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Based on the fact that very little was found in the literature on the question of potential molecules and mechanism for high risk of
cancer in patients with psoriasis, this study was designed and performed based on bioinformatics analysis including WGCNA. The
most striking result to emerge from the data is that BUB1B/hsa-miR-130a-3p axis, closely related to the development of psoriasis,
also plays a remarkable role in multiple cancer development. The expression patterns of hsa-miR-130a-3p were found significantly
changed in multiple tumors, which was also associated with prognosis. Additionally, hsa-miR-130a-3p was downregulated in
lesion skin of psoriasis, but there was no difference in blood between psoriasis patients and normal controls. Circulating has-miR-
130a-3p was found to have a higher level of blood in multiple tumor patients, suggesting that hsa-miR-130a-3p has the potential to
be a blood biomarker for cancer risk assessment in patients with psoriasis.

1. Introduction

Psoriasis (Ps) is a hyperproliferative chronic inflammatory
skin and joint disease with unknown etiology [1], which
affects 2-3% of the population. According to previous
studies, individuals with psoriasis are at an increased risk of
cancer compared to the general population or a reference
group without the disease [2, 3], but the underlying asso-
ciation is much less clear [4]. To improve the understanding
of the underlying mechanisms of this increased risk, further
research is needed.

MicroRNAs (miRNAs) interact with mRNAs and trigger
translational suppression or mRNA degradation. Micro-
RNAs mutation and maladjustment are related to the oc-
currence and development of human diseases [5].
Accordingly, miRNAs, especially miR-21, miR-125b, miR-
146a, and miR-203, may play a role in the pathogenesis of

psoriasis. The underlying process affects keratinocytes
proliferation and inflammation, as well as T-cell-mediated
immunological failure [6]. Notably, plasma miRNAs are also
involved in psoriasis pathogenesis targeting the VEGEF,
MAPK, and WNT signaling pathways [7]. Moreover,
changes in miRNA expression or miRNA dysfunction have
also been reported to be associated with cancer initiation,
progression, and diagnosis in several studies [8, 9]. But still
no studies focus on the role of psoriasis-related miRNAs in
pan-cancer.

There is growing interest in microarray platforms as
a way to detect genetic alterations and to determine bio-
markers for many diseases [10]. Several biomarkers and
pathways have been implicated in the development of
psoriasis and multiple cancer types in previous studies on
microarray data. For example, RNF114 was found to cor-
relate with the development of psoriasis and gastric cancer
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[11]. The findings mentioned above point to a substantial
correlation between psoriasis and cancer development.
However, there has not been any pan-cancer analysis on the
genes involved in the etiology of psoriasis, either mRNAs or
miRNAs.

In this study, we analyzed and validated a total of 6
datasets, including blood samples and skin samples of
healthy control and patients with psoriasis, by integrated
bioinformatics methods. It was found that BUB1B/hsa-miR-
130a-3p axis, closely related to the development of psoriasis,
also plays a remarkable role in multiple cancer development.
This study may provide a new insight into the mechanism of
high cancer risk in patients with psoriasis.

2. Materials and Methods

The flow chart of this study is shown in Figure 1.

2.1. Dataset Collection. Gene expression datasets were col-
lected from the Gene Expression Omnibus database (http://
www.ncbi.nlm.nih.gov/geo) [12]. The uniformly normalized

pan-cancer dataset was downloaded from the UCSC
(https://xenabrowser.net/) database [13]: TCGA TARGET
GTEx (PANCAN, N =19131, G=60499). miRNAseq data
was obtained from Level 3 BCGSC miRNA Profiling in
TCGA (https://portal.gdc.cancer.gov/) ALL (Pan-Cancer)
project.

2.2. Data Processing and Differential Expression Analysis.
The normalized expression matrix of microarray data was
downloaded from the GSE dataset. Then, the probes were
annotated with the annotation files from the dataset. For
merging multiple datasets, we first merged the datasets using
the R package inSilicoMerging [14], and then we removed
the batch effects [15]. Then, the “limma R” package was used
to obtain the differentially expressed genes (DEGs) between
the different comparison groups and the control group in the
dataset (|[Log2FC|>1, p adj value <0.05) [16]. Venn plot
was drawn between different comparison sets to get over-
lapped DEGs. Moreover, heatmap and box plot were con-
ducted using “heatmap” and “ggplot2” packages of R
software.
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2.3. Weighted Correlation Network Analysis (WGCNA).
First, we calculated the MAD (Median Absolute Deviation)
of each gene separately using the gene expression profile,
eliminated the top 50% of genes with the smallest MAD,
removed the outlier genes and samples using the good-
SamplesGenes method of the R package WGCNA [17], and
further constructed a scale-free coexpression network. A
power of f=5 was chosen. To further analyze the module,
we calculated the dissimilarity of the module eigen genes,
chose a cutline for the module dendrogram, and merged
modules with distance less than 0.25 along with a sensitivity
set to 3. Finally, 14 non-grey modules were obtained. Ad-
ditionally, we calculated the expression correlation with
genes to obtain GS and also calculated the expression
correlation of module eigenvectors with genes to obtain
MM. Based on the cut-off criteria (|[MM]>0.8 and |GS|
>0.1), 698 genes with high connectivity in the clinical sig-
nificant module were identified as hub genes.

2.4. Functional Correlation Analysis. For gene set functional
enrichment analysis, we used GO annotations of genes from
the R package org.Hs.eg.db (version 3.1.0) and KEGG an-
notation from rest API (https://www.kegg.jp/kegg/rest/
keggapi.html) as background, mapped the genes to the
background set, respectively, and used the R package
clusterProfiler (version 3.14.3) for enrichment analysis to
obtain gene set enrichment results [18]. Set the minimum
gene set to 5 and the maximum gene set to 5000. A false
discovery rate (FDR) <0.05 and p <0.05 were considered
significant enrichment.

2.5. Construction of the PPI Network. To characterize the
crucial DEGs, we used an online tool STRING (https://
string-db.org/) to construct PPI networks with a mini-
mum required interaction score of 0.4 [19]. For further
analysis, Cytoscape software was used for the download of
interaction information. Significant genes were determined
by the CytoHubba plugin as hub genes [20]. The significant
clusters within the PPI network were selected using the
MCODE plugin.

2.6. Prediction and Validation of miRNAs Targeting Core
Gene. The miRNA target predicting algorithms miRDB
(http://mirdb.org/miRDB/) [21], TargetScan [22] (http://
www.targetscan.org/), miRTarbase [23] (http://mirtarbase.
cuhk.edu.cn/), ENCORI (https://stps://starbase.sysu.edu.cn/)
[24], and Diana-Tarbase V8.0 [25] (https://dianalab.e-ce.uth.
gr/) were used to predict miRNAs targeting core gene. The
intersection of miRNAs obtained from multiple online tools
and differently expressed mRNAs (DEmiRNAs) from the
GSE142582 dataset was shown in an UpSetR-plot using the
UpsetR R package [26].

2.7. Expression Analysis of BUBIB and hsa-miR-130a-3p in
Pan-Cancer. We extracted the expression data of hsa-miR-
130a-3p [MIMATO0000425] from various samples and then
performed the log 2 transformation of each expression value.

We calculated the difference in expression between paired
tumor and adjacent normal tissues as well as normal and
tumor samples in indicated tumor types using R software
(version 3.6.4) and analyzed the difference in significance
using unpaired Wilcoxon Rank Sum Tests. The final results
were visualized by ggplot [27]. Moreover, the pan-cancer
expression of BUBIB at the protein level was investigated
using the Human Protein Atlas database (http://www.
proteinatlas.org/) [28].

2.8. CancerMIRNome. CancerMIRNome is a comprehen-
sive database with the human miRNome profiles of 33
cancer types from The Cancer Genome Atlas (TCGA) and 40
public cancer circulating miRNome profiling datasets from
NCBI Gene Expression Omnibus (GEO) and ArrayExpress
[29]. It was used to perform a different analysis of hsa-miR-
130a-3p in pan-cancer.

3. Results

3.1. Data Preprocessing. After searching in the Gene Ex-
pression Omnibus database with inclusion criteria including
(1) patients with psoriasis and (2) blood samples or skin
samples, 6 datasets were chosen, and the detailed in-
formation and function are shown in Table 1. Briefly,
GSE13355 and GSE14905 were merged to identify differ-
entially expressed mRNAs; GSE142582 was used to explore
differentially expressed miRNAs; GSE78097 and GSE55201
were validation datasets for DEmRNAs; and GSE55515 was
another validation dataset for DEmiRNAs.

4., Differentially Expressed mRNAs in Patients
with Psoriasis

Firstly, we removed the batch effects between GSE13355 and
GSE14905. From the box plot (Figure 2(a)), we can observe
that the sample distribution of each dataset before the batch
effect is removed is quite different, suggesting that there is
a batch effect, and the data distribution between the various
data sets after the batch effect is removed tends to be
consistent, and the median is on a line (Figure 2(b)). Then,
we identified DEGs from 2 different comparison sets in-
cluding PP versus NN and PP versus PN. DEGs were
identified with the setting of cutoff at FDR < 0.05 and |log 2
(FC)| = 1. The DEGs from the 2 sets were presented as
a volcano plot and heatmap plot (Figures 2(c)-2(f)). As
shown in Figure 2(g), there are totally 498 upregulated DEGs
and 308 downregulated DEGs from PP-NN set, while there
are 448 upregulated and 219 downregulated DEGs from
PP-PN set. Among them, 421 upregulated DEGs and 192
downregulated DEGs were overlapped between the 2 sets.

4.1. WGCNA Analysis and Attainment of Module DEGs.
In this study, WGCNA analysis was conducted using the R
package WGCNA. The expression patterns of the genes in
the same module were similar and relevant to the average
linkage clustering. We included 262 samples with clinical
traits to filter outlier samples via sample clustering. A soft
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Figure 2: Differentially expressed genes (DEGs) exploring. (a) Box plot before batch effect is removed. (b) Box plot before batch effect is
removed. (c) Volcano plot of DEGs from PP-NN set. (d) Volcano plot of DEGs from PP-PN set. (e) Heatmap plot of top 50 DEGs from PP-
NN set. (f) Heatmap plot of top 50 DEGs from PP-NN set. (g) Venn plot of overlapped DEGs between 2 sets. (PP: lesion skin from psoriasis
patients; PN: no-lesion skin from psoriasis patients; NN: normal skin from normal controls).

threshold (B)=5 was set to ensure a scale-free network
(Figure 3(a)). Similar modules with a height cut-off value of
0.25 were merged, and 14 non-grey modules were finally
obtained (Figure 3(b)). Furthermore, the relationship be-
tween the modules and the clinical traits was evaluated to
identify the hub module. The results showed that the tur-
quoise module was significantly associated with the PP
samples (Figure 3(c)). The module membership and gene
significance of turquoise are shown in Figure 3(d). Addi-
tionally, we calculated the expression correlation with genes
to obtain GS and also calculated the expression correlation
of module eigenvectors with genes to obtain MM. Based on
the cutoff criteria (|MM]| > 0.8 and |GS| > 0.1), 697 genes with
high connectivity in turquoise module were identified as hub

genes. Subsequently, we plotted the Venn diagram between
the modular hub genes and the abovementioned DEGs and
finally obtained 297 upregulated genes and 43 down-
regulated genes (Figure 3(e)).

4.2. PPI Network Construction and Hub Genes Attainment.
First, we used the STRING database and Cytoscape software
to construct the network of the aforesaid DEGs from the
turquoise module, containing 259 nodes and 1804 edges. The
top three significant clusters (Figure 4(a)) within the PPI
network were selected using MCODE plugin in Cytoscape
software (Clusters 1, MCODE score =42.978; Clusters 2,
MCODE score = 19.818; Clusters 3, MCODE score =5.053).
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FIGURE 3: The result of WGCNA. (a) The lowest power for scale independence. (b) Repeated hierarchical clustering tree. (c) The associations
between clinic traits and the modules. (d) Scatter plot of GS and MM correlation between turquoise module and PP samples. (e) Venn plot of
697 hub genes from turquoise module and overlapped DEGs from the above 2 different comparisons.

Then, the CytoHubba plugin was used to explore hub genes,
and the top twenty were generated using DMNC, MCC,
degree, EPC, and MNC methods. The intersection of the top
20 genes obtained from the five calculation methods was
presented as an upset plot (Figure 4(b)). A total of 4
overlapped genes were obtained (TTK, KIF2C, BUBI1B, and
DLGAPS5).

4.3. Expression Pattern Analysis of 4 Core Genes in the Val-
idation Dataset. To further obtain more core genes, we
analyzed the expression patterns of the four genes in the
merge dataset as well as the validation dataset, GSE78097
and GSE55201. All 4 genes were highly expressed in psoriatic
lesions compared to normal skin from psoriasis patients and
normal controls (Figure 4(c)), but no difference was found
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FIGURE 4: Further analysis of hub DEGs. (a) Clusters from MCODE in Cytoscape. (b) Overlapped genes of 5 different methods from
CytoHubba plugin in Cytoscape. (c) Expression pattern of 4 overlapped genes in merged dataset (GSE13355 and GSE14905). (d) Expression
pattern of 4 overlapped genes in GSE78097. (e) Expression pattern of 4 overlapped genes in GSE55201.

between normal skin from psoriasis patients and normal
controls. As shown in Figure 4(d), BUB1B, TTK, and KIF2C
were more highly expressed in psoriatic lesions compared to
normal skin, which were more obvious in moderate psoriatic
lesions than severe lesions. Differences in the DLGAP5
expression pattern exist only between lesions and normal
skin, independent of lesion severity. Additionally, the ex-
pression of BUB1B and DLGAPS5 in the blood samples of
psoriasis patients was also higher than that of normal
controls (Figure 4(e)). Combining the validation results of
the above two datasets, BUBIB and DLGAP5 were con-
sidered to be core genes in the development of psoriasis.
DLGAP5 has been reported to be correlated with clinical
prognosis, immune cell infiltration, and tumor mutational
burden across multiple tumors in previous studies [30]; thus,
BUBI1B was chosen for further analysis.

4.4. Identification and Function Enrichment Analysis of
DEmiRNAs of Patients with Psoriasis. Differently expressed
miRNAs (DEmiRNAs) of the GSE142582 dataset were
obtained from 2 comparison sets including PP-PN and PP-

NN. As shown in Figures 5(a)-5(c), a total of 140 DEmi-
RNAs for PP-NN set (57 upregulated and 83 downregulated)
and 180 DEmiRNAs from PP-PN set (72 upregulated and
108 downregulated) were gained. Among them, 48 DEmi-
RNAs were overlapped between the above 2 sets (18
upregulated and 40 downregulated). Then, all the overlapped
DEmiRNAs were used for DO enrichment analysis by
miEAA. As shown in Figure 5(d), we ranked the results by
the number of engaged DEmiRNAs, and the most involved
diseases were multiple types of cancers. Additionally, mir-
Path (v 3.0) from DIANA-Tools is also used for KEGG
enrichment analysis of those DEmiRNAs combined with
DEGs from the hub module of the result of WGCNA. As
shown in Figure 5(e), the top 1 involved pathway was
cancer-related.

4.5. Prediction and Validation of miRNA Targeting BUBIB.
Firstly, we predicted miRNAs targeting BUB1B using 5
different databases. The intersection of the predicted miR-
NAs with all overlapped DEmiRNAs is shown in Figure 5(f).
With a threshold of simultaneous occurrence in at least three
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Figure 5: Differentially expressed miRNAs (DEmiRNAs) exploring and analysis. (a) Volcano plot of DEmiRNAs from PP-NN set.
(b) Volcano plot of DEmiRNAs from PP-PN set. (c) Venn plot of DEmiRNAs from the above 2 comparisons. (d) Results of disease
enrichment analysis of overlapped DEmiRNAs from 2 sets using miEAA. (e) Results of KEGG enrichment analysis of overlapped
DEmiRNAs from 2 sets using mirPath. (f) Upset plot of overlapped DEmiRNAs and predicted miRNAs targeting BUB1B using different
online tools. (g and h) Expression pattern of hsa-miR-130a-3p in GSE142582 (g) and GSE55515 (h). Results of diseases enrichment analysis
(i) and KEGG enrichment analysis (j) of hsa-miR-130a-3p using CancerMIRNome.

databases, we obtained the only DEmiRNA targeting
BUBIB, hsa-mir-130a-P3. Subsequently, we validated the
expression pattern of hsa-miR-130a-3p in GSE142582 and
GSE55515. As shown in Figure 5(g), hsa-miR-130a-3p was

lowly expressed in the PP group compared with both the PN
and NN group, while there was no statistical difference
between the PN and NN groups. Conversely, the expression
pattern of hsa-miR-130a-3p showed no difference in blood
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FIGURE 6: BUB1B expression pattern in pan-cancer; RNA expression pattern between normal and tumor samples (a) as well as paired tumor
and normal tissues (b); protein expression pattern in pan-cancer using HPA database.

samples of psoriasis and normal controls (Figure 5(h)). The  4.6. BUBIB Expression Analysis in Pan-Cancer. We calcu-
functional enrichment analysis was performed through  lated the difference in expression between normal and tumor
CancerMIRNome. As shown in Figure 5(i), the diseases hsa- samples in each tumor using R software (version 3.6.4) and
miR-130a-3p engaged in were the most cancer-related. The  difference significance analysis using unpaired Wilcoxon
involved KEGG pathways are presented in Figure 5(j). Rank Sum and Signed Rank Tests. As shown in Figure 6(a),



10

Evidence-Based Complementary and Alternative Medicine

fl

(PR

FIGURE 7: hsa-miR-130a-3p expression pattern in pan-cancer between normal and tumor samples ((a) figure from CancerMIRNome;
(b) download dataset from TCGA) as well as paired tumor and normal tissues (c).

we observed significant upregulations in 33 tumors, in-
cluding GBM, GBMLGG, LGG, UCEC, BRCA, CESC,
LUAD, ESCA, STES, KIRP, KIPAN, COAD, COADREAD,
PRAD, STAD, HNSC, KIRC, LUSC, LIHC, WT, SKCM,
BLCA, THCA, READ, OV, PAAD, UCS, ALL, LAML,
PCPG, ACC, KICH, and CHOL, and significant de-
regulation in THYM. For paired tumor and normal tissues
in TCGA pan-cancer (Figure 6(b)), BUB1B was expressed at
high levels in 18 tumors, including BLCA, BRCA, CHOL,
COAD, ESAD, ESCA, HNSC, THCA, KIRP, LIHC, LUAD,
KIRC, LUSC, OSCC, PRAD, READ, STAD, and UCEC. We
continue to explore the protein level of BUB1B in pan-
cancer using the HPA database. It was found that more than
50% of patients with 10 cancers exhibited high expression,
including testis cancer, cervical cancer, thyroid cancer,
colorectal cancer, pancreatic cancer, lymphoma, breast
cancer, lung cancer, stomach cancer, and melanoma (Figure

6(c)).

4.7. Expression Analysis of hsa-miR-130a-3p in Pan-Cancer.
After searching “hsa-miR-130a-3p” in “Query” section of
CancerMIRNome (http://bioinfo.jialab-ucr.org/
CancerMIRNome/), we obtained Figure 7(a). It was ob-
served that hsa-miR-130a-3p had significant upregulations
in 4 tumors (BLCA, HNSC, READ, and COAD) and
downregulations in 12 tumors (UCEC, THCA, LUSC, KIRC,
PAAD, KIRP, PRAD, BRCA, STAD, LIHC, PCPG, and
KICH). As for the expression patterns analysis result from
download dataset (Figure 7(b)), hsa-miR-130a-3p was found

to have significant upregulations in 7 tumors (BLCA,
COAD, HNSC, LUAD, READ, SKCM, and THYM) and
downregulations in 8 tumors (BRCA, KICH, KIRC, KIRP,
LIHC, PAAD, PCPG, and THCA). In paired comparison
(Figure 7(c)), hsa-miR-130a-3p had significant upregula-
tions in 6 tumors (BLCA, HNSC, OSCC, READ, COAD, and
UCEC) and downregulations in 5 tumors (BRCA, KICH,
KIRC, LIHC, and THCA).

4.8. Prognostic Significance of hsa-miR-130a-3p in Pan-
Cancer. Using the CancerMIRNome database’s “TCGA
pan-cancer section,” cox regression analysis of the results
from 33 types of cancer suggested that the hsa-miR-130a-3p
expression significantly correlated with OS in 6 types of
cancer, including ACC, COAD, STAD, KIRC, LIHC, and
UCS. Kaplan-Meier survival curves indicated that the un-
regulated hsa-miR-130a-3p expression was remarkably as-
sociated with poor OS in the ACC, COAD, STAD, and KIRC
(Figure 8).

4.9. ROC Analysis of hsa-miR-130a-3p in Pan-Cancer.
The results of ROC analysis of hsa-miR-130a-3p in various
tumor types were obtained in the “TCGA pan-cancer
part” of CancerMIRNome. As shown in Figure 9, a to-
tal of 5 cancers were found to have high AUC value
(>0.85), including COAD, KICH, LIHC, PCPG, and
READ. The results revealed that hsa-miR-130a-3p ex-
pression had excellent diagnostic value in multiple cancer
types (Figure 10).
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FIGURE 8: Association between the hsa-miR-130a-3p expression and OS in cancer patients. (a) A forest plot of hazard ratios of hsa-miR-
130a-3p in 32 types of tumors. (b) Kaplan-Meier survival curves of OS for patients stratified by the different expressions of hsa-miR-130a-3p.
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4.10. Pan-Cancer Analysis of the Correlation between hsa-
miR-130a-3p, BUBIB Expression, and Clinicopathology.
The expression of hsa-miR-130a-3p and BUB1B was assessed
in cancer patients with different stages (I, II, III, and IV) to
discover whether it is associated with clinicopathological fea-
tures in multiple cancers. The results from the TCGA database
revealed that the expression of hsa-miR-130a-3p was signifi-
cantly upregulated in several advanced cancers, including ACC,
KIRC, STAD, and UCEC (Figure 9(b)). As for BUBIB,
upregulation in advanced ACC, KICH, KIRC, KIRP, and
LUAD was revealed (Figure 9(a)).

4.11. Coexpression Analysis for BUB1B/hsa-miR-130a-3p in
Pan-Cancer. After searching with hsa-miR-130a-3p and
BUBIB in the “pan-cancer” section of ENCORI, we obtained
the results shown in Figure 11. It was found that the cor-
relation of BUB1B and hsa-miR-130a-3p coexpression was
significant in multiple cancer types, especially in ACC,
BLCA, COAD, KICH, PRAD, and READ.

5. Discussion

Based on the fact that very little was found in the literature
on the question of potential molecules and mechanism for
high risk of cancer in patients with psoriasis, this study was
designed and performed. The most striking result to emerge
from the data is that BUB1B/hsa-miR-130a-3p axis, closely
related to the development of psoriasis, also plays a re-
markable role in multiple cancer development.

After the identification and validation of DEGs, BUB1B
and DLGAP5 were finally found as core genes in the devel-
opment of psoriasis. In previous studies, several biomarkers as
well as pathways have been reported to be correlated with the
development of psoriasis, such as apoptosis, cell cycle, an-
giogenesis, inflammatory response, T cell immune response,
VEGF, MAPK, WNT, JAK/STAT, NF-kappa B, and B cell
response (7, 31]. It is the first time that BUB1B and DLGAP5
have been linked to the onset of psoriasis, though exact
mechanisms are yet unknown. BUBIB, mitotic checkpoint

serine/threonine-protein kinase BUBI beta, is an essential
component of the mitotic checkpoint, which is required for
normal mitosis progression [32]. An impairment in BUBIB
often leads to aneuploidy and chromosome instability, which
can contribute to an increased cancer incidence [33, 34].
Furthermore, BUB1B mutations and abnormal expression can
contribute to the development of cancer [35]. Consistent with
the literature, this research revealed that BUBIB was signifi-
cantly upregulated in multiple tumors across both paired and
unpaired sample analyses, both RNA and protein levels.
DLGAP5 (Discs Large Homolog Associated Protein 5), also
known as HURP (Hepatoma Up-Regulated Protein) or
KIAA0008, was identified as a cell-cycle-regulated protein [36],
which is crucial for the movement of the spindle and helps
establish the centromere during cell division [37]. According to
previous studies, DLAG5 has been shown to be involved in
many cancer types, including breast cancer, prostate cancer,
and liver cancer [30, 37, 38]. All these results revealed that
BUBIB as well as DLGAP5 may bridge the gap between
psoriasis and cancers.

In this study, we likewise analyzed differentially
expressed microRNAs in skin lesions of patients with
psoriasis. KEGG enrichment analysis of these DEmiRNAs
showed that they were highly associated with cancer de-
velopment, which provides further evidence of a potential
association between psoriasis and multiple cancers. Among
them, hsa-miR-130a-5p was the only miRNA targeting
BUBIB. In a series of subsequent analyses on hsa-miR-
130a-3p in pan-cancer, we found that hsa-miR-130a-3p
expression level was up- or downregulated in a variety of
cancer types, some of which was also correlated with the
clinical stage. This study supports evidence from previous
observations that hsa-miR-130a-3p is a site-specific prog-
nosis biomarker in colorectal cancer [39]. Based on the
results of ROC analysis, we also found that hsa-miR-130a-3p
was also a specific miRNA for LIHC, KICH, COAD,
and PCPG.

Circulating miRNAs appear to be useful for preclinical
diagnosis, since they are more sensitive and specific for early
diagnosis, risk assessment, and monitoring disease progression
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[40]. The assays of miRNA in blood samples have been de-
veloped as novel, minimally invasive biomarkers for the de-
tection and the risk assessment of cancer [41]. Using the GEO
dataset from the CancerMIRNome tool, circulating has-miR-
130a-3p was found to have a higher level of blood in multiple
tumor patients, which did not differ in blood between psoriasis
patients and normal controls, suggesting that circulating has-
miR-130a-3p has the potential to be a blood biomarker for
cancer risk assessment in patients with psoriasis.

6. Conclusion

Through bioinformatics research, we discovered that the
BUBI1B/hsa-miR-130a-3p axis is closely related to the de-
velopment of psoriasis as well as several cancer types.
Circulating hsa-miR-130a-3p may be a potential biomarker
for cancer risk assessment in psoriasis patients. These
findings add to the growing body of research linking pso-
riasis to the development of cancer.
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