (ApoA-I) is the main structural protein
component of HDL, and other protein components such as
serum amyloid A (SAA), lecithin cholesterol acyltransferase
(LCAT), paraoxonase-1 (PON-1) and cholesterol ester transfer
protein (CETP) also participate in the metabolic process of HDL
(Gordon et al., 1989; Ginsberg, 1998; Tosheska Trajkovska and
Topuzovska, 2017).
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Reverse Cholesterol Transport
Normally metabolized HDL has various functions. The most
important and well characterized function is the regulation of
reverse cholesterol transport. During the formation and
maturation of HDL, its main functional protein, ApoA-I,
continuously binds to free cholesterol in tissue cells, and is
then transported to the liver. Thus, cholesterol is excreted
from the body’s tissue cells through a series of transport and
transformation processes, which reduces the cholesterol level in
the body and delays the occurrence and progression of coronary
heart disease (Gordon et al., 1989; Rader, 2003; Tosheska
Trajkovska and Topuzovska, 2017).

Direct Binding to Lipopolysaccharide and
Neutralizing LPS Activity
LPS is the chief component of the outer membrane of Gram-
negative bacteria. Numerous studies have found that HDL
prevents systemic endotoxemia by binding and neutralizing LPS
(Parker et al., 1995), which is considered to be the main mechanism
of HDL’s antimicrobial effect (Ulevitch et al., 1979; Freudenberg
et al., 1980). Early studies have shown that HDL can prevent the
activation of peripheral blood monocytes and macrophages by LPS,
and reduce the synthesis and secretion of inflammatory cytokines
such as TNF-α and IL-1β (Levine et al., 1993). In vivo studies have
shown that the initiation of intravenous infusion of recombinant
HDL prior to induction of endotoxemia in healthy volunteers
significantly reduced TNF, IL-6, and IL-8 levels, as well as
reducing endotoxin-induced clinical symptoms and leukocyte
activation (Pajkrt et al., 1996). A recent study showed that,
compared with normal mice, ApoA-I (the main component of
HDL) knockout mice showed increased production of
inflammatory cytokines, decreased ability to neutralize and clear
LPS, and reduced survival (Guo et al., 2013). In addition to binding
and neutralizing LPS, HDL also promotes LPS clearance, mainly
binding with SR-B1 and mediating LPS intake. It has been reported
that in LPS-induced endotoxemia and cecal ligation and puncture
(CLP) sepsis models in vitro, SR-B1 gene deletion mice showed
decreased endotoxin clearance (Cai et al., 2008; Guo et al., 2009).

Regulation of Inflammatory Response
HDL may also be a key regulator of inflammatory response. In-
vitro cell experiments show that HDL inhibits a subset of LPS-
stimulated macrophage genes that regulate the type I interferon
response via microarray analysis (Suzuki et al., 2010). HDL also
down-regulates the expression of Toll-like receptor (TLR)-
induced pro-inflammatory cytokines through the
transcriptional regulator activating transcription factor 3
(ATF3) (De Nardo et al., 2014). Transgenic mice with 2-fold-
elevated plasma HDL levels had lower plasma cytokine levels, and
improved survival rates in an endotoxemia mouse model (Levine
et al., 1993).

Anti-Thrombotic Effects
HDL can act as a regulator of platelet and coagulation responses
in a variety of ways. Numerous epidemiological studies have
established an inverse correlation between HDL levels and the

risk of thrombosis (Sharrett et al., 2001; Deguchi et al., 2005;
Lüscher et al., 2014), and many studies have explored the
mechanisms involved. HDL stimulates NO and prostacyclin
production in endothelial cells which are both inhibitors of
platelet activation (Van Sickle et al., 1986; Yuhanna et al.,
2001; Calabresi et al., 2003). Endothelial cells express TF after
thrombin-induction in acute coronary syndromes, and HDL
presents an atheroprotective effect by inhibiting thrombin-
induced human endothelial TF expression (Viswambharan
et al., 2004). HDL, mainly ApoA-I, also protects endothelial
cells against oxidized LDL (oxLDL) and prevents its apoptosis
(Suc et al., 1997). Additionally, purified HDL enhances
inactivation of coagulation factor Va by activated protein C
(APC) and protein S (Griffin et al., 1999). ApoA-I also
neutralizes the procoagulant properties of anionic
phospholipids, and incorporation of ApoA-I in anionic
vesicles prevents the formation of the prothrombinase
complex (Oslakovic et al., 2009; Oslakovic et al., 2010).

Antioxidant and Anti-Apoptotic Properties
HDL can prevent intracellular reactive oxygen species (ROS)
production, triggered by oxLDL or H2O2, thereby inhibiting the
subsequent proteasome activation, and NF-kappa B activation
(Robbesyn et al., 2003). HDL exerts a protective effect against
oxidative damage induced by copper ions (Ferretti et al., 2003).
Additionally, PON-1 is an HDL-associated esterase, which
protects lipoproteins against oxidation. It is demonstrated that
PON-1-deficient mice were susceptible to oxidative stress and
HDL isolated from these mice were unable to prevent LDL
oxidation (Shih et al., 1998).

HDL was shown to have the capacity to inhibit apoptosis of
endothelial cells induced by oxLDL (Suc et al., 1997). HDL also
prevented caspase-3 and caspase-9 activation, as well as apoptotic
alterations of the plasma membrane (Nofer et al., 2001). In
addition, HDL reduced cardiomyocyte apoptosis in a mouse
model of myocardial ischemia/reperfusion (Theilmeier et al.,
2006).

HDL CHANGES DURING HUMAN
INFECTION

Changes in Levels or Functions of HDL
Levels and functions of HDL changed significantly in patients
infected with different pathogens. Multiple studies show HDL
decreased in many infections, including sepsis, nosocomial
infections, dengue, Helicobacter pylori infection, and HIV
infection (Canturk et al., 2002; van Leeuwen et al., 2003;
Chien et al., 2005; Rose et al., 2006; Jia et al., 2009; Aragonès
et al., 2010; Baker et al., 2010; Zou et al., 2016; Cirstea et al., 2017;
Tanaka et al., 2017; Barrientos-Arenas et al., 2018). The
explanations includes decreased HDL synthesis, over-
consumption of HDL particles, or HDL redistribution from
intravascular to extravascular space (Pirillo et al., 2015; Tanaka
et al., 2020a; Cao et al., 2020). Infection not only leads to a
decrease in HDL levels, but also affects its function. HDL from
HIV+ individuals has reduced antioxidant function (Angelovich
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et al., 2017), modified HDL metabolism, and reduced
functionality of reverse cholesterol transport (Rose et al.,
2008). In mice models, HDL loses its anti-inflammatory
properties after acute influenza infection (Van Lenten et al.,
2001).

Relationship Between HDL, Susceptibility of
Infection and Outcome
Low serum HDL levels seem to be associated with a higher risk of
infectious diseases, including sepsis (Shor et al., 2008; Grion et al.,
2010), nosocomial infection after surgery (Delgado-Rodriguez
et al., 1997; Canturk et al., 2002), and in-hospital infection in
patients with acute ischemic stroke (Rodríguez-Sanz et al., 2013).
Furthermore, a prospective population-based cohort study
involving more than 100,000 patients showed a U-shaped
association of HDL with the risk of infectious disease, and
that both high and low levels of HDL were related with a high
risk of infection (Madsen et al., 2018). In addition, mortality rates,
intensive care unit (ICU) stay, and length of hospital stay, all
increased among septic patients with lower levels of HDL or
ApoA-I (Chien et al., 2005; Montero-Chacón et al., 2020). Low
HDL level at admission was also associated with severe sepsis
(Grion et al., 2010). Lower HDLmay herald a bad outcome, while
higher levels of HDL seem to have a protective effect toward
infection.

Therapeutic Strategy Targeting HDL in
Infection
Due to the important role of HDL in infection, therapeutic
strategy targeting HDL is considered as a possible new
approach to the treatment of infection. Reconstituted HDL
was shown to reduce inflammation and bacterial burden,
attenuate organ injury and improve survival in experimental
septic models (Levine et al., 1993; McDonald et al., 2003;
Tanaka et al., 2020b; Tanaka et al., 2020c). Trypanosome lytic
factor, as a minor subfraction of HDL, ameliorates Leishmania
infection, possibly due to the ability to selectively damage
pathogens in phagolysosomes (Samanovic et al., 2009). CETP
is a key regulator of HDL levels. Its gain-of-function variant was
significantly associated with an increased risk of mortality in
sepsis (Trinder et al., 2019). CETP inhibitor Anacetrapib
preserved levels of HDL and ApoA-I and increased the
survival rate in CLP sepsis models (Trinder et al., 2021).

ASSOCIATION BETWEEN HDL AND
COVID-19

Alteration of HDL Level in Patients With
COVID-19
A large number of studies have shown a close correlation of HDL
with COVID-19, which were summarized in Table 1. The serum
HDL level in patients with COVID-19 was lower than that in
healthy controls (Huang et al., 2021). A genome-wide association
study (GWAS) summary analysis of 7362 COVID-19 participants

from the United Kingdom Biobank, showed that individuals with
a lower level of HDL were more vulnerable to SARS-CoV-2
infection (Zhang D. et al., 2021). A clinical observational study
also found that lower HDL levels were related to a higher risk of
SARS-CoV-2 infection (Aung et al., 2020), while higher HDL
levels were associated with a lower risk of SARS-CoV-2 infection
(Ho et al., 2020).

Changes of HDL Function in Patients With
COVID-19
In addition to HDL levels, the composition and functions of HDL
in COVID-19 were also changed. ApoA-I and PON-1 were less
abundant in patients with COVID-19, whereas, using proteomic
analyses, SAA and alpha-1 antitrypsin were found to be higher
(Begue et al., 2021). HDL from patients with COVID-19 showed
less protection in TNF-α treated endothelial cells (Begue et al.,
2021). Generally, patients with diabetes and elderly patients
showed a higher extent of glycation (Kawasaki et al., 2002;
Park and Cho, 2011). Glycated HDL showed much lower
antivirus activity against SARS-CoV-2 than that of native
HDL, which may explain why older patients and patients with
underlying conditions such as diabetes are more likely to develop
severe illness and death in COVID-19 (Cho et al., 2021).

Relationship of HDL With the Outcomes of
Patients With COVID-19
Additionally, HDL or ApoA-I levels were significantly lower in
severe, critically ill and mortality groups compared to patients
with mild COVID-19 (Wang et al., 2020b; Huang C. et al., 2020;
Ouyang et al., 2020; Xie et al., 2020; Zhang Q. et al., 2020; Hilser
et al., 2021; Li J. et al., 2021; Turgay Yıldırım and Kaya, 2021).
This suggests that HDL is associated with COVID-19 severity and
risk of death (Tanaka et al., 2020b; Hu et al., 2020; Wang et al.,
2020; Wei X. et al., 2020; Zhang B. et al., 2020). During ICU
hospitalization in patients with COVID-19, in cases of bacterial
superinfection, low HDL concentrations were also found to be
correlated with higher mortality (Tanaka et al., 2020c).
Significantly, in patients with severe COVID-19, a gradual
increase of HDL levels during hospitalization could suggest a
path to gradual recovery (Qin et al., 2020a). Moreover, HDL levels
influenced the virus shedding duration in patients with COVID-
19 (Ding et al., 2020) and may predict the risk of hospitalization
for COVID-19 (Hamer et al., 2020; Lassale et al., 2021). This data
strongly suggests that high HDL levels might be beneficial in
patients with COVID-19 through its antiviral activity.

The Possible Mechanism of HDL Action in
COVID-19
Lipid metabolism plays an essential role during SARS-CoV-2
infection. Cholesterol is widely shown to interact with SARS-
CoV-2 S protein (Kočar et al., 2021). The accumulation of lipids
was observed in SARS-CoV-2 infected cells, both in vitro and in
the lungs of patients of COVID-19 (Nardacci et al., 2021). In a cell
experiment in vitro, HDL showed an obvious antiviral effect on
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SARS-CoV-2 via cytopathic effect (CPE) and inhibition activity
tests (Cho et al., 2021). Although HDL is believed to play a
protective role in infection, some studies have come to the
opposite conclusion. Several studies showed HDL facilitated
SARS-CoV-2 infection. It was found that HDL significantly
increased cell-surface SARS-CoV-2-S binding, viral entry and
replication in vitro through SR-B1. Blockade of the cholesterol-
binding site on SARS-CoV-2 or treatment with HDL SR-B1
antagonists, inhibits HDL-enhanced SARS-CoV-2 infection
(Wei et al., 2020a). Another study showed that pretreatment
of 293T cells with an HDL antagonist, in the presence of HDL,
strongly inhibited the entry of SARS-CoV-2 into host cells (Wei
et al., 2020). It suggested that the down-regulation of HDL levels
in patients with COVID-19 may be due to HDL consumption
during viral invasion, and HDL or SR-B1 could be treatment
targets for COVID-19. However, future studies will need to
explore the molecular nature of the interaction between HDL
and SARS-CoV-2.

Additionally, clinical data showed influencing the
inflammatory response may be one of the mechanisms of
HDL involvement in the pathophysiology of COVID-19.
Severe COVID-19 is considered to be a sepsis induced by
SARS-CoV-2 (Colantuoni et al., 2020; Lin, 2020; Shenoy,
2020), which is characterized by excessive inflammation and
multiple-organ failure. It is reported that a marked increase in
inflammatory factors occurs in COVID-19, including C-reactive
protein (CRP), IL-6, TNF-α, etc. (Song et al., 2020; Zafer et al.,

2021). ApoA-1 and HDL levels were shown to be negatively
correlated with CRP and IL-6 levels in patients with COVID-19
(Hu et al., 2020; Sun et al., 2020), suggesting that the increased
inflammatory response related to reduced HDL levels is one of
the pathogenic mechanisms of COVID-19.

Moreover, apoptosis, oxidative stress and abnormal blood
coagulation are all involved in the pathophysiological process
of COVID-19 (Tang et al., 2020; Cizmecioglu et al., 2021; Mehri
et al., 2021), and multiple studies demonstrated HDL had anti-
thrombotic, anti-apoptotic and anti-oxidative effects (Tanaka
et al., 2020a), which offers a possibility that HDL may also
regulate these pathways in COVID-19. However, further
research is needed to confirm these conclusions.

Therapeutic Strategy of COVID-19 Through
Targeting HDL
Until now effective therapeutic interventions for COVID-19 are
limited. Drug repurposing could identify potential treatments in a
short time, which has become an important approach to explore
therapeutic agents for COVID-19 (Kost-Alimova et al., 2020). As
many studies have found that HDL is closely linked to COVID-
19, some related randomized controlled trial (RCT) studies
remain ongoing (Table 2). Omega-3 polyunsaturated fatty
acids (PUFAs) improve lipid metabolism by reducing
triglyceride and increasing HDL (Yanai et al., 2018), which
enhance patient’s immune function and reduce inflammatory

TABLE 1 | Changes in HDL levels in patients with COVID-19.

Author Country Number of
patients

Time point Comparison of HDL levels

Wang (Wang et al. (2020a) China 228 Within 24 h after
admission

COVID-19 patients vs healthy control: median, 0.78 vs 1.37 mmol/L,
p < 0.001
Severe vs non-severe patients: median, 0.69 vs 0.79 mmol/L, p �
0.032

Huang (Huang et al. (2021) China 218 The 1st day of admission COVID-19 patients vs healthy control: mean, 1.02 vs 1.52 mmol/L,
p < 0.05
Severe vs non-severe patients: mean, 0.83 vs 1.15 mmol/L, p < 0.05

Zhang (Zhang B. et al. (2020) China 74 Not known Severe vs non-severe patients: median, 0.92 vs 1.08 mmol/L, p �
0.021

Xie (Xie et al. (2020) China 62 Not known Severe vs non-severe patients with CVD: median, 1.1 vs 1.4 mmol/L
Severe vs non-severe patients without CVD: median, 1.1 vs
1.3 mmol/L

Hu (Hu et al. (2020) China 114 On admission COVID-19 patients vs healthy control: mean, 1.08 vs 1.27 mmol/L,
p < 0.001
Severe vs non-severe patients: median, 1.01 vs 1.21 mmol/L, p <
0.001

Wei (Wei et al. (2020b) China 597 Not known Mild vs severe vs critical patients: median, 50 vs 50 vs 36 mg/dL,
p < 0.05

Tanaka (Tanaka et al. (2020a) France 48 Upon ICU admission Alive vs dead patients on day 28: median, 0.6 vs 0.5 mmol/L, p �
0.036

Huang (Huang W. et al. (2020) China 2,623 At admission Critical vs non-critical patients: median, 0.86 vs 0.95 mmol/L, p <
0.001

Sun (Sun et al. (2020) China 99 Within 24 h of admission Mild vs severe: median, 1.18 vs 0.94, p < 0.001
Ouyang (Ouyang et al. (2020) China 107 Last result Survivors vs non-survivors: average, 1.07 vs 0.79 mmol/L, p � 0.006
Li (Li Y. et al. (2021) China 424 Not known Survivors vs non-survivors: median, 0.9 vs 0.8, p � 0.001
Turgay (Turgay Yıldırım and Kaya
(2021)

Turkey 139 At admission Survivors vs non-survivors: median, 44.0 vs 28.5 mg/dL, p < 0.001

Abbreviations: HDL, high-density lipoprotein; COVID-19, Coronavirus disease 2019.
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responses (Ni et al., 2020; Sorokin et al., 2020). Subsequently, as it
is considered to have a positive role in the treatment of COVID-
19, it has become the most studied lipid-regulating drug in
COVID-19. Statins, including Atorvastatin, Rosuvastatin, and
Simvastatin also showed HDL-increasing capacity (Jones et al.,
2003; Miller et al., 2004; Rosenson, 2005; Sasaki et al., 2013), and
are one of the current research hotspots of COVID-19. Moreover,
RCT studies on the effects of two classic HDL-increasing drugs,
CETP inhibitor Dalcetrapib and Fenofibrate, in patients with
COVID-19, are also underway. Other HDL-raising
pharmacological compounds such as LCAT, have been also
considered as potential therapies for COVID-19 (Sorokin
et al., 2020).

CONCLUSION

COVID-19 has spread globally and caused significant morbidity
and mortality. Patients with severe COVID-19 are characterized
by a dysregulated immune response and abnormal coagulation
function, which results in organ dysfunction and ultimately
death. HDL possesses several well-documented functions,
including regulating immune response, neutralizing
endotoxins, anti-oxidation, anti-apoptosis, and anti-thrombosis
formation. Multiple studies showed that HDL level, composition
and functions were greatly changed in COVID-19 and lower
HDL level was correlated with higher risks of severity and
mortality, indicating that high HDL levels might be beneficial
in COVID-19. HDL level-raising pharmacological compounds

such as CETP inhibitors and fibrates are considered to be
potential treatments for patients with COVID-19, and they are
already in the preclinical research stage. Until now, there are still
relatively few studies on the mechanisms about the protective role
of HDL in COVID-19. Notably, many studies related to sepsis
support that increasing the levels of HDL in septic patients may
be a feasible treatment target. However, simply increasing the
level of HDL does not seem to be enough to restore the function
of HDL. Therefore, we still need to comprehensively understand
the mechanism of HDL action in COVID-19 and improve new
strategies for the treatment of patients with COVID-19, by
further in-depth study on the composition, structure, and
function of HDL in COVID-19.
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