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Reduced levels of biomarkers 
of exposure in smokers switching 
to the Carbon‑Heated Tobacco 
Product 1.0: a controlled, 
randomized, open‑label 5‑day 
exposure trial
Cam Tuan Tran*, Marija Bosilkovska, Guillaume de La Bourdonnaye, Nicolas Blanc & 
Christelle Haziza

In addition to smoking cessation, for those who would otherwise continue to smoke, replacing 
cigarettes with less harmful alternatives can reduce the harms of smoking. Heating instead of burning 
tobacco reduces, or eliminates, the formation of harmful and potentially harmful constituents 
(HPHC) that are found in cigarette smoke. The Carbon-Heated Tobacco Product (CHTP), a heat-not-
burn tobacco product, mimics the cigarette smoking ritual. This randomized, open-label, two-arm, 
parallel-group, short-term confinement study tested the hypothesis that the geometric means of the 
BoExp levels for subjects switching to CHTP 1.0 for 5 days are lower relative to those continuing to 
smoke cigarettes. Biomarkers of exposure (BoExp), including nicotine, urinary excretion of mutagenic 
constituents (Ames test), and cytochrome P450 (CYP) 1A2 activity, were measured in blood and/
or 24-h urine samples during ad libitum product use. Nicotine exposure remained at similar levels 
in individuals using CHTP as in those continuing to smoke cigarettes. Switching to CHTP resulted in 
marked decreases in all other urinary BoExp (56–97%), carboxyhemoglobin (59%), urinary mutagenic 
constituents, and CYP1A2 activity compared with continued cigarette smoking. Our results provide 
evidence of decreased exposure to 15 selected HPHCs in smokers switching from cigarettes to 
exclusive CHTP use.
Trial registration ClinicalTrials.gov: NCT02503254; Date of first registration: 20/07/2015 https​://www.
clini​caltr​ials.gov/ct2/show/NCT02​50325​4.
Study protocol Study protocol published at: https​://www.clini​caltr​ials.gov/Provi​dedDo​cs/54/NCT02​
50325​4/Prot_000.pdf.

Smoking cessation is the best approach for smokers to reduce the risk of diseases caused by smoking. However, 
despite the risks attributable to combusted tobacco, some smokers continue smoking, which demands another 
approach. Providing alternative less harmful products to adult smokers, who would otherwise continue using 
tobacco products, could reduce the deleterious health effects of combusted tobacco to the individual and to the 
population as a whole.

Various classes of nicotine delivery products that are potentially less harmful than cigarettes are currently 
offered to smokers as alternatives to cigarettes1,2. For tobacco-based products, heating tobacco (rather than 
burning it) prevents combustion and reduces the levels of harmful and potentially harmful constituents (HPHC) 
present in the generated aerosol in comparison to those found in cigarette smoke3–6.

From smokeless oral products and snus, to electronic cigarettes (e-cigarettes) and heated tobacco, the devel-
opment of tobacco and nicotine-containing products as potential harmless alternatives to cigarettes, known as 
“potential reduced-exposure products”7, began decades ago. Since 2003, the prevalence of e-cigarettes (nicotine 
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containing products) has increased8. E-cigarettes heat a liquid to generate a vapor, typically containing nicotine, 
which is inhaled.

Tobacco containing products include a variety of different products. In 1989, RJ Reynolds (RJR) released 
Premier, a product similar in size and appearance to a cigarette, hosting an aluminum canister containing alu-
mina beads impregnated with tobacco extract and enabling vaporization through a carbon heat source9. Eclipse, 
a subsequent product also using a carbon-based heat source to heat a tobacco plug, was introduced in 1996 by 
RJR10, followed by Revo, a revamped version of Eclipse. In 1999, Philip Morris USA released Accord, a smoking 
system that electronically heated the tobacco when puffed, producing less smoke and no ash11.

Several electrically heated tobacco products are currently available on the market, such as Philip Morris 
International’s Tobacco Heating System (a candidate modified risk tobacco product [MRTP] sold under the 
brand name IQOS), Japan Tobacco’s Ploom TECH12, and British American Tobacco’s Glo/iFuse.

Tobacco products aiming at reducing the risk of harm and of smoking-related diseases compared with con-
tinued smoking are called MRTPs in the U.S.13 In this study we investigated a potential MRTP, which was test-
marketed in the Dominican Republic in 2018, the Carbon-Heated Tobacco Product (CHTP) 1.0, developed by 
Philips Morris International. Despite a number of similarities with cigarettes in design and ritual, its technical 
design is fundamentally different and includes a carbon-based heat source, isolated from the tobacco plug, 
which contains specially processed tobacco. Once lit, the heat source provides energy to heat the tobacco plug 
to a well-defined temperature profile to avoid combustion. The heat source is isolated from the tobacco plug by 
a non-combustible, heat resistant, gas impermeable element, fixed to the rear portion of the heat source (Sup-
plementary Figure 1). This element provides a physical separation between the heat source and tobacco plug, 
preventing heat source emissions from entering the aerosol generated from the tobacco plug14. The aerosol is 
composed primarily of water, glycerol (as humectant), nicotine, and significantly reduced amounts of HPHCs15.

A prototype of CHTP (version MD2-E7) was tested in a clinical study in 2009 (ClinicalTrials.gov, 
NCT00812279) in 112 adult smokers randomized to three groups: continuing to smoke cigarettes, switching to 
the CHTP, or smoking abstinence (SA). Subjects in the CHTP group had decreased levels from baseline (levels 
measured during the period after the enrollment but before allocation to the respective group by randomization) 
comparable to the SA group in all measured biomarkers of exposure (BoExp) to HPHCs (e.g., carboxyhemo-
globin [COHb]) and lower urinary excretion of mutagenic constituents after 5 days relative to cigarette smoking15.

CHTP 1.0, based on the earlier prototypes, was designed to address consumer needs to deliver sufficient 
nicotine per puff and emulate the experience of cigarette smoking in terms of ritual while having the potential 
to present less risk of harm. Compared with the CHTP MD2-E7 prototype, changes were made to the design of 
the heat source and filter paper of CHTP 1.0 in order to yield higher levels of nicotine in the aerosol [0.50 mg 
and 1.30 mg under International Organization for Standardization (ISO) and Health Canada Intense (HCI) 
smoking regimes, respectively, compared with 0.40 mg and 0.68 mg, respectively, for MD2-E7]. In order to 
test the newly improved CHTP 1.0 in terms of performance and acceptance, the present study was designed to 
demonstrate a reduction in HPHC exposure in adult healthy smokers switching from their preferred brand of 
cigarettes to CHTP 1.0 for 5 days. In addition, product use behavior (e.g., puff rate and inhalation depth), amount 
of product use, nicotine uptake, urinary excretion of mutagenic constituents, and cytochrome P450 (CYP) 1A2 
activity were assessed. The primary objective of the study consisted of demonstrating the reduction of exposure 
in four biomarkers of exposure (monohydroxybutenylmercapturic acid [MHBMA] a biomarker of exposure to 
1,3-Butadiene, 3-hydroxypropylmercapturic acid [3-HPMA] a biomarker for Acrolein, S-phenylmercapturic 
acid [S-PMA] a biomarker for Benzene, and COHb, a biomarker for CO).

Materials and methods
Study design.  This controlled, randomized, open-label, two-arm parallel group, single-center confinement 
study was conducted between July and September 2015 at the BioVirtus Research Site (Kajetany, Poland) and 
was registered at ClinicalTrials.gov (NCT02503254). The study was approved by the independent ethics commit-
tee of the Regional Medical Chamber of Physicians in Warsaw, Poland.

A total of 85 eligible adult subjects were enrolled on Day − 3 (Admission) when CHTP was tested post-enroll-
ment. Five subjects were discontinued (Fig. 1) before randomization. On Day − 1, 80 subjects were randomized by 
an interactive web and voice response system at a 1:1 ratio to either switching to CHTP 1.0 (CHTP group, n = 41) 
or to continue cigarette smoking (cigarette group, n = 39). Subjects were stratified for randomization by sex and 
self-reported average daily cigarette consumption in the six weeks prior to admission (10–19 cigarettes or > 19 
cigarettes per day). From Days 1 to 5, ad libitum product use of the allocated product was allowed, with products 
dispensed upon subjects’ request and recorded by the site staff. After discharge on Day 6, subjects were followed 
up for 7 days for ongoing and new spontaneously reported adverse events (AE) or serious adverse events (SAE).

Subjects.  Subjects were recruited from the clinic’s database and through advertisements. Compensation was 
provided to subjects, as per IRB approval and according to a pre-defined payment schedule, irrespective of their 
actual tobacco product use. Male and female Caucasian adult smokers meeting the following criteria were eligi-
ble for this study: age ≥ 21 years; body mass index (BMI) 18.5–32.0 kg/m2; daily smoking habit of at least 10 non-
menthol cigarettes of any brand, with a maximum yield of 1 mg nicotine per cigarette (maximum ISO criteria), 
for six weeks prior to admission; had smoked for at least three years prior to screening; not intending to quit 
smoking in the next three months; and healthy, as judged by the investigator using available clinical and labora-
tory parameters (medical history, physical examination, vital signs, standard hematology, clinical biochemistry 
and urinalysis parameters, spirometry, electrocardiogram, and chest X-ray). Pregnant or breastfeeding women 
were excluded, as well as women of childbearing potential, if they did not use an effective contraceptive method. 
After receiving a full explanation of the study, subjects signed informed consent forms prior to any assessments.
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Assessments.  The revised version of the self-reported Fagerström Test for Nicotine Dependence (FTND) 
questionnaire16 was completed by subjects at the Screening Visit. BoExp to 15 different HPHCs measured in 
this study are presented in Supplementary Table 1. BoExp were assayed as described in a previous publication17. 
To assess urinary BoExp, measurements were performed on 24-h urine samples at baseline and throughout 
the 5-day exposure period. Creatinine was determined in the same samples, and its levels were used to adjust 
BoExp concentration values. COHb was measured in blood samples collected each evening. Selection of HPHCs 
was based on recommendations for lowering constituents in cigarette smoke, as defined by the World Health 
Organization (WHO)18 and the U.S. Food and Drug Administration19. Nearly all BoExp assessed in this study 
have elimination half-lives ≤ 24 h, except for total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), with 
an estimated half-life of 10–45 days20. Therefore, except for total NNAL, 5 days of product use were enough to 
observe optimal decreases in BoExp levels.

CYP1A2 activity, which is involved in the activation of carcinogenic heterocyclic and aromatic amines and is 
induced by polycyclic aromatic hydrocarbons (PAH), was assessed in plasma by measuring paraxanthine (PX) 
and caffeine (CAF) concentrations and calculated as PX/CAF molar metabolic ratios. Blood samples for these 
measurements were collected approximately six hours (± 15 min) after drinking a cup of coffee (NESCAFÉ Gold, 
Nestlé, Germany) providing approximately 150 mg of CAF at baseline and Day 521. At baseline and Day 5, the 
excretion of mutagenic constituents was measured in a 24-h urine sample using the Ames assay, with results 
expressed as the number of revertants per 24 h (REV/24 h).

Nicotine uptake was assessed by nicotine and cotinine evening concentrations in plasma and by 24-h urinary 
excretion of nicotine equivalents (NEQ) from samples collected at baseline and throughout the 5-day randomized 
period22.

Parameters to assess human puffing behavior (Supplementary Table 5) were measured on Day –2, Day 1, 
and Day 4 using the human puffing topography (HPT) SODIM device model SPA/M (SODIM Instrumentation, 
Fleury les Aubrais, France) described previously15. The sample holders for the HPT SODIM device were designed 
for compatibility with CHTP 1.0 sticks. During cigarette smoking, HPT was assessed only for cigarettes that were 
compatible with the mouthpiece of the HPT device (i.e., excluding slim cigarettes).

Safety, including abnormal laboratory findings and AE recording, was monitored throughout the study. AEs 
were assessed for their relationships to CHTP and cigarettes and whether they were expected.

Tobacco products.  The CHTP 1.0 tested in this study [0.50 mg nicotine yield (under ISO smoking regi-
men) and 1.30 mg nicotine yield (under HCI smoking regimen), respectively, by heating tobacco within a well-
defined temperature profile to avoid combustion] was a non-menthol tobacco stick with a shape, form, and use 
similar to a cigarette (Supplementary Figure 1). It is a single-use product (disposed of after one use experience). 
Each product use experience has a duration of approximately 5 min, until the taste fades away and the experience 
concludes. Reference and baseline product was a commercially available non-menthol cigarette of the subject’s 
preference, with ISO nicotine yield of up to 1 mg. Subjects were asked to purchase their own preferred single-
brand of non-menthol CC prior to enrolment. Each subject bought his/her anticipated amount of single-brand 
CC for a total of 9 days plus 2 extra packs. As CHTP 1.0 was not commercialized at the time of the study, CHTP 
1.0 tobacco sticks were provided to subjects randomized to the CHTP arm.

Data analysis.  The primary objective of the study consisted of demonstrating the reduction of exposure in 
four biomarkers of exposure (monohydroxybutenylmercapturic acid [MHBMA], 3-hydroxypropylmercapturic 

Number of subjects 
screened = 124

Number of subjects 
who had CHTP 1.0 
product trial = 85

Number of subjects who were 
screening failures = 39

Number of subjects 
exposed not 

randomized = 5

Number of subjects  
randomized to 
CHTP 1.0 = 41

Number of subjects  
randomized to CC = 39 

Number of 
subjects who 
completed the 

study = 41

Number of 
subjects  who 

were 
discontinued = 0 

Number of 
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completed the 
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Other = 3
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Figure 1.   Subject disposition. CC cigarette, CHTP Carbon-Heated Tobacco Product.
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acid [3-HPMA], S-phenylmercapturic acid [S-PMA], and COHb). The hypothesis to be tested was that levels 
of each of the four biomarkers of exposure were reduced by more than 50% in subjects switching to CHTP 1.0.

Based on the results from a previous study on the CHTP MD2-E7 prototype15, a sample size of 40 subjects 
per group for a two-arm comparison was sufficient to demonstrate, with 80% power, a 50% reduction in each 
co-primary BoExp using a one-sided test with 2.5% type I error probability. All remaining BoExp were assessed 
as secondary objectives.

BoExp were analyzed in all randomized subjects who used the allocated product at least once after randomiza-
tion and with at least one valid BoExp measure after product use. BoExp and HPT parameters were expressed on 
a log scale. Analyses of covariance (ANCOVA) between study groups were conducted for Day 5 values of each 
parameter, with adjustments for sex, average cigarette consumption over the six weeks prior to admission, and 
baseline values. Least square mean reductions for CHTP vs. cigarette groups and their confidence intervals (CI) 
were calculated from the ANCOVA models. All statistical analyses were performed using Statistical Analysis 
Software (SAS) version 9.2 (SAS Inc., Cary, NC, USA).

Ethical approval.  The study was approved by the independent ethics committee of the Regional Medical 
Chamber of Physicians in Warsaw, Poland. All procedures performed in studies involving human participants 
were in accordance with the ethical standards of the institutional and/or national research committee and with 
the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent.  Informed consent was obtained from all individual participants included in the study.

Results
Of 124 screened subjects, 85 were enrolled in the study. Five subjects were discontinued prior to randomization: 
four with AEs or SAEs (two hypertriglyceridemia, one leukocyturia, and one concussion), and one because of 
blood sampling difficulties, as decided by the Principal Investigator. Eighty subjects were randomly assigned to 
the CHTP (n = 41) or cigarette (n = 39) groups, and all completed the study (Fig. 1).

No substantial differences in sex, age, BMI, FTND score, or daily cigarette consumption were observed 
between the study groups at baseline (Table 1).

Biomarkers of exposure.  On Day 5, COHb, MHBMA, 3-HPMA, and S-PMA levels in the CHTP group 
were decreased, with reductions ranging from 50.4 to 84.2%, when compared to Baseline. In contrast, COHb, 
MHBMA, 3-HPMA, and S-PMA levels in the cigarette group were increased on Day 5 ranging from 7.6 to 
32.2%, when compared to Baseline (Table 2). When compared to Baseline, other BoExp levels in the CHTP 
group were reduced on Day 5 ranging from 52.7 to 95.8%, whereas they were increased in the cigarette group 
ranging from 4.7 to 30.3%.

On Day 5, COHb, MHBMA, 3-HPMA, and S-PMA levels in the CHTP group were decreased, with reduc-
tions ranging from 58.8 to 88.1% compared with the cigarette group. Reductions in the other BoExp levels in the 
CHTP group ranged from 55.6 to 97.1% compared with the cigarette group (Fig. 2 and Supplementary Table 2).

Table 1.   Demographic characteristics by study group at baseline. CHTP, Carbon-Heated Tobacco Product 
1.0, SD standard deviation, BMI body mass index, FTND Fagerström Test for Nicotine Dependence, ISO 
International Organization for Standardization.

Characteristics
CHTP
(n = 41)

Cigarettes
(n = 39)

Male n (%) 20 (48.8) 19 (48.7)

Age, mean ± SD 34.1 ± 10.45 32.7 ± 10.97

BMI normal weight n (%) 20 (48.8) 21 (53.8)

BMI, mean ± SD 25.6 ± 3.3 25.1 ± 3.1

Daily cigarette consumption n (%)

10–19/day 21 (51.2) 19 (48.7)

> 19/day 20 (48.8) 20 (51.3)

ISO tar yield n (%)

1–5 mg 7 (17.1) 6 (15.4)

6–8 mg 26 (63.4) 29 (74.4)

9–10 mg 8 (19.5) 4 (10.3)

ISO nicotine yield n (%)

≤ 0.6 mg 32 (78.0) 34 (87.2)

> 0.6–1 mg 9 (22.0) 5 (12.8)

FTND score, mean (SD) 5.4 (1.78) 5.8 (2.00)
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Biomarker
CHTP (n = 41)
Estimate (95% CI)

Cigarettes (n = 39)
Estimate (95% CI)

COHb (%)

Baseline 5.8 (5.3; 6.3) 5.6 (5.1; 6.2)

Day 5 2.7 (2.2; 3.2) 6.4 (5.7; 7.1)

% change  − 50.4 (− 58.8; − 41.9) 7.6 (− 0.1; 15.2)

MHBMA (pg/mg creatinine)

Baseline 1635.31 (1245.24; 2147.55) 1466.37 (1048.61; 2050.56)

Day 5 339.73 (301.82; 382.42) 1840.61 (1275.38; 2656.32)

% change  − 72.6 (− 80.0; − 65.3) 32.2 (18.5; 45.9)

3-HPMA (ng/mg creatinine)

Baseline 1086.68 (928.83; 1271.35) 947.83 (817.32; 1099.18)

Day 5 494.70 (417.53; 586.12) 1187.97 (1026.63; 1374.65)

% change  − 53.0 (− 56.9; − 49.2) 28.1 (19.6; 36.6)

S-PMA (pg/mg creatinine)

Baseline 2432.70 (1919.90; 3082.47) 2301.95 (1732.67; 3058.27)

Day 5 361.48 (289.26; 451.74) 2898.46 (2172.62; 3866.79)

% change  − 84.2 (− 85.9; − 82.6) 28.9 (19.9; 37.8)

Total 1-OHP (pg/mg creatinine)

Baseline 242.85 (210.44; 280.25) 194.25 (166.36; 226.82)

Day 5 106.33 (93.18; 121.33) 199.12 (171.73; 230.88)

% change  − 55.3 (− 58.3; − 52.2) 4.7 (− 2.5; 12.0)

4-ABP (pg/mg creatinine)

Baseline 16.76 (14.50; 19.37) 14.56 (12.61; 16.82)

Day 5 3.71 (3.28; 4.18) 15.91 (13.79; 18.34)

% change  − 76.5 (− 79.2; − 73.8) 11.0 (4.5; 17. 6)

1-NA (pg/mg creatinine)

Baseline 93.14 (81.79; 106.06) 90.67 (78.32; 104.96)

Day 5 3.44 (2.82; 4.20) 115.76 (100.49; 133.35)

% change  − 95.8 (− 96.5; − 95.0) 30.3 (21.9; 38.6)

2-NA (pg/mg creatinine)

Baseline 27.45 (24.11; 31.26) 25.07 (21.53; 29.20)

Day 5 3.15 (2.70; 3.69) 29.37 (25.36; 34.02)

% change  − 87.7 (− 89.1; − 86.4) 18.8 (12.3; 25.4)

o-tol (pg/mg creatinine)

Baseline 152.30 (137.11; 169.16) 149.95 (126.73; 177.42)

Day 5 49.26 (43.59; 55.67) 175.40 (156.97; 195.99)

% change  − 65.5 (− 69.8; − 61.2) 24.4 (9.3; 39.4)

CEMA (ng/mg creatinine)

Baseline 130.08 (107.27; 157.74) 126.88 (107.86; 149.25)

Day 5 20.78 (16.66; 25.92) 143.18 (122.59; 167.22)

% change  − 83.3 (− 84.9; − 81.7) 15.3 (7.7; 22.8)

HEMA (pg/mg creatinine)

Baseline 3123.34 (2305.75; 4230.81) 2876.32 (2307.89; 3584.76)

Day 5 1146.84 (913.06; 1440.48) 3094.70 (2477.69; 3865.35)

% change  − 58.3 (− 66.1; − 50.6) 11.8 (1.6; 22.1)

HMPMA (ng/mg creatinine)

Baseline 481.38 (428.98; 540.17) 451.09 (394.98; 515.17)

Day 5 125.75 (110.46; 143.16) 484.18 (420.56; 557.41)

% change  − 72.9 (− 75.2; − 70.6) 10.1 (1.9; 18.4)

Total NNAL (pg/mg creatinine)

Baseline 162.41 (129.89; 203.06) 106.86 (83.69; 136.43)

Day 5 74.70 (59.90; 93.17) 117.82 (91.61; 151.53)

% change  − 52.7 (− 56.3; − 49.1) 12.5 (5.1; 19.9)

3-OH-B[a]P (fg/mg creatinine)

Baseline 145.72 (119.17; 178.19) 107.10 (87.22; 131.50)

Day 5 33.23 (27.37; 40.35) 116.77 (95.09; 143.40)

% change  − 72.4 (− 79.9; − 65.0) 12.5 (3.3; 21.7)

Continued
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Biological activities.  At baseline, the mean (standard deviation [SD]) values of revertants in the Ames 
mutagenicity test were 25,780 (20,618) REV/24  h in the CHTP group and 18,882 (14,538) REV/24  h in the 
cigarette group, respectively. On Day 5, these values decreased relative to baseline values in CHTP users to 6044 
(5166) REV/24 h, while those in the cigarette group increased to 24,780 (14,512) REV/24 h.

At baseline, the mean SD CYP1A2 activity was 93.8% (30.4) in the CHTP group and 91.8% (32.5) in the 
cigarette group. On Day 5, mean CYP1A2 activity in CHTP users decreased by 22.0% (17.7) and increased by 
4.9% (16.1) in the cigarette group. This reflected a difference in CYP1A2 activity of 24.3% (95% CI 30.2, 18.4) in 
the CHTP group when compared with the cigarette group.

Table 2.   Biomarkers of exposure levels at baseline and Day 5. Biomarkers of exposure from 24-h urine 
creatinine-adjusted samples (COHb measured in blood). Baseline and Day 5 values presented as geometric 
mean (95% CI). % change refers to mean percent change from baseline to Day 5. Acronyms of biomarkers are 
provided in Supplementary Table 1. CHTP Carbon-Heated Tobacco Product 1.0., CI confidence interval.

Biomarker
CHTP (n = 41)
Estimate (95% CI)

Cigarettes (n = 39)
Estimate (95% CI)

Total NNN (pg/mg creatinine)

Baseline 7.04 (5.19; 9.56) 4.99 (3.91; 6.36)

Day 5 2.13 (1.73; 2.63) 6.12 (4.87; 7.70)

% change  − 59.2 (− 68.6; − 49.8) 28.6 (16.3; 40. 8)

0100

COHb (%)

3-HPMA (ng/mg creat)

MHBMA (pg/mg creat)

S-PMA (pg/mg creat)

Total 1-OHP (ng/mg creat)

4-ABP (pg/mg creat)

1-NA (pg/mg creat)

2-NA (pg/mg creat)

o-toluidine (pg/mg creat)

CEMA (ng/mg creat)

HEMA (pg/mg creat)

3-HMPMA (ng/mg creat)

3-OH-B[a]P (fg/mg creat)

Total NNAL (pg/mg creat)

Total NNN (pg/mg creat)

Figure 2.   Biomarkers of exposure level reductions (%) on Day 5, CHTP relative to cigarettes. Values are 
geometric least square mean ratios and 95% confidence intervals. Acronyms of biomarkers of exposure are 
provided in Supplementary Table 1. CHTP 1.0 Carbon-Heated Tobacco Product 1.0.
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Product use and nicotine exposure.  Supplementary Table 3 summarizes daily product consumption 
throughout the study. Baseline average daily cigarette consumption was 18 and 17 per day for the CHTP and 
cigarette groups, respectively. The mean number of CHTP sticks consumed daily in the CHTP group was slightly 
lower than at baseline on Day 1 but was higher than baseline from Day 2 through Day 5. In the cigarette group, 
the mean number of cigarettes consumed daily was lower than baseline from Day 1 through Day 4 and higher on 
Day 5. In both groups, the quantity of CHTP or cigarettes consumed on Day 5 was higher than baseline, though 
this increase was greater in the CHTP group.

Nicotine uptake during the study is summarized in Supplementary Table 4. NEQ values and plasma cotinine 
and nicotine levels on Day 5 were higher than at baseline, with comparable values in the two groups.

Human puffing topography.  HPT parameters were stable from baseline through Day 4 in the cigarette 
group. In the CHTP group, there were significant changes in HPT parameters on Day 1, which were even more 
pronounced on Day 4 (Supplementary Table 5). Smokers who switched to CHTP puffed more intensively, as 
indicated by the increased puff numbers, durations, and volumes. After 4 days of use, switching to CHTP led to 
a 70% increase in total puff volume compared with puff volume drawn by smokers when smoking their cigarette.

Safety.  Thirty-one of 41 subjects (75.6%) in the CHTP group and 20 of 39 subjects (51.3%) in the cigarette 
group reported at least one AE. The number of AEs and number of subjects reporting AEs were higher in the 
CHTP group. The most common AEs were cough (reported only in the CHTP group) and headache (reported in 
both groups). No SAEs were reported by any randomized subject, and no subject was discontinued because of an 
AE or SAE. All AEs were either mild or moderate in severity. The most frequent AE was headache, reported by 
19 subjects (46.3%) in the CHTP group, 9 subjects (23.1%) in the cigarette group, and 3 (60%) exposed to CHTP 
during product testing but not randomized. A total of 13 subjects (31.7%) reported cough, which was assessed as 
related to CHTP in 12 subjects (29.3%), occurring at the beginning of the CHTP use period. All other AEs were 
reported in < 5% of enrolled subjects. AEs are presented in detail in Supplementary Table 6.

Discussion
We investigated changes in BoExp in adult smokers in a controlled clinical setting. Randomization and strict 
monitoring of subjects, together with full control of product distribution and product use in confinement aiming 
to avoid dual use of cigarettes and CHTP, allowed for an optimal evaluation of the effects that can be achieved 
by switching from cigarettes to CHTP use exclusively for 5 days.

BoExp to selected cigarette smoke HPHCs.  COHb levels in smokers correlate with the number of 
cigarettes smoked per day23,24. Typical COHb levels are 4–8% in smokers and 0.8–1.5% in non-smokers25. In our 
study, COHb values at baseline were 5.6–5.8%, in the expected range for smokers, and decreased to 2.7% (50.4% 
decrease from baseline) after 5 days of CHTP use. This was consistent with the 60% decrease from baseline 
observed in a previous study, testing the CHTP MD2-E7 prototype15, as well as results obtained with IQOS and 
Glo, measuring exposure to CO in users (decrease from 49 to 76% measured by COHb or exhaled CO)3–6,17. The 
decrease in carbon monoxide exposure observed when switching from cigarettes to CHTP 1.0 was also consist-
ent with the reductions from 49 to 79%3–5,17 reported in other studies in the literature upon 5 days of SA.

In non-smoking populations with coronary artery disease, COHb levels not exceeding 2.4–2.5% are recom-
mended to avoid hypoxic effects26. After 5 days, the COHb level in the CHTP group was slightly above (2.7%) 
the recommended values of 2.4–2.5% from WHO for smokers at risk for cardiovascular diseases18. The slightly 
higher levels observed are unlikely an effect of CHTP but rather an overestimate bias at low COHb concentra-
tions of ≤ 2.5% when using spectrophotometry-based methods, as shown by Mahoney et al. in a study comparing 
blood COHb measurement results by spectrophotometers versus the reference method, namely the gas-chroma-
tographic method, for accurate COHb determinations27. A study conducted in Japan5 showed a 51% decrease 
in COHb levels after 5 days of IQOS use (47% compared with subjects continuing smoking) and a 53% decrease 
upon smoking cessation, ending with average COHb levels of 2.4% in the IQOS and SA groups.

Urinary excretion of MHBMA increased 2- to 40-fold in smokers compared with non-smokers, with a tenfold 
average difference23. Studies of SA for 3–8 days showed MHBMA levels 6- to 30-fold lower than baseline values, 
with an average reduction of approximately tenfold28. In our study, urinary MHBMA excretion was decreased 
by 83% (approximately sixfold) in the CHTP group compared with the cigarette group17. Our findings are also 
in agreement with results obtained with the CHTP MD2-E7 prototype15 and with a similar study conducted 
with IQOS3–5,17.

Levels of urinary 3-HPMA among smokers and non-smokers can overlap, but smokers usually have higher 
levels than non-smokers, with ethnic differences observed29. In several studies, after 5–8 days of SA, there were 
1.5- to 8-fold decreases in urinary 3-HPMA excretion24. Acrolein, the corresponding HPHC, is ubiquitous in 
the environment, being naturally present in food and formed during food preparation and fuel combustion. 
Acrolein is also formed from tobacco at 50–500 °C30, within CHTP operating temperatures. In our study, the 
64% decrease in 3-HPMA levels in the CHTP group compared with the cigarette group was in line with previous 
findings from the CHTP MD2-E7 prototype15 and IQOS3–5,17.

Levels of S-PMA are higher in smokers than in non-smokers23,31. After 3–8 days of SA, urinary S-PMA levels 
decreased from 2- to 20-fold32,33. In our study, the average reduction in urinary excretion of S-PMA in the CHTP 
group after 5 days was 88% (a nearly tenfold decrease) compared with the cigarette group. These results were 
comparable with previous findings with heat-not-burn tobacco products3–5,15,17.
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Levels of all the other BoExp decreased in the CHTP group from 56% (total 1-hydroxypyrene) to 97% (1-ami-
nonaphthalene) compared with the cigarette group. These effects were comparable with heat-not-burn tobacco 
products in other studies3–5,15,17.

Tobacco-specific nitrosamines (TSNA), mainly 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) 
and N-nitrosonornicotine (NNN), have received particular attention because of their associated cancer risks. 
TSNAs occur widely in tobacco and are formed by nitrosation of nicotine and other tobacco alkaloids dur-
ing tobacco curing34. The nature of the curing process influences the quality of the processed tobacco and its 
TSNA content. NNK and NNN are transferred to cigarette smoke upon vaporization at distillation and pyrolysis 
temperatures35,36. Exposure to NNK and to NNN was assessed in our study through their respective BoExp, total 
NNAL and total NNN. Compared with the cigarette group, total NNAL and total NNN decreased by 57% and 
70%, respectively, in the CHTP group, comparable with previously reported effects of SA and heat-not-burn 
tobacco products3–6,17. Because the elimination half-life of total NNAL is several weeks20,37, 5 days is likely not 
long enough to observe an optimal reduction. Therefore, one to three months are potentially needed to achieve 
steady-state levels indicating decreased exposure.

Biological activities.  Combustible cigarette smoke contains many mutagenic and carcinogenic com-
pounds, including nitroso-compounds, PAHs, and heterocyclic amines, usually undergoing urinary or fecal 
excretion. Thus, the urinary level of mutagens reflects both exposure doses and metabolic states of these carcino-
gens and mutagens38. Switching to the CHTP MD2-E7 prototype15 led to a decrease in urinary mutagens of 90% 
relative to baseline compared with 77% for CHTP 1.0 in our study. However, the number of revertants on Day 
5 was similar in both studies, 6044 REV/24 h and 6600 REV/24 h with CHTP 1.0 and CHTP MD2-E7, respec-
tively, while baseline values were more than threefold higher in the previous study compared with the present 
study. Overall, the decreased urine mutagenicity values in both studies indicate a marked reduction in exposure 
to potential mutagens24. Similar effects on urine mutagenicity were observed with IQOS15.

The CYP1A2 enzyme is involved in the metabolism of many foreign substances as well as the activation of 
carcinogenic heterocyclic and aromatic amines. The CYP1A2 phenotype is highly variable, in part because the 
enzyme is inhibited or induced by foreign substances, environmental compounds, diet, or lifestyle21. CYP1A2 
expression is induced to a large extent by PAHs, which are found in cigarette smoke; thus, heavy smokers had 
1.72 times higher CYP1A2 activity than non-smokers. Smoking cessation for one to two weeks resulted in a 36% 
decrease in CYP1A2 activity21. In our study, CYP1A2 activity in CHTP users was decreased by 22% from baseline 
in the CHTP group compared with the cigarette group after 5 days. Similar decreases in CYP1A2 levels were 
reported with IQOS, with CYP1A2 activity decreasing on Day 5 by 21–33%, which is similar to levels for SA17.

Product use, HPT, and nicotine exposure.  Nicotine uptake (i.e., the amount of absorbed nicotine) 
results from complex interactions between the amount of nicotine delivered from the CHTP tobacco plug, puff-
ing behavior of the user (such as puff volume, intensity, and duration), intensity of inhalation, the way the users 
inhale the aerosol, nicotine intrinsic distribution within the body (the amount of nicotine reaching the lung, thus 
driving the rate and amount of nicotine absorption), and daily number of CHTP units consumed. It has been 
described that one of the mechanisms by which smokers titrate desired doses of nicotine when switching to new 
cigarette alternatives is to modify their puffing behavior (e.g., by taking higher puff volumes or to increase their 
daily product use) during a “learning period” that can take several weeks39,40.

The daily product use was increased in both groups after 5 days compared with baseline consumption but was 
higher in the CHTP group than in the cigarette group, while nicotine exposure was comparable between both 
groups. These results indicate that subjects in the CHTP group were able to self-titrate their nicotine uptake to 
desired levels, despite the short period of adaptation to the novel alternative tobacco product.

The substantial change in puffing behavior when using CHTP is likely to be the underlying way for titration 
and adjustment to CHTP use.

Substantial adaptation in puffing behavior was needed with the CHTP MD2-E7 prototype to achieve desired 
levels of nicotine exposure, requiring increased numbers of puffs, average puff volumes, and average puff dura-
tions. This led to 190%–276% increases in total puff volume (reaching approximately 2000 mL per CHTP MD2-
E7 stick) compared with cigarette smoking15. For cigarettes, it has been shown that the puff volume and total 
volume are the two parameters with the greatest effect on delivery of HPHCs, such as carbonyls, to smokers 
during smoking, whereas the puff duration and number of puffs have minimal effects on toxicant delivery41. Our 
study showed an average 70% increase in total puff volume per CHTP stick, compared with cigarette smoking, 
which reflected how subjects adapted to this new product during an initial learning period. Compared to the 
previous product, there were changes to the design of the heat source and the filter paper. However, these changes 
gave no reason to suggest a change in puffing behavior.

Contrary to what has been described in the literature for cigarettes, the increase in total puff volume per 
CHTP stick in our study did not lead to increased delivery of HPHCs but to significantly decreased levels of 
selected BoExp to HPHCs compared with cigarettes. The combustion of tobacco during cigarette smoking 
exposes smokers to more than 6,000 harmful HPHCs. The generation profiles of known toxic compounds in 
tobacco smoke vary according to the pyrolysis temperature (300–1000 °C) and the pyrolysis atmosphere (in 
nitrogen and air). Data published by Torikai, K et al. clearly show increases of toxicant generation with increas-
ing temperatures30. In contrast, the tobacco plug in CHTP is heated within a well-defined temperature profile, 
to avoid combustion, which results in a substantial decrease in the generation of HPHCs in the aerosol42–44.

Safety.  Coughing and headache were observed in the CHTP group more frequently than in the cigarette 
group, and we attribute the higher frequency of coughing to the decreased HPHC exposure. Several studies 
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have demonstrated that prolonged exposure to cigarette smoke suppresses the cough reflex, whereas smoking 
cessation, eliminating exposure to smoke constituents, increases the cough reflex within two weeks, leading to a 
higher cough frequency45. A transient increase in respiratory symptoms, increased cough, and sputum produc-
tion during the first 2 days of smoking cessation has been discussed in the literature45–49. The proposed mecha-
nism is a rapid re-sensitization of cough reflex receptors upon smoking cessation50.

Subjects in both groups reported headaches, with the CHTP group reporting twice as many as the ciga-
rette group. Although headaches have also been observed more frequently in smokers who use smoking ces-
sation pharmacological treatments, such as nicotine replacement therapy, the underlying mechanism remains 
unclarified51.

Study limitations and strengths.  The study duration was short; therefore, some subjects may not have 
fully adapted their puffing behavior to the CHTP. The study conditions and procedures were tightly controlled, 
preventing product use behaviors more comparable to real-world conditions. Although subjects could use the 
products ad libitum during the study, they were required to ask for each cigarette or CHTP stick, which may 
have affected their consumption behavior. Daily consumption increased from baseline to the end of the exposure 
period in both groups, consistent with findings in other studies that laboratory confinement conditions pro-
moted higher consumption of tobacco products. The greatest decreases in HPHC exposure are observed during 
sustained SA. Other than NNK and NNN, all other HPHCs examined could be confounded with other potential 
sources, including food and occupational or environmental (e.g., air pollution) exposures. Because there was no 
SA group in our study, the relevance of the observed effects on HPHC exposures in the CHTP group were inter-
preted in the context of previously published data. However, it is notable that Lüdicke et al.15 reported that many 
of the effects they observed with the prototype CHTP were comparable to those in the SA group.

The strengths of our study include tight control and a maximized internal validity to avoid confounding 
results, enabling assessment of CHTP performance when it was used exclusively.

Conclusions
This study demonstrated that exclusive use of CHTP for 5 days resulted in significant reductions in levels of 
the 15 selected BoExp, ranging from 56 to 97%, compared with continued cigarette smoking. Additionally, the 
CHTP group had substantially decreased CYP1A2 activity, reflecting decreased formation of harmful carcino-
genic metabolites usually found in cigarette smoke, and decreased mutagenic activity in the urine, based on the 
Ames test.

These results suggest that CHTP could be an acceptable substitute nicotine delivery product after a short 
period of adaptation for established smokers, who would otherwise continue to smoke, while substantially 
decreasing exposure to HPHCs.
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