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ABSTRACT
BACKGROUND: Personalized cancer treatments depend on the determination 

of a patient’s genetic status according to known genetic profiles for which targeted 
treatments exist. Such genetic profiles must be scientifically validated before they is 
applied to general patient population. Reproducibility of findings that support such 
genetic profiles is a fundamental challenge in validation studies. The percentage of 
overlapping genes (POG) criterion and derivative methods produce unstable and 
misleading results. Furthermore, in a complex disease, comparisons between different 
tumor subtypes can produce high POG scores that do not capture the consistencies 
in the functions.

RESULTS: We focused on the quality rather than the quantity of the overlapping 
genes. We defined the rank value of each gene according to importance or quality 
by PageRank on basis of a particular topological structure. Then, we used the p-
value of the rank-sum of the overlapping genes (PRSOG) to evaluate the quality 
of reproducibility. Though the POG scores were low in different studies of the 
same disease, the PRSOG was statistically significant, which suggests that sets of 
differentially expressed genes might be highly reproducible.

CONCLUSIONS: Evaluations of eight datasets from breast cancer, lung cancer and 
four other disorders indicate that quality-based PRSOG method performs better than 
a quantity-based method. Our analysis of the components of the sets of overlapping 
genes supports the utility of the PRSOG method.

INTRODUCTION

Personalized cancer treatment decisions rely 
on the identification of gene mutations that drive 
tumorigenesis in a given patient and are based on 
comparisons of driver gene mutations across populations 
of patients [1]. For example, in non-small cell lung 
cancer, the efficacy of a BRAF mutant allele selective 
inhibitor is related to the BRAF V600E mutational status 
in the cancer cells [2]. Other research has shown that it 
is important to determine the status of both BRAF and 
RAS before using RAF inhibitors [3–5]. Determining 
the status of genes to inform cancer treatment decisions 
yet faces many challenges [6]. Some studies have 
shown that low frequency mutations, which are not 

found in every patient, can act as drivers of disease. 
In breast cancer, for example, the hotspot AKT1 E17K 
mutation occurs in only about 3% of primary breast 
cancers; however, that gene is an important part of the 
PI3-kinase-AKT-mTOR pathway, which is frequently 
mutated in breast cancer [7].

Nussinov et al. illustrated that actionable mutations 
should include not only those detected as drivers of 
disease, but also some presumed to be passengers, 
which may actually be ‘latent driver’ mutations that are 
additively pathogenic under some conditions [8]. They 
advocate the analysis of mutations within the structural 
architecture of molecular pathways. Identifying such 
‘latent driver’ mutations can inspire the development of 
more personalized treatments.
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Like compartmental model in pharmacokinetics, 
a stable model, which produces consistent results 
from different studies, provides a foundation for the 
translation of gene expression data into clinical practice. 
The performance of such confirmatory studies and the 
transition to clinical practice require that microarray 
data from different laboratories are comparable and 
reproducible [9]. However, the sets of differentially 
expressed genes (DEGs) obtained from studies in the 
same disease have differed widely and have often had 
only a few genes in common [10–14]. This frustrating 
phenomenon has raised doubts about the reliability and 
robustness of the predictive gene lists reported from 
studies of microarray data [15]. The MicroArray Quality 
Control (MAQC) project was initiated to address these 
concerns, as well as other performance and data analysis 
issues [12]. This study has provided valuable information 
but is yet far from comprehensive [16].

Both the concepts and metrics used to determine the 
reproducibility of DEGs are not uniformly defined [11, 
12, 17]. Most metrics for evaluating the reproducibility 
between two DEG lists, such as the percentage of 
overlapping genes (POG), depend on the quantity of 
overlapping and related genes. The potential assumption 
underlying these metrics is that genes in both lists have 
the same position of importance in the development of 
a disease. However, a gene may play different roles in 
various diseases and even show inconsistent function 
in different stages of a single disease. For example, the 
Bcl-2 family includes key regulators of apoptosis, both 
antiapoptotic and proapoptotic genes [18, 19]. Chen et 
al. illustrated that POG does not reflect the accuracy of 
a selected DEG list [20]. A gene that is not identified as 
differentially expressed in two studies (a non-overlapping 
gene) may truly be differentially expressed, and an 
overlapping gene may actually not be differentially 
expressed, depending on the cutoff for the number of 
genes selected. POG is limited as a selection criterion 
because of its dependence on the size of the set of DEGs. 
Thus, a POG score calculated under such conditions 
will produce misleading results, such as misdiagnose of 
breast cancer patient by comparing genes expression with 
diagnosed breast cancer patients, and possibly lead to 
ineffective treatments.

In this paper, we evaluate the quality rather than 
the quantity of overlapping genes when comparing two 
or more sets of DEGs. We define the rank value of each 
gene as importance or ‘quality’ by PageRank on basis of a 
particular topological structure. We propose the p-value of 
the rank-sum of the overlapping genes (PRSOG) method 
to evaluate the reproducibility of DEGs. We analyze the 
components of the set of overlapping genes, including 
whether a gene is significant, common, or incorrectly 
listed (a wrong gene), to increase the reliability of the 
PRSOG method.

RESULTS

Reproducibility of studies for eight datasets

Using eight datasets from two platforms, we 
analyzed twelve experiments. The eight datasets are 
available at Gene Expression Omnibus (GEO) [21] and 
are described in detail under Materials and Methods. To 
ensure the comparability of PRSOG and POG between 
experiments, we used the significance analysis of 
microarrays (SAM) method [22] to identify the list of 
DEGs for each dataset, using fewer than 1000 DEGs. The 
false discovery rates [23] in all datasets were less than 
1%, with the exception of an 8.2% false discovery rate 
in dataset GSE28686 (from a study of the illicit use of 
methcathinone) [24].
Experiment 1.1: breast cancer

In this experiment, we detected 963 and 856 DEGs 
in the respective datasets GSE36295 [25] and GSE39004 
[26]. We measured the POG in two directions. For the 
list of DEGs detected in the first dataset, GSE36295, 
we measured the percentage of genes that also appeared 
in the second dataset, GSE39004, and called that score 
POG12. For the list of DEGs detected in the second dataset, 
GSE39004, we measured the percentage of genes that also 
appeared in the first dataset, GSE36295, and called that 
score POG21. The respective POG12 and POG21 scores were 
0.32 and 0.36 in experiment 1.1.
Experiment 2.1: lung cancer, with different tumor 
subtypes

In this experiment, we detected 916 and 933 DEGs 
in respective datasets GSE18842 [27] and GSE19804 
[28]. The corresponding POG12 and POG21 scores were 
0.39 and 0.38.
Comparative experiments

Using SAM, we detected 859, 836, 834 and 
910 DEGs, respectively, in datasets GSE25041 (study 
of adipose tissue) [29], GSE28686 (study of illicit 
methcathinone use) [24], GSE30999 (study of psoriasis) 
[30] and GSE19743 (study of burn injuries) [31].

The POG scores for all 12 experiments are listed 
in Table 1, where we observe low POG scores in every 
experiment, which suggests that most of the genes identified 
as being differentially expressed were inconsistent when 
comparing the first dataset to the second dataset. That 
finding of low reproducibility in microarray analyses has 
been observed in many studies [14, 32]. Furthermore, we 
found differences in the POG scores from experiments in 
the same disease and in different diseases. The POG scores 
in experiments 1.1 and 2.1, which evaluated two datasets 
for the same disease (breast cancer and lung cancer, 
respectively), were greater than 0.3; however, most of the 
other POG scores from different diseases were less than 0.1.
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Using the POG score can lead to false discoveries 
in clinical datasets. In experiment 2.1 for non-small 
cell lung cancer, we obtained POG scores of 0.39 and 
0.38, which were the highest POG scores in all the 
experiments. These results suggest that the reproducibility 
of DEGs from lung cancer datasets was the best of all the 
experiments. However, the tumor subtypes represented in 
the two datasets in experiment 2.1 were different. Dataset 
GSE18842 consisted of 69.6% squamous cell carcinomas 
in a total of 46 tumor samples and dataset GSE19804 
consisted of 93.3% adenocarcinomas in 60 tumor samples. 
Many studies have demonstrated differences between the 
squamous cell carcinoma subtype and the adenocarcinoma 
subtype of non-small cell lung cancer, especially on the 
molecular level [33–36].

Quality of reproducibility of DEG lists

There are apparent drawbacks to analyze 
reproducibility basing on the number of overlapping genes 
in DEG lists. Genes have different roles and functions in 
diseases and these functions should be discriminated in the 
evaluation of reproducibility. A gene’s rank, calculated by 
PageRank on basis of a particular network or topological 
structure, represents a single gene’s importance or quality.

The total ranking value in the topological structure 
of an experiment is 1, and a single gene in a network with 
N genes has a rank of 1/N before running PageRank. After 
iteration in the network built according to correlation 
coefficients larger than 0.7, for example, the values of the 
rank-sum of the overlapping genes (RSOG) for experiment 

1.1 and experiment 2.1 are respectively 0.26 and 0.23. The 
RSOG indicates the importance of k overlapping genes 
in the total rank. Because of the different topological 
structures and dependence on the number of genes in 
the network, the RSOG values are useless for strictly 
evaluating the quality of reproducibility.

We ran simulations 10,000 times to pick k genes in 
the rank pool and built the distribution of the RSOG of k 
genes in an experiment. The central limit theorem ensured 
a normal distribution of the RSOG, which is shown in 
Supplementary Figure S1. We then obtained the PRSOG.

The PRSOGs of experiments 1.1 are 1.11 × 10−16, 
converging to 0 and 2.1 are 0.88. These results indicate 
that experiment 1.1 in breast cancer had successful 
reproducibility, with a significant PRSOG less than 
0.01. In contrast, experiment 2.1, which evaluated 
different subtypes of non-small cell lung cancer, had low 
reproducibility. Another explanation of the PRSOG is that, 
in experiment 1.1, the 0.26 RSOG was not randomized 
and had statistical significance to cover the most important 
genes in breast cancer; whereas the 0.23 RSOG in 
experiment 2.1 occurred randomly and thus it was hard to 
achieve successful reproducibility. In Table 2, we list the 
mean POG, RSOG, distribution of RSOG, and PRSOG 
in all 12 experiments when the correlation coefficient 
was 0.7. Compared with the 10 experiments for different 
disorders, experiment 2.1 had the highest POG score, 
which meant that it had the highest number of overlapping 
genes among those 11 experiments. However, all of the 
experiments had statistically insignificant PRSOGs, 
which indicates unsuccessful reproducibility. Such results 

Table 1: POG scores of 12 experiments using 8 datasets

Platform: GPL6244 Platform: GPL570

Experiment GEO 
accession

*POG12 **POG21 Experiment GEO 
accession

*POG12 **POG21

Experiment 1.1 1. GSE36295
2. GSE39004 0.32 0.36 Experiment 2.1 1. GSE18842

2. GSE19804 0.39 0.38

Experiment 1.2 1. GSE25401
2. GSE28686 0.08 0.09 Experiment 2.2 1. GSE30999

2. GSE19743 0.06 0.06

Experiment 1.3 1. GSE25401
2. GSE36295 0.09 0.08 Experiment 2.3 1. GSE18842

2. GSE30999 0.06 0.07

Experiment 1.4 1. GSE25401
2. GSE39004 0.10 0.10 Experiment 2.4 1. GSE19804

2. GSE30999 0.04 0.04

Experiment 1.5 1. GSE28686
2. GSE36295 0.06 0.05 Experiment 2.5 1. GSE18842

2. GSE19743 0.12 0.12

Experiment 1.6 1. GSE28686
2. GSE39004 0.06 0.06 Experiment 2.6 1. GSE19804

2. GSE19743 0.04 0.04

*POG12 score represents the reproducibility of a DEG list detected in dataset 2 when evaluating it in dataset 1
**POG21 score represents the reproducibility of a DEG list detected in dataset 1 when evaluating it in dataset 2
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suggest that the PRSOG method has a strict threshold for 
judging the success of reproducibility.

We also built the gene network using correlation 
coefficients of 0.5, 0.6, 0.8 and 0.9. The PRSOGs obtained 
when using these different correlation coefficients in 
experiments 1.1 and 2.1 are shown in Table 3. The 
PRSOGs for experiment 1.1 were statistically significant 
and those for experiment 2.1 were not statistically 
significant when using these correlation coefficients. 
When we used the correlation coefficient 0.6, we obtained 
the best PRSOG in each experiment, meaning the smallest 
value, the most statistical significance, or the highest 
reproducibility.

To find the effect of the correlation coefficient on 
the PRSOG method, we plotted the RSOG, mean of the 
RSOG distribution, standard deviation of the RSOG 
distribution and PRSOG values (Figure 1). We found that 
the mean of the RSOG distribution was stable when the 
network was defined, but the standard deviation of the 
RSOG distribution increased with a larger correlation 
coefficient, which meant more edges in the network and 
larger differences between the ranks of two genes. This 
result indicates that the PRSOG is influenced by the 
RSOG and the standard deviation of the RSOG, which 
are both determined by the underlying topological 
structure. The inference suggests that a good fit of the 
network to the underlying biological process is helpful 
for evaluating the reproducibility of microarray studies. 
We found the same results in another 10 experiments 
(Supplementary Tables S1–S10).

Analyzing the importance of overlapping genes

We wanted to determine the reason behind 
completely different PRSOG values in the breast 
cancer data compared to the lung cancer data when 
both diseases had similar POG scores, indicating 
similar numbers of overlapping genes. Therefore, we 
analyzed the importance of every gene among the set of 
overlapping genes.

First, we fit power-law, log-normal, and exponential 
distributions of the genes’ ranks in the gene pool of the 
network. Table 4 lists the results when the correlation 
coefficient was 0.7. It is clear that the power-law 
distribution and the exponential distribution are good fits 
for Kolmogorov-Smirnov test p-values larger than 0.05. 
The log-normal distribution had a statistical significance of 
0.05 for just half of the experiments. When the correlation 
coefficient was 0.9, because of isolated genes that had no 
links, some genes with rank 0 (not exactly 0 but infinitely 
close to 0) made it impossible to fit the three distributions. 
The fitting results with correlation coefficients 0.5, 0.6, 
0.8 and 0.9 are listed in Supplementary Tables S11–S14. 
Second, we used resampling procedure to calculate the 
p-value of a single gene, which represented the importance 
of that single gene (see Analysis and Classification of 
Overlapping Genes under Materials and Methods). We 
defined the significant genes, common genes and wrong 
genes using these p-values. We resampled the data 10,000 
times and observed that the mean and standard deviation 
of the p-value converged to a stable value. The convergent 
processes of 20 genes selected randomly from experiments 
1.1 and 2.1 are shown in Figure 2.

Using the p-value calculated by resampling 
procedure, we classified the genes in the gene pool 
of the network into three classes with the following 
ranges of rank values: (0, 0.1], (0.1, 0.9] and (0.9, 1). 
The percentages of these three components in the 12 
experiments when the correlation coefficient was 0.7 
are plotted in Figure 3. In all 12 experiments, common 
genes occupied more than 75% of the overlapping genes 
that belonged to the gene pool, which contained 80% 
common genes according to the definition of the three 
kinds of genes we assessed. Increasing the percentage 
of significant genes is the key to improving the PRSOG; 
whereas increasing the percentage of wrong genes reduces 
the PRSOG. Thus, for successful reproducibility of a 
microarray study, the network gene pool should include 
more significant genes and few wrong genes. Comparing 
experiments 1.1 and 2.1, we found similar percentages of 

Table 2: P-value of rank-sum of overlapping genes (PRSOG) of all 12 experiments when correlation coefficient 
is 0.7

Experiment Mean 
POG

RSOG RSOG 
Distribution

PRSOG Experiment Mean 
POG

RSOG RSOG 
Distribution

PRSOG

Mean SD Mean SD

1.1 0.34 0.26 0.21 0.0070 1.11 × 10−16 2.1 0.38 0.23 0.24 0.0067 0.88

1.2 0.085 0.047 0.046 0.0009 0.19 2.2 0.060 0.030 0.033 0.0022 0.84

1.3 0.085 0.045 0.046 0.0005 0.94 2.3 0.065 0.031 0.034 0.0024 0.83

1.4 0.100 0.051 0.053 0.0004 0.99 2.4 0.040 0.019 0.019 0.0020 0.58

1.5 0.055 0.030 0.029 0.0027 0.47 2.5 0.120 0.053 0.063 0.0035 0.99

1.6 0.060 0.027 0.030 0.0031 0.81 2.6 0.040 0.015 0.019 0.0020 0.95
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common genes; however, the visible difference was the 
proportion of wrong genes. Experiment 1.1 had almost no 
wrong genes, but experiment 2.1 had the same percentages 
of significant genes and wrong genes. It was thus easy 
to comprehend the cause of the outcome observed in 
experiment 2.1, which analyzed different tumor subtypes 
in lung cancer. The same conclusions were obtained when 
we used correlation coefficients 0.5, 0.6, 0.8 and 0.9 
(Supplementary Figures S2–S5).

The results of our analyses of 8 datasets in 6 
diseases/disorders show that diseases in different 
subtypes with relatively high POG scores had 
statistically insignificant PRSOGs, which indicated low 
reproducibility. In addition, the effect of the correlation 
coefficient on network building suggests that a better 
approximation of the network underlying the biological 
process is helpful when evaluating reproducibility.

DISCUSSION

The cancer treatment depends on a patient’s cancer 
mutation spectrum and the comparison of that spectrum 
with known statistical trends across the relevant population 
of patients [37]. Theoretically, a high POG score is 
expected when comparing the results of two studies 
in the same cancer. When evaluating reproducibility, a 
major shortcoming of the POG criterion is that it treats 
all significant genes the same and simply counts them. We 
compared the DEG lists from different studies in the same 
disease by assigning each gene the rank that represents its 
contribution to the disease. Then, we used PRSOG method 
to evaluate the reproducibility of DEG lists between 
different studies.

The POG scores from 12 experiments showed a 
small number of genes that overlapped between two 

studies, which was consistent with the findings of 
former studies. Greater than 30% of the POG scores for 
the experiments in breast cancer and lung cancer were 
not high enough to apply in clinical practice. In other 
words, we could not ascertain whether the same results 
were achieved in the two studies. Using PRSOG method, 
we found that the quality of reproducibility between 
the two studies in breast cancer was high (a success), 
but that the quality of reproducibility between the 
two studies in different subtypes of lung cancer was 
low (a failure). Inconsistent findings in squamous 
cell carcinomas compared to adenocarcinomas of the 
lung have been investigated in omic studies [33–36]. 
Moreover, the diagnoses and treatments provided to 
patients with squamous cell carcinomas of the lung 
compared to adenocarcinomas of the lung are different 
[38, 39]. Thus, we suggest that the quality instead of 
the quantity of overlapping genes should receive more 
attention when evaluating reproducibility. Then, we 
studied the effect of the correlation coefficient, which 
could be treated as prior information of the disease, on 
the results. In a particular disease, a rational correlation 
coefficient, which could be replaced by a real gene 
network in a bioinformatics database, was helpful in 
achieving a better result. The correlation coefficient 
exerts varying influence on the p-value of the PRSOG 
method in different experiments, which indicates that 
the essential factor in this method is the specific type 
of disease. To determine why different judgments were 
made by PRSOG when similar numbers of overlapping 
genes were found in the experiments in breast cancer 
and lung cancer, we classified the genes into significant 
genes, common genes and wrong genes according to the 
rank values. The results indicate that both the presence 
of few wrong genes and few common genes in the 

Table 3: P-value of rank-sum of overlapping genes (PRSOG) of experiments 1.1 and 2.1, with different correlation 
coefficients

Experiment 1.1: breast cancer Experiment 2.1: different subtypes of non-small cell lung 
cancer

Correlation 
Coefficient

Mean 
POG

RSOG RSOG 
Distribution

PRSOG Correlation 
Coefficient

Mean 
POG

RSOG RSOG 
Distribution

PRSOG

Mean SD Mean SD

0.5 0.34 0.24 0.21 0.0046 2.22 × 
10−16 0.5 0.38 0.24 0.24 0.0043 0.81

0.6 0.34 0.26 0.21 0.0056 0 0.6 0.38 0.24 0.24 0.0053 0.79

0.7 0.34 0.26 0.21 0.0070 1.11 × 
10−16 0.7 0.38 0.23 0.24 0.0067 0.88

0.8 0.34 0.28 0.21 0.0097 3.32 × 
10−13 0.8 0.38 0.22 0.24 0.0093 0.95

0.9 0.34 0.32 0.21 0.0271 1.05 × 
10−5 0.9 0.38 0.18 0.24 0.0268 0.98
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overlapping genes is important to achieve a high level 
of reproducibility.

To our knowledge from relative works, there are 
two mainly methods of assessing the reproducibility of 
gene expression. The first method is POG method and 
derivative methods. In this paper, we compared PRSOG 
with POG and pointed out the principle problems of 
POG which had been discussed distinctly above. The 
second method is correlation coefficient method, simply 
such as Pearson Correlation, and derivative methods. 
However, the correlation coefficient method has the totally 
different prerequisite from PRSOG and POG. In Pearson 
Correlation, correlative correlation between gene list 1 

and gene list 2 was calculated to assess the reproducibility. 
This calculating procedure needed that the two lists had 
the same elements that, in POG’s opinion, meant the 
POG score between the two lists was 1. However, the 
basic assumption in our paper was that the POG between 
two gene lists was small. Above all, it is meaningless 
to compare PRSOG with the second method. There are 
many ways to infer or ‘reverse-engineer’ a gene network 
from expression profiles, such as using Bayesian networks 
[40, 41], information theory [42, 43], ordinary differential 
equations [44] and methods based on databases such as 
Gene Ontology [42, 45] and the Kyoto Encyclopedia 
of Genes and Genomes [46]. Further investigations 

Figure 1: The effect of correlation coefficient on RSOG, mean of RSOG distribution, standard deviation of RSOG 
distribution and PRSOG. The x-axis is the correlation coefficient from 0.5 to 0.9 by increments of 0.1; the y-axis is either the RSOG, 
mean of RSOG distribution, standard deviation of RSOG distribution or PRSOG of the 12 experiments.
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are warranted to study the reproducibility of DEG lists 
produced through different approaches to network 
building. It has been suggested that using thousands of 
samples of a disease will generate a reproducible DEG list 
[11]; however, such a list is hardly reproducible in small 
samples. The emergence of big data [47, 48], particularly 
in medicine and biology [49, 50], has improved data 
accessibility through the rapid generation of huge volumes 
and variety of omic data. Greater meaning in clinical 
applications, however, will require a powerful method to 
evaluate reproducibility in small samples, especially in 
personalized treatments for which little biopsy tissue is 
available for producing huge datasets.

MATERIALS AND METHODS

Datasets and selection of DEGs

To remove the needless factors affecting the results, 
we shrink the backgrounds of datasets as possible. There 
were three main factors of datasets: the platform, the 
preprocessing of chips and the method of DEGs selection. 
We selected the datasets, which used the same platform, 
into the same group. For preprocessing of chips, because 
the GEO used the same and standard process for the same 
platform, GEO was chosen as the only database to select 
datasets. In addition, in SAM, the method DEGs selection 
used in this paper, which was discussed below, because 

paired data and unpaired data had the different principles, 
datasets in the same group would be selected if they 
had the same data type. It should be noted that in such 
condition above the quantity of datasets was small. Above 
all, we obtained the eight datasets used in this paper from 
GEO [21]. The first group of four datasets represent two-
class, unpaired data and the second group of four datasets 
represent paired data.

The first group of four datasets had been collected 
from three different medical disorders: breast cancer, 
obesity, and the illicit use of methcathinone. We used 
the datasets of human obesity and the illicit use of 
methcathinone to compare the metric of reproducibility 
with the breast cancer dataset. Two datasets, GSE36295 
[25] and GSE39004 [26], described breast cancer, and the 
remaining two datasets, GSE25401 [29] and GSE28686 
[24], provided information on human obesity and the illicit 
use of methcathinone, respectively. GSE25401 included 
biopsy data from 26 non-obese women and 30 obese 
women, in which the microRNA from adipose tissue was 
regarded as the regulator of the production of chemokine 
(C-C motif) ligand 2 (CCL2) in human obesity [29]. 
GSE28686 contained data from 20 methcathinone users 
and 20 matched controls, representing the study of the 
RNA expression profiles in peripheral blood samples to 
reveal the effect of methcathinone on the immune system 
[24]. For each medical disorder, we analyzed only data 
that were available from the same platform.

Table 4: Results of fitting power-law, log-normal, and exponential distributions with correlation coefficient 0.7

Experiment Power-law distribution Log-normal distribution Exponential distribution

Xmin Parameter K-S Xmin Parameter 
1

Parameter 
2

K-S Xmin Parameter KS

1.1 0.00141 65.0 0.067 0.00134 −6.587 0.0247 0.037* 0.00144 0.000742 0.667

1.2 0.00066 192.0 0.054 0.00066 −7.320 0.0083 0.032* 0.00069 0.000625 0.667

1.3 0.00059 526.0 0.093 0.00058 −7.439 0.0051 0.084 0.00061 0.000577 0.667

1.4 0.00062 620.0 0.122 0.00062 −7.381 0.0041 0.101 0.00063 0.000615 0.667

1.5 0.00115 99.9 0.086 0.00093 −6.870 0.0700 0.053 0.00118 0.000648 0.667

1.6 0.00141 65.0 0.067 0.00134 −6.587 0.0247 0.037* 0.00144 0.000742 0.667

2.1 0.00141 19.0 0.082 0.00125 −6.631 0.0962 0.029* 0.00162 0.000693 0.667

2.2 0.00099 53.4 0.075 0.00097 −6.922 0.0268 0.029* 0.00105 0.000619 0.667

2.3 0.00089 177.0 0.056 0.00087 −7.033 0.0117 0.048* 0.00092 0.000683 0.667

2.4 0.00095 141.0 0.062 0.00094 −6.963 0.0114 0.041 0.00098 0.000664 0.667

2.5 0.00121 36.2 0.089 0.00113 −6.750 0.0500 0.038 0.00129 0.000631 0.667

2.6 0.00117 47.5 0.065 0.00097 −6.859 0.0726 0.0009** 0.00123 0.000607 0.667

K-S = p-value of Kolmogorov-Smirnov test, which is commonly used to compare a sample with a reference probability 
distribution or two samples;
*p-value of K-S test has statistical significance of 0.05;
**p-value of K-S test has statistical significance of 0.01.
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The second group of four datasets had been 
collected from three other medical disorders: non-small 
cell lung cancer, psoriasis, and severe burn injuries. The 
non-small cell lung cancer datasets were GSE18842 [27], 
characterized by 44 paired tumors and controls as well as 
three unpaired samples, and GSE19804 [28], characterized 
by 120 paired tumor and normal tissue samples. 
GSE18842 contained 69.6% squamous cell carcinomas 
and GSE19804 had 93.3% adenocarcinomas. The 
remaining two datasets consisted of samples of moderate-
to-severe psoriasis, GSE30999 [30], and samples of severe 
burn injuries, GSE19743 [31].

The datasets we analyzed are summarized in Table 6. 
Because of non-available of missing value in network 
building described in below method section, we used the 
k-Nearest Neighbor (kNN) imputation algorithm (k = 15) 
to replace any missing data in the datasets [51].

We used the SAM method (samr_2.0 R packages) 
[22] to select DEGs in each dataset. In the SAM method, 
users pick a fixed threshold and then identify the 
significant genes. Recently, many researches [52–54], 
which selected the differential expressed genes by SAM, 
showed that SAM was a popular and powerful method in 
expression studies. Distinct methods for selecting DEGs, 
such as the analysis of variance [55] and empirical Bayes 
with t-statistics [56, 57], may capture different statistical 
aspects of gene expression changes and contribute to 
the observed inconsistency between the derived DEGs 
[58, 59]. An analysis of the differences between these 
methods is beyond the scope of this paper; however, it 
would be a good topic for future research. It also should 
be noted that an advantage of SAM was the different 
strategies for paired data and unpaired data, whereas FC 
and t-test were not.

Figure 2: Mean and standard deviation of p-value in 10,000 resampling procedures of 20 genes selected randomly 
from experiments 1.1 and 2.1, using correlation coefficient 0.7. 
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PageRank and quality of reproducibility

Methods that use the POG score count the genes 
that overlap between two lists of DEGs to measure the 
reproducibility of microarray studies. Each gene in the 
set of overlapping genes is treated equally in the POG 
criterion. However, a gene may play different roles in 
different diseases and have inconsistent functions in 
different stages of a single disease. Furthermore, within the 
set of overlapping genes, this method includes some genes 
that we call wrong genes because they are not significant 
for the particular disease of interest. The process we used 
in the PRSOG method, which is a qualitative approach, is 
illustrated in Figure 4.

Our first experiment was a study of the 
reproducibility of a list of DEGs between two datasets. 
The gene pool of the network in the experiment was the 
union of the significant DEGs from the two datasets. 
We used PageRank to calculate the rank of a gene, the 
importance of the gene in the relevant network in which 
it functions. Before implementing PageRank, we used the 
correlation coefficient to build the necessary topological 
structure underlying the biology process. We calculated 
the correlation coefficient [60] for each gene pair in 
the gene pool and defined the edges of the network as 
pairs of genes with correlation r. To represent different 
kinds of networks such as a Bayesian network and a 
Gene Ontology network, we calculated five networks 
in an experiment with correlation r ranging from 0.5 to 
0.9, with increments of 0.1. The correlation coefficient 
network was an undirected graph and an edge in the 

coefficient network was two-sided if a directed graph 
was necessary.

PageRank is an algorithm used by Google search 
engines to rank websites. According to Google, PageRank 
works by counting the number and quality of links to a 
page to determine a rough estimate of the importance 
of the website. The underlying assumption is that more 
important websites are likely to receive more links from 
other websites [61].

The original Brin and Page model for PageRank 
used the hyperlink structure of the web to build a Markov 
chain with a primitive transition probability matrix P. The 
irreducibility of the chain guarantees the existence of the 
long-run stationary vector πT, known as the PageRank 
vector. It is well known that the power method applied 
to a primitive matrix would converge to this stationary 
vector [62].

At the initial network state, each gene has the 
same rank r = 1/N, where N is the number of genes in 
the network. The PageRank algorithm calculates the ri of 
the i gene according to the correlation coefficient network 
topology structure by the following equation:

PageRank(gi) = 1 − d
N

+ da
pj

PageRank(gj)

L(gj)
    (1)

where g1, g2,…,gn are the N genes in the network, L(gj) is 
the number of links from gene j, and d ∈ (0, 1) is a fixed 
parameter. In this paper, we used the value d = 0.85, which 
appears to be what was proposed by Google [61, 62].  

Figure 3: Components of overlapping genes in 12 experiments, with correlation coefficient 0.7; comparing experiments 
1.1 and 2.1. 
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R, the PageRank vector of N genes in the network, is 
the eigenvector of the matrix and also the solution of the 
following equation:

R = ≥
(1 − d) ∕N
(1 − d) ∕N
      ⋮
(1 − d) ∕N

¥ + d ≥
ℓ(g1, g1)

ℓ(g2, g1)

      ⋮
ℓ(gN, g1)

+ d ≥
ℓ(g1, g1)

ℓ(g2, g1)

      ⋮
ℓ(gN, g1)

ℓ(g1, g2)      ⋯ ℓ(g1, gN)

      ⋱       ⋮
ℓ(gi, gj)       ⋮

     ⋯      ⋯ ℓ(gN, gN)

¥ R

�

  (2)

where the adjacency function ℓ (gi, gj) is 0 if gene i does 
not link to j, and normalized such that for each j:

	 a
N

i=1

ℓ(gi, gj) = 1� (3)

In an experiment, suppose k overlapping genes are 
detected between list 1 with length l1 and list 2 with length 
l2. Then the POG score from list 1 to list 2 is POG12 = k/l1 
and the score from list 2 to list1 is POG21 = k/l2. The POG 
criterion does not have a convincing standard threshold 
for detecting whether the reproducibility of the experiment 

was a success or not because of the independence of the 
number of DEGs (the DEG length).

In this paper, we propose the PRSOG method. The 
PageRank vector R of the network with N genes obtained 
by the PageRank algorithm and the rank-sum of the 
overlapping genes (RSOG) score of the experiment is the 
sum of the PageRank(gi) of these k overlapping genes:

	 RSOP = a
k

i=1

PageRank(gi)� (4)

To calculate the PRSOG, we resampled k rank 
values in PageRank vector R 100,000 times and built the 
distribution of the RSOG to calculate the p-value of the 
RSOG of the overlapping genes. According to central 
limit theorem, a normal distribution can be built by 10,000 
times resampling. Then we can get the PRSOG as follow:

PRSOG = p 1RSOG|μ, σ 2 = 1

σ!2π
 e

(RSOG−μ)2

2σ2

� (5)

Where μ and σ are the mean and standard deviation of 
RSOG by resampling 10,000 times.

The PRSOG, compared to α = 0.01, indicates the 
statistical significance of the experiment’s reproducibility. 
A PRSOG less than α illustrates successful reproducibility 
in that the genes that overlap between two lists of 

Figure 4: The PRSOG process in non-small cell lung cancer. a. Two lung pictures represent two studies in non-small cell lung 
cancer by different labs; our experiment 2.1 assesses the reproducibility of these two studies. b. The RNA expression data of the two studies 
uses the same platform to ensure the same gene background. c. The significant genes (empty circles) in each dataset are calculated by 
SAM, controlling the quantity in 1000. d. Blue circles are reproducible genes among significant genes found in both studies. e. Building 
the network of this gene pool by correlation coefficient. f. Calculating the rank of every gene by PageRank; a warmer color indicates a 
more important role in the network. g. Assuming k overlapping genes in the gene pool, we resample k genes in the gene pool to build the 
distribution of k genes and then calculate the p-value of the rank sum of theses k overlapping genes. h. Classifying genes in the gene pool 
into three kinds by rank value.



Oncotarget44724www.impactjournals.com/oncotarget

significant genes cover the most important genes in the 
network gene pool.

Analysis and classification of overlapping  
genes

The presence of wrong genes in the set of 
overlapping genes leads to an unreliable evaluation of 
reproducibility in microarray studies [63]. A strategy to 
solve this problem is to increase the influence of important 
genes in the evaluation of reproducibility and decrease 
the influence of wrong genes in that evaluation. Thus, it 
is important to distinguish wrong genes from important 
genes in the DEG list. The PRSOG method assigns a 
rank value to each gene in the gene pool, which is the 
importance of that gene, and evaluates the quality of 
reproducibility of microarray studies by strict statistical 
significance. However, the single rank value of a gene 
depends on the number of genes in the network. Hence, 
it is difficult to use the RSOG to consistently evaluate the 
importance of a given gene.

In our method, we recognize the i gene in the gene 
pool according to the p-value[rank(g) > rank(gi   )], which 
indicates the probability that a gene’s rank is greater 
than the rank of gene i in the network gene pool. Then 
we classify genes in the gene pool into three categories: 
significant genes, with p-value[rank(g) > rank(gi  )] less 
than or equal to 0.1; wrong genes, with p-value[rank(g) > 
rank(gi  )] greater than or equal to 0.9; and common genes, 
with p-value[rank(g) > rank(gi  )] between 0.1 and 0.9. 

We use a reference probability distribution to calculate the 
p-value[rank(g) > rank(gi  )].

The distribution of a wide variety of physical, 
biological, and man-made phenomena approximately follow 
a power-law over a wide range of magnitudes [64]. In 
statistics, a power-law is a functional relationship between 
two quantities, where one quantity varies as a power of 
another. Power-law has a mathematic form like follow

		  f(x) = ax−k			   (6)

where x is the rank value of a gene and f (x) the 
corresponding p-value of this gene.

It has been suggested that the power-law distribution 
of PageRank in web graphs is observed when the typical 
damping factor used in practice is between 0.85 and 
0.90 [65, 66]. Therefore, we tried to fit the power-law 
distribution, exponential distribution and log-normal 
distribution to rank the vector R. We list the definitions of 
the three distributions in Table 5.

Although these three distributions were a good fit 
for the rank vector, the real underlying distribution might 
be another distribution. Therefore, we used resampling 
procedure to calculate the p-value[rank(g) > rank(gi  )], 
with a smaller p-value indicating a more important gene.

In our experiment, we resampled a new rank 
vector R’ with replacement in the ‘population’. We then 
calculated the p-value in the new rank vector R’ as follows:

P−value(rank(g) > rank(gi)) =
#(rank(g) > rank(gi))

N
	  (7)

Table 6: The summarized information of datasets from GEO

GEO ID Disease Tissue Samples Size Platform ID

GSE36295 Breast cancer Breast tissues 53 GPL6244

GSE39004 Breast cancer Breast tissues 180 GPL6244

GSE25401 Human obesity Adipose tissue 56 GPL6244

GSE28686 Illicit methcathinone Blood tissue 40 GPL6244

GSE18842 Lung cancer Lung tissue 91 GPL570

GSE19804 Lung cancer Lung tissue 120 GPL570

GSE30999 Psoriasis Skin biopsy 170 GPL570

GSE19743 Burn injury Blood sample 177 GPL570

Table 5: Definitions of power-law, exponential and log-normal distributions

Name Distribution p(x) = Cf(x)

f(x) C

Power-law x−α (α − 1)xα−1
 min 

Exponential e−λx λe−λx min 

Log-normal 1
x

 exp c−(lnx − μ)2

2σ2
d Å

2

πσ2
cerfca  ln x min − μ

!2σ
b d
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We performed the resampling procedure 10,000 
times to obtain the mean and standard deviation of 
the p-value. We used the mean value to indicate the 
p-value[rank(g) > rank(gi  )].
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