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Functional magnetic resonance imaging (fMRI) studies with ultra-high field
(UHF, 7+ Tesla) technology enable the acquisition of high-resolution images.
In this work, we discuss recent achievements in UHF fMRI at the mesoscopic
scale, on the order of cortical columns and layers, and examine approaches
to addressing common challenges. As researchers push to smaller and smal-
ler voxel sizes, acquisition and analysis decisions have greater potential to
degrade spatial accuracy, and UHF fMRI data must be carefully interpreted.
We consider the impact of acquisition decisions on the spatial specificity of
the MR signal with a representative dataset with 0.8 mm isotropic resol-
ution. We illustrate the trade-offs in contrast with noise ratio and spatial
specificity of different acquisition techniques and show that acquisition blur-
ring can increase the effective voxel size by as much as 50% in some
dimensions. We further describe how different sources of degradations to
spatial resolution in functional data may be characterized. Finally, we
emphasize that progress in UHF fMRI depends not only on scientific discov-
ery and technical advancement, but also on informal discussions and
documentation of challenges researchers face and overcome in pursuit of
their goals.

This article is part of the theme issue ‘Key relationships between non-
invasive functional neuroimaging and the underlying neuronal activity’.
1. Introduction
Functional magnetic resonance imaging (fMRI) has been a prolific tool for cog-
nitive and neuroscientific research since its introduction in the early 1990s [1–3].
Imaging systems at 3 Tesla (3T) have become standard in both clinical and
research applications, and, in pursuit of high-resolution imaging facilitated by
ultra-high field (UHF) strengths, dozens of 7 Tesla (7T) systems have been
installed globally [4]. As the technology has improved by way of increasing
field strength-dependent signal-to-noise ratio (SNR) [5–7], functional contrast-
to-noise ratio (CNR) [8,9] and spatial specificity (for review see [10]), more
details of the functional architecture of the brain are available for study.
Indeed, several studies have found that current fMRI technology allows for
studying the functional organization of cortex at a mesoscopic (sub-millimetre)
scale, which can reveal cortical columns or layers (see the special issue [4] and
[11,12] for recent reviews).

Despite these advances, fundamental challenges of fMRI remain. Spatial
specificity is considered a strength of fMRI as a non-invasive neuroscientific
technique compared to magnetoencephalography (MEG) or transcranial mag-
netic stimulation (TMS). That said, the BOLD signal is an indirect measure of
neural activity that relies on blood oxygenation, and high-resolution imaging
requires careful consideration of how the brain’s micro- and macrovasculature
contribute to the spatial characteristics of the signal. Additionally, using sub-
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Figure 1. Spatial scales of interest. (a) Simulation of a hypercolumn in cortical grey matter (GM). Neurons with similar response properties are indicated by colour
and clustered in columns 200–500 microns in diameter, spanning the cortical depth. Within a column, at the microscopic level, there is striking diversity in response
properties and cell types. Here, circles indicate inhibitory neurons, squares indicate excitatory neurons with only local projections, and triangles indicate excitatory
neurons with long-range projections. Microscopic resolution would be required to separate cell types, but mesoscopic resolution, the target of many current UHF
fMRI experiments, can separate columns and layers. (b) Resolving stria of Gennari at 7T. T1 maps from a 10-min MP2RAGE acquisition at 7T shows clear hypoin-
tensities (orange arrow) in the calcarine sulcus, which presumably arise from layer IV. Importantly, the dark stripe is not evident everywhere. (c) A T1-weighted
acquisition with parameters optimized for contrasting GM and WM at 7T [15] also shows the layer IV stripe (orange arrow), but, again, it is not always clearly visible.
Yellow brackets indicate regions near the midline that are particularly susceptible to banding artefacts caused by the sagittal sinus, which look similar to the stria of
Gennari. These images demonstrate that, while imaging of the stria is feasible, the results are sometimes ambiguous and location and orientation dependent.
(Online version in colour.)
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millimetre image resolution to make inferences about where
signal occurs requires high precision in localizing the func-
tion with regard to anatomical landmarks (e.g. grey matter
(GM) and white matter (WM) boundaries, pial surface of
the GM). In this paper, we illustrate the mesoscopic imaging
capabilities of UHF fMRI, address current pitfalls and
emphasize how different acquisition methods affect spatial
specificity in fMRI data.
2. Achievements and limitations of sub-
millimetre resolution

(a) Separation of neural subpopulations by columnar
organization

A key advantage of UHF fMRI is the ability to increase the
spatial resolution at which data are acquired. At conventional
field strengths, a typical voxel size in human fMRI of 2–4 mm
per dimension is used for investigations into cortical acti-
vation at the macroscopic level (i.e. between brain regions).
Neuron density in cortical GM is roughly 50 000 neurons
mm−3 [13,14], and microscopic resolution (i.e. at the single-
cell level) is currently beyond the reach of in vivo fMRI exper-
iments. The improving technology of UHF fMRI, however,
facilitates high-resolution imaging with voxel dimensions
smaller than a millimetre, which opens the door for detecting
responses at a mesoscopic level, from neuronal subpopu-
lations smaller than was previously possible, such as
columns or layers (figure 1).

In many regions of cortex, neurons with similar response
properties are clustered in vertical columns 200–500 microns
in diameter, spanning the six histological layers of cortical
depth. These cortical columns have been considered a funda-
mental element of cytoarchitecture since their discovery [16].
Until recently, most of the knowledge about the structure and
function of cortical columns has come from animal
models using invasive or anatomical techniques. Early
demonstrations of ocular dominance columns (ODCs) in
humans came from post-mortem cytochrome oxidase stain-
ing of brains from patients who had become blind in one
eye before their death [17]. The high-resolution capabilities
of UHF MRI and the resulting smaller voxel sizes make it
possible to study these structures in the human brain
in vivo. Columns for ocular dominance [18–20], orientation
[21] and temporal frequency [22] have been visualized
in human V1. Colour-selective columns in V2 and V3 [23]
and columns for motion in human middle temporal area
(MT) [24] have also been visualized. Columnar organiza-
tion of sound frequency processing in the human auditory
cortex has been demonstrated using sub-millimetre
acquisitions [25].

These important works demonstrate the potential of UHF
fMRI as a tool in cognitive neuroscience research. However, it
is important to note that the functional purpose for columnar
organization is not fully understood ([26], but see [27]). For
example, ODCs appear in some species but not others, and
even within species there is variability in the expression of
ODCs without demonstrable differences in visual function
[28]. Additionally, the expression of cortical columns is diffi-
cult to verify in vivo without acquiring functional data across
multiple days and/or scanning sessions to confirm
reproducibility.

(b) Separation of neural subpopulations by laminar
organization

Voxel sizes smaller than one millimetre also allow for the
examination of relative contributions of deep, middle or
superficial layers of the GM of neocortex. The six layers of
the GM ribbon are bounded by the pial surface and the
WM boundary. Neurons are distributed through the GM
depth according to connectivity patterns. We know, for
instance, from single-cell and anatomical studies of macaque
V1 that feed-forward connections terminate primarily in layer
IV [29] and feedback connections from higher visual areas
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terminate primarily in superficial and deep layers, while
avoiding layer IV [30,31]. Typical sub-millimetre resolution
of 0.8 mm is not sufficient to resolve the individual histologi-
cal layers as the total thickness of the GM ribbon itself is
between 1.4 and 4.5 mm [32], but the presence of objective
anatomical boundaries (i.e. the GM/WM boundary and the
pial surface) means that layer ‘location’ can be approximated
through calculated measures with more confidence than
cortical columns.

Two possible ‘solutions’ for estimating layer depth are
equidistant (e.g. see [33,34]) or equivolume [35] calculations.
In equidistant solutions, depth location for each lamina in
GM is calculated keeping the relative depth constant between
the outer boundaries. This approach assumes the thickness of
laminae remains constant irrespective of cortical folding.
However, in folded cortex layer thickness is not constant,
but changes such that laminae volume is preserved ([36] as
cited in [35]). An equivolume approach compensates for the
variable thickness of each lamina and preserves their
volumes along the GM ribbon. In addition to the WM and
pial surface bounding the GM, the highly myelinated stria
of Gennari [37] can be resolved in vivo (figure 1b [38]) and
nicely aligns with the middle of the equivolume solution [39].

The presence of objectively identifiable landmarks and
the functional significance of the GM have led to layer-depen-
dent fMRI becoming an enormously popular subfield in UFH
fMRI. Several studies have taken advantage of UFH fMRI
capabilities to resolve functional responses at different corti-
cal depths [33,39–47]. Visual stimuli evoke patterns of
BOLD response across cortical depth in V1 [39,43] and MT
[40]. Further, different stimulus conditions evoke variations
in the distribution of the BOLD response across cortical
depth for visual stimuli [33]. Depth profiles have also been
demonstrated in studies investigating somatosensory stimuli
[41], working memory [45], language processing [46] and
feedback responses in early visual cortex [33,42,47].

(c) Information representation without explicit
separation of neural subpopulations

Because even the smallest voxel contains a diverse population
of neurons, analysing the information contained in voxel
populations as opposed to average response amplitudes has
become an increasingly popular strategy for maximizing
fMRI sensitivity to fine-grained cortical activity. Human
neuroimaging studies show reliable orientation information
can be decoded in V1 at conventional (3 mm) resolution
[48,49]. There is growing interest in using the high resolution
afforded by UHF to improve upon the ability of multivariate
pattern analysis (MVPA) methods to extract reliable signals
from distributed patterns of brain activity [48–50]. Support
vector machine learning approaches appear to be promising
in UHF fMRI. For example, Bergmann et al. [51] used
MVPA of high-resolution (0.8 mm isotropic) fMRI data
from human participants to show differences in laminar
activity for mental imagery and illusory percepts. They
found that low-level feedback in V1 during illusory percep-
tion occurred more in superficial layers, compared to
mental imagery, which occurred more in deep layers. In
another preliminary study, three different classifiers were
tested on data acquired at 0.8 isotropic resolution and on arti-
ficially misaligned data to test the robustness of the
classification accuracy [52]. A one-voxel shift of the test
region of interest (ROI) from the training ROI led to a signifi-
cant decrease in decoding accuracy, suggesting multivariate
decoders can be as precise as the nominal resolution of
single voxels (here, 0.8 mm isotropic), unlike problems associ-
ated with typical analyses [52]. Although, as detailed below,
there are still many questions to be answered about the true
spatial resolution of UHF fMRI data, these studies show
that high-resolution data give us access to discoveries at the
mesoscopic level that would be beyond reach if acquired at
conventional resolutions.

(d) Challenges for accurate localization of mesoscopic
functional magnetic resonance imaging signal

One inherent pitfall of UHF MRI is an increase in inhomo-
geneities in the static magnetic field (B0) that comes with
higher field strength [53]. Long read-out times often used in
UHF result in image distortion anywhere the field is per-
turbed by air, bone or a large vein or sinus owing to phase
errors accumulated during the read-out time. FMRI data
are most commonly acquired with echo-planar imaging
(EPI), which are particularly sensitive to B0 inhomogeneties.
The long image read-out time results in geometric distortions
in the images themselves, especially in the phase encode the
direction of the EPI read-out [53,54]. This is particularly
problematic for depth-resolved fMRI because, as previously
discussed, cortical layers must be approximated between
pial and WM boundaries. Because the contrast between GM
and WM is relatively poor in EPI images, these boundaries
are often defined in anatomical volumes acquired with differ-
ent pulse sequence (usually MP2RAGE [55], or MP-RAGE
[56]) with different distortions e.g. [34,57]. When anatomical
images are acquired separately from the functional data,
researchers face the additional challenge of optimizing regis-
tration between different datasets (i.e. cross-modal
registration).

There are several algorithms for registering functional and
anatomical images implemented in freely available packages
used for analysing fMRI data (e.g. AFNI [58], FSL [59], SPM
(https://www.fil.ion.ucl.ac.uk/spm), FreeSurfer [60]). For
example, the local Pearson correlation cost function
implemented in AFNI is based on maximizing negative cor-
relations between functional and anatomical data [61].
Boundary-based registration algorithms implemented in
FSL and FreeSurfer have shown promise at aligning whole-
brain images to images with limited coverage [62]. More
recently, a recursive application of boundary-based regis-
tration has shown promise in automating nonlinear
distortion correction [63]. AFNI’s 3dQwarp function is
another nonlinear registration tool used in distortion correc-
tion, although visual inspection remains a necessary step
for all registration attempts. A systematic comparison of
registration algorithms is beyond the scope of this paper,
although in our hands, the boundary-based registration
algorithm implemented in FSL (flirt -cost bbr) and
local Pearson correlation implemented in AFNI (3dAlline-
ate -c lpc) have proven more reliable than other
approaches [64].

Many of the challenges inherent to cross-modal regis-
tration can be alleviated with the acquisition of anatomical
volumes in the same scanning session as the functional
data. This practice reduces the need to correct for gradient
nonlinearities [65]. The MP2RAGE sequence results in
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Figure 2. Vascular structure and functional MRI contrast mechanisms. (a) While T2*-weighted approaches (e.g. GE EPI) have strong contributions from macrovas-
culature, other functional MRI technologies are biased toward the microvascular signal, which is regulated at a scale appropriate for capturing the mesoscopic
neuronal structure. Blue lines represent veins; red lines represent arteries. Acquisition techniques weighted toward the microvascular signal often have relatively
low CNR and therefore require long acquisition times or high field strength to be successful. VASO, vascular space occupancy. (b) Many studies that use high-CNR
T2*w fMRI rely on the fact that voxels can be separated into low-resolution voxels that sample large veins ( pink cube) and high-resolution voxels that are dominated
by microvascular signal (black cube). (Online version in colour.)
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segmentable T1-weighted anatomical images with reduced
sensitivity to inhomogeneities in radio frequency transmit
profiles (i.e. B1 inhomogeneities [55]). That said, cortical
reconstruction efforts of anatomical data acquired at UHF
may be less reliable for those studies using a surface coil
with a limited field of view. Defining surfaces and GM
boundaries from anatomical images acquired during a separ-
ate scanning session may be the most practical approach,
though distortion in the functional images remains a
problem.

One compelling method to resolving the cross-modal
registration challenges is the acquisition of T1-weighted
volumes that have the same read-out (i.e. same image distor-
tions) as the functional data [66,67] in the same scanning
session. In a best-case scenario, the definition of GM bound-
aries can be defined in those images distortion-matched to
the functional data but with improved GM/WM contrast.
Where direct segmentation of the data cannot be done accu-
rately (e.g. owing to the use of a surface coil), the T1-
weighted functional data can be used to guide and optimize
cross-modal registration of anatomical reference volumes
acquired in separate scanning sessions. Improved contrast
in the T1-weighted EPI volumes relative to typical functional
data leads to more accurate registrations to anatomical refer-
ence. The registration matrix resulting from this initial
registration can be used to guide the registration of anatom-
ical reference volumes to UHF functional data, ultimately
resulting in more accurate localization of functional voxels
with respect to the GM ribbon.

Even after optimizing the definition of GM boundaries,
making accurate inferences of the neuronal response at an
assigned depth remains a significant challenge of laminar
analysis of fMRI data. Because the BOLD signal is reflective
of the haemodynamic response to the neural activity rather
than a direct measure, the BOLD signal is inherently depen-
dent on the underlying vasculature. Gradient echo (GE) EPI
remains the most popular pulse sequence type in UHF fMRI
owing to its high CNR compared to T2-, cerebral blood
flow (CBF) and cerebral blood volume (CBV)-weighted tech-
niques, and its whole-brain coverage capabilities compared
to three-dimensional gradient-and-spin-echo (GRASE) (see
later sections for an in-depth discussion). However, the
T2*-weighted GE signal is predominantly generated from
venous microvasculature and macrovasculature [68,69].
Ascending veins carry deoxygenated blood towards the pial
surface and pial veins. Thus, the anatomical distribution of
ascending and pial veins coupled with how laminar profiles
are ‘read’ (i.e. per cent signal change differences at relative
depths between WM boundary and pial surface) result in a
GE signal biased towards more superficial layers. In essence,
a signal that we expect to find in middle layers has the poten-
tial to be expressed as activation in middle and superficial
layers (for reviews see [70,71]). It is important to carefully con-
sider the impact of acquisition decisions on the expression and
spatial specificity of the MR signal.
3. Optimizing spatial specificity in ultra-high
field functional magnetic resonance imaging

The vast majority of fMRI techniques measure changes in cer-
ebral metabolic rate of oxygenation (CMRO2), CBF and/or
CBV (figure 2). Thus, the field has given a great deal of atten-
tion to the structure of brain vasculature and how both intra-
vascular and extra-vascular effects create the BOLD signal
[72–74]. For high spatial specificity, it is essential to minimize
the contributions from pial vessels and large venuoles, target-
ing instead the blood flow, volume and oxygenation changes
in the small arterioles, capillaries and venuoles of the micro-
vasculature. This is, of course, more easily said than done. We
briefly review the advantages and challenges of common
acquisition techniques in UHF fMRI.

(a) Two-dimensional spin-echo echo-planar imaging
It has been convincingly argued that, at least in theory,
T2-weighted techniques are superior to T2*-weighted techni-
ques because large-vein extra-vascular signals are eliminated
by a refocusing pulse during acquisition [20,75,76], and intra-
vascular signals produce very small contributions to the
signal because of short T2 at 7 T [73,77].We have had good suc-
cess in the past with simple two-dimensional spin-echo (SE)
EPI acquisitions, using them both at a moderate resolution to
demonstrate the advantage of removing large-vein signal in



Figure 3. Responses during a population receptive field ( pRF) mapping experiment in two-dimensional GE EPI, two-dimensional SE EPI and three-dimensional
GRASE. All three acquisitions had 0.8 mm (isotropic, nominal) resolution. Each pRF mapping scan contained 16 sweeps of bars with dynamic content, each sweep
lasted 16 s, with 4 s rest between, for a total scan duration of 324 s. The two-dimensional GE EPI and three-dimensional GRASE data were acquired with a 2 s TR
and there were 4 pRF scans in the scanning session; the two-dimensional SE data were acquired with a 3 s TR, and there were 6 pRF scans in the scanning session,
so all results show analysis of 648 TRs. F-statistics representing response variance explained a visual encoding model fit to the data (using standard routines provided
by AFNI) were used to threshold the colour overlay at the single-voxel p-value indicated for each modality; subsequent cluster-wise correction controlled for multiple
comparisons. Colour overlay indicates the estimated polar angle coordinate of the region of the visual field represented by the neural population in each voxel. All
modalities agree on the retinotopic position of the population receptive field in each voxel. GE EPI shows the greatest sensitivity, followed by three-dimensional
GRASE and two-dimensional SE. For details see electronic supplementary material. (Online version in colour.)
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macroscopic mapping application [78] and at sub-millimetre
resolution to map the columnar structure of visual cortex in a
participant who lacked an optic chiasm [79].

SE EPI has definite advantages over GE, but it has not
dominated the field because of several limitations. First, SE,
like GRASE and vascular space occupancy (VASO), uses an
additional 180° refocusing radio frequency (RF) pulses to
eliminate the large-vein signal [20,80]. As a result, when a
whole-head RF coil is used for data acquisition, one quickly
runs up against specific absorption rate (SAR) limits (set
independently by the scanning system) that determine how
much power can be delivered safely by the pulse sequence.
This is not an insurmountable problem, but it is a consider-
ation. The restrictions that RF power deposition places on
coverage can be somewhat ameliorated by using smaller
transmit coils, which use less power because they do not
try to deliver power to the whole head. Surface transmit
coils are an excellent choice for sensory and motor studies,
although naturally inappropriate for studies desiring whole-
brain coverage. In Olman et al. [79], acquiring 18 slices per
second using a surface coil yielded a 50% increase in coverage
compared to similar acquisitions using a volume coil. This
approach provided adequate coverage for V1. However,
since the contrast in SE EPI acquisitions requires well-cali-
brated RF pulses and the flip angle varies significantly
throughout the cortex—especially at UHF and with surface
coils—only a portion of the brain volume covered by the
pulse sequence (roughly 50%) provided adequate CNR for
analysis. This limitation is not a problem for applications
focused on a single visual area and well-placed slices with
a well-calibrated coil can provide beautiful images in which
the fMRI contrast is dominated by small veins.

(b) Three-dimensional GRASE
The advantage of T2-weighted three-dimensional GRASE is
that it uses an inner volume excitation technique: the
excitation pulse and 180° refocusing pulses are acquired on
orthogonal dimensions to define a three-dimensional slab in
which signal is acquired. Signal from outside that slab decays
during the long read-out time, during which time signal
inside the slab is kept alive by a train of refocusing pulses;
additional crusher gradients ensure that signal from outside
the imaging volume does not contaminate the ROI. This tech-
nique makes it possible to target a particular region and
spend valuable acquisition time acquiring only relevant data.
The small field of view also equates to short read-out times.
The short read-out time of three-dimensional GRASE reduces
its vulnerability to distortion (in the data shown in figure 3,
the single-slice read-out time for the GRASE images was
22 ms while the read-out time for the GE and SE data was
approximately 40 ms). The CNR and spatial specificity of
three-dimensional GRASE are also potentially enhanced by
stimulated echoes [81] and removal of macrovascular signal
by crusher gradients, as described in detail elsewhere [82].

Three-dimensional GRASE does have disadvantages.
Data from the edges of the slab cannot be analysed owing
to signal drop-off from the excitation pulse profile in the
phase-encode direction (note the soft edges on GRASE
images in figure 3), aliasing in the slice direction, and/or
signal drop-off owing to the refocusing pulse profiles.
Three-dimensional GRASE acquisitions also necessitate a lim-
ited field of view. While several studies have demonstrated
moderate success with single-slab three-dimensional
GRASE applications [33,83,84], adequate coverage for fMRI
applications requires multi-slab acquisitions. In principle,
this is feasible. In practice, however, stitching together slabs
with soft edges, and/or registering them to reference anatom-
ical images, is quite a challenge. The goals of a given
experiment will inform the experimenter whether these chal-
lenges are worth it, and three-dimensional GRASE offers a
low-distortion, high contrast, small-vein biased method of
doing fMRI.
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Figure 4. Robust activation in T2*w acquisition during free viewing of a
movie is restricted to the GM ribbon but shows evidence of dominance by
large veins. The participant watched the movie in 12 s blocks, with 12 s
rest in between, for a total of 16 min. Colour indicates voxels significantly
modulated by visual stimuli ( p < 0.001 for individual voxels; corrected for
multiple comparisons by requiring clusters larger than 20 voxels, for a clus-
ter-wise false-positive rate of 0.001). (Online version in colour.)
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(c) Vascular space occupancy
Measurements other than the BOLD contrast, such as CBF
and CMRO2, have also been in development. CBV measure-
ments using the VASO [85] technique have been used
successfully in laminar fMRI in humans (for recent discus-
sions see [86,87]). The VASO technique uses an inversion
recovery pulse sequence to null blood signal while maintain-
ing part of the tissue signal. Like other alternatives to GE-
BOLD, VASO has lower CNR and temporal resolution,
which leads to limitations on brain coverage. It is also the
case that the fMRI contrast in VASO can be a mixture of
T2*- and T1-weighted effects, which if not handled carefully
will degrade the signal (see [88] for discussion) or complicate
interpretation. However, T2* contamination can be subtracted
out of the images (at the expense of temporal resolution [89]),
and some of the most convincing demonstrations of depth-
resolved fMRI have been performed with VASO. The discus-
sion about how the signal should be fully characterized is
on-going [90] but the elegance of the laminar signal is
self-speaking [91], as are the neuroscientifically convincing
ways in which the depth-dependent signal is modulated
according to task demands [92].

(d) Gradient echo is hard to leave behind
Despite its criticisms, GE EPI has remained the fMRI work-
horse, even for studies that seek the sub-millimetre
resolution necessary to resolve depth-dependent fMRI sig-
nals [43,44,93,94]. The cause is twofold. First, GE is
relatively easy to implement and acquire. Second, for a
given amount of time in the scanner, GE acquisitions yield
higher CNR compared to SE or GRASE acquisitions (figures 3
and 4) (for details on the GE acquisition, see [64]). The perpe-
tual argument against T2*-weighted techniques, however, is
that much of the robust CNR (and thus, resulting inference
about neuronal responses) is biased by signal from large
veins (e.g. see the punctate yellow regions in figure 4). In pur-
suit of optimizing the functional specificity of GE’s high
CNR, much attention has been given to different methods
for addressing the ‘large vein problem’ in T2*-weighted
images.

(e) Addressing the ‘large vein’ problem in T2*-weighted
acquisitions

Voxels where the largest veins dominate the BOLD contrast
also have high noise levels relative to the baseline image
intensity; thus, these voxels can be identified and removed.
Voxels can be identified by masks based on image SNR
[95], BOLD CNR [34,66] or both [84] and removed from
analysis. Voxels with extraordinary blurring owing to either
large veins or proximity to strong local field perturbations
can also be identified by their functional response properties.
For example, Muckli et al. [44] identified and removed vein-
contaminated voxels by masking out voxels with unusually
large receptive fields.

Instead of, or in addition to, masking out regions of the
image where the large-vein signal dominates, there are also
now some established methods for modelling the vein
signal based on an understanding of its characteristics, thus
using a principled approach to account for large-vein contri-
butions during analysis. In an event-related dataset, Kay et al.
[94] took the approach of modelling data with regressors that
had both short and long latencies, showing that the variance
explained by short-latency regressors had better spatial speci-
ficity. For laminar applications, a series of publications
provided convincing demonstrations that penetrating intra-
cortical venuoles create a directional blurring of the fMRI
signal through the cortical depth, such that responses
measured in superficial voxels are actually the sum of deep
and superficial responses [96,97]. Deep responses, on the
other hand, are more likely to be uncontaminated (although
there are large veins running parallel to the GM/WM bound-
ary whose contributions to the depth-dependent fMRI
response have yet to be quantified [98]). This is a logical con-
sequence of the vascular structure [99], and a key insight to
bear in mind when looking at all published laminar profiles
reliant on the BOLD signal, regardless of the acquisition
approach.
4. Acquisition considerations
One lesson demonstrated in a recent dataset was the impor-
tance of paying attention to all acquisition details, not just
the obvious ones (e.g. nominal resolution, coverage and the
calibration of flip angle across the field of view). When setting
up a new protocol, it takes some work to find an acceptable
balance between spatial and temporal resolution. In a two-
dimensional sequence, increasing the number of slices
decreases the temporal resolution; in a three-dimensional
sequence, increasing the slab thickness increases the SNR
(owing to an increase in the number of samples contributing
to the inverse Fourier transform that creates the image) but
decreases the temporal resolution. Increasing in-plane resol-
ution increases read-out time. For a T2*-weighted
acquisition, the goal is to match T2* in the tissue in order to
optimize BOLD contrast, but T2* in GM at 7 T is approxi-
mately 25–35 ms [5,100,101]. Reading out a matrix large
enough to provide sub-millimetre resolution in less than 40



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.S

7
or 50 ms requires strong gradients. Strong gradients generate
strong acoustic noise, and the wise experimenter will use a
sound pressure level metre during a pilot phantom session
to be sure that the gradient noise is safe for participants in
an experiment. Our rule is that we never run a pulse sequence
louder than 110 dB on our participants (who, of course, have
hearing protection), and it is easy to find settings that exceed
that sound pressure level.

Solutions do exist to all of the above boundary conditions,
and after finding the right combination of parameters, one
typically does a pilot run to ensure that, with all of the
above conditions satisfied, the temporal signal-to-noise ratio
(tSNR) is acceptable. Every laboratory will have a different
rule of thumb for acceptable tSNR. Our goal for an acqui-
sition is a minimum of 20 (mean divided by the standard
deviation of a short time series). Experience has taught us
that only very patient participants with good intrinsic CNR
will be able to provide analysable data if tSNR is below 10.
 oc.B
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5. Characterizing blurring
In addition to characterizing tSNR for a new imaging proto-
col, it is valuable to characterize different sources of blurring;
that is, degradations to spatial resolution in functional data.
Since the earliest days of fMRI, a great deal of effort has
been invested in understanding the spatial resolution of
different techniques [10,102]. Resolution as it pertains to
MRI can be broken down into three main categories: nominal
resolution, image resolution and functional resolution. Nom-
inal resolution refers to the voxel size specified by the field of
view (on any given dimension) divided by the number of
voxels in the image (on that dimension). Image resolution is
determined by physics (i.e. acquisition choices) and is consist-
ent for data from any object. Factors impacting image
resolution may include sloped slice profiles [103], signal
decay during acquisition (often referred to as T2* blurring
[104]), displacement of signal by frequency perturbations
[105] and artefacts introduced during reconstruction (e.g.
zero-filling the k-space data after a partial Fourier (PF) acqui-
sition (see [106,107] for informal discussions).

The functional resolution, on the other hand, refers to the
spatial specificity of the blood flow or blood oxygenation
signal that gives rise to functional contrast. Because the func-
tional resolution is modulated by physiological sources (e.g.
long-range neuronal connections, large vessels and/or
pulse- and respiration-induced motion of the GM), it must
be measured from in vivo data. Generally, blood flow- and
blood volume-weighted methods that are sensitive to arterial
regulation and capillary dilation have the potential for high-
est spatial specificity in the parenchyma (i.e. GM between
pial and WM surfaces). T2-weighted approaches also have
the potential for sub-millimetre spatial specificity because
they are dominated by signals from post-capillary venuoles
and the smaller branches of penetrating intracortical
venuoles. On the other hand, T2*-weighted approaches
have the greatest risk of contamination by signals from
large veins that pool signal over several millimetres of
cortex. These effects are separate from other physiological
sources of blurring such as subject motion and respiration
artefacts [108], and blurring introduced during pre-proces-
sing of data, which results from the details of the
algorithms used for motion- and distortion-compensation.
As a general rule, blurring increases SNR, so these two fac-
tors—the desire for high SNR and the desire for low
blurring—conflict.

It is generally understood that functional resolution
cannot be better than image resolution, and the image resol-
ution will not be as good as the nominal resolution of the
image. It is, however, difficult to separate the different
sources of blurring and define objective metrics for quantify-
ing blurring. For defining functional resolution, several
studies have borrowed the idea of ‘point-spread function’
(PSF) from linear systems analysis and used visual stimuli
to create regular patterns [109,110] or presumably sharp
boundaries of neuronal response in the GM [111]. The sharp-
ness of the corresponding fMRI response gives an indication
of the functional blurring. These studies generally produce
answers in agreement with our knowledge of vascular struc-
ture: T2*-weighted imaging methods have slightly more
blurring (i.e. lower functional resolution) than T2-weighted
imaging. The challenge of interpreting these data is that the
underlying neural PSF is not defined, and because the den-
dritic arbours of pyramidal cells can span as much as
1 mm, it is likely that neuronal activity itself has a PSF
approaching 1 mm. Furthermore, because of the heterogen-
eity of the vascular structure, not all voxels in a given
region will have the same functional blurring [112].

For characterizing imaging resolution, one approach is to
image a precisely machined grid phantom and compare the
imaged size of features to their actual size (see [113]). Another
approach we have been exploring for characterizing image
resolution is quantifying the spatial autocorrelation function
of the thermal noise (i.e. the noise attributable to system elec-
tronics rather than physiological fluctuations). To
characterize imaging resolution in high-resolution images,
the mean voxel intensity of the timeseries (i.e. the structure
resulting from tissue contrast) is subtracted out, leaving
only residual noise. Then, the correlation of voxel intensity
at a single time point in an image volume is computed as it
is shifted against itself one voxel at a time. As the shift gets
larger, the correlation falls off. If the residual noise has no
spatial structure (i.e. low thermal noise), the correlation will
fall to zero after a single-voxel shift. Long-range spatial struc-
ture in the noise will reveal itself as a spatial autocorrelation
function that persists after shifting the image against itself by
several voxels.

The structure of the spatial autocorrelation of physiologi-
cal noise has received much attention lately [114] and is best
described by an exponential decay [115]. Thermal noise
(which determines image resolution) typically has a Gaussian
structure. In low-resolution images, with large voxel
volumes, thermal noise is small compared to the signal
strength; thus, the noise in the data is dominated by physio-
logical sources [116,117] that limit the functional resolution.
By contrast, the proportion of thermal noise to signal strength
is larger in high-resolution images, and 98% or more of the
autocorrelational structure of the combined noise can be
described by a Gaussian kernel. The width of this Gaussian
kernel provides a useful metric for estimating image resol-
ution and tracking its degradation by zero-filling of k-space
or motion- and distortion-compensation of data acquired
in vivo.

We illustrate the utility of this method for characterizing
image blurring in the dataset shown in figure 5. The full-
width at half-maximum (FWHM) of separate Gaussian
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Figure 5. A cautionary tale about nominal and true resolution in isotropic
0.8 mm fMRI data acquisition. The horizontal line at 0.48 indicates the spatial
noise correlation ( full-width at half-maximum, FWHM) estimated by AFNI’s
3dFWHMx tool for synthetic, random (independently distributed) data in a
matrix with 0.8 mm nominal resolution. FWHM estimates were derived
from a Gaussian fit to spatial autocorrelations after voxel-wise detrending;
0.48 is a reasonable number for 0.8 mm voxels. The shaded regions at
approximately 0.8 mm indicate the estimated FWHM after representative
motion- and distortion-compensation processes were applied to the synthetic
data (one-stop resampling, combining gradient nonlinearity correction, blip-
up/blip-down unwarping and motion compensation with a wsinc5 algorithm
applied by AFNI’s 3dAllineate algorithm during the final resampling step).
Three features are notable: blurring in the slice direction (blue points) is
initially absent in two-dimensional GE and SE EPI acquisitions but is, reason-
ably, introduced during motion- and distortion-compensation. Strong blurring
in the phase-encode direction in the GE sequence (red squares) is caused by
long read-out times and partial Fourier acquisition. Strong blurring in the
slice direction in the three-dimensional GRASE acquisition could be eliminated
by getting rid of partial Fourier under-sampling in the slice direction, at the
cost of significant SNR reduction owing to increased echo train length. (Online
version in colour.)
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kernels fit to the x-, y- and z- directions of the spatial autocor-
relation of the image noise (the residuals after removing the
mean signal from each voxel) in each dataset was used to esti-
mate the image blurring after the acquisition and after pre-
processing (see electronic supplementary material for
details). Previous work [118] has characterized the image
blurring in two-dimensional SE EPI and three-dimensional
GRASE (each acquisition has a worst direction), and the
data shown in figure 5 recapitulate that. On top of that, the
blurring in the phase-encode direction for the particular
two-dimensional GE EPI data shown in figure 5 was exacer-
bated by the use of PF acquisition. PF acquisition
undersamples the data, taking advantage of the fact that
one half of k-space can be inferred from the other half,
because a real-world image is represented in frequency
space by a complex-valued matrix with Hermitian symmetry.
PF acquisition can, however, degrade image resolution
because it introduces an asymmetry in k-space that equates
to a convolution kernel in image space. To mitigate this pro-
blem, some systems estimate the missing data (using a
variety of algorithms) when reconstructing PF images, but
the downside to this approach is the possibility of creating
image artefacts. The scanner used for this acquisition
defaulted to doing nothing, leaving zeros in the matrix
before doing the inverse Fourier transform to create the
image. This multiplication by an asymmetric edge in the
Fourier domain resulted in blurring in the phase-encode
direction of the reconstructed image that nearly doubled
the effective voxel size. A follow-up acquisition verified that
full k-space acquisition, while detrimental to SNR, dramati-
cally reduced blurring in the phase-encode direction. Thus,
the two-dimensional GE EPI data in figure 5 are not represen-
tative of best practices, but rather a cautionary tale about
attention to details when setting up a new protocol.

For sub-millimetre acquisitions in which SNR is hard to
come by, yet it is of paramount importance to control
image blurring, there are myriad other parameters that can
and should be optimized. The best advice for understanding
the details of how different scanners handle the details of
image processing is not necessarily in peer-reviewed refer-
ences but in conversations with physicists at conferences,
white papers and blogs (e.g. Layer fMRI Blog, [114]). At the
Cortical Depth-resolved fMRI Workshop—a part of the
biannual Minnesota High Field Workshops—Dr. Huber (Fac-
ulty of Psychology and Neuroscience, Maastricht University)
provided an excellent introduction to the tools that a person
can access ‘under the hood’ on a scanner (https://shorturl.
at/lyAE2). It makes sense that communication of the key
tools for controlling image quality is not done by traditional,
peer-reviewed publications because the solutions are unique
to specific sites and applications. For this reason, the laminar
fMRI community is investing significant effort in building an
open information-sharing network to ensure that every inves-
tigator has access to relevant and timely information about
acquisition and analysis techniques.
6. Closing remarks
A decade ago, UHF researchers had proven that cortical col-
umns were accessible to fMRI experiments and were
wondering whether the cortical vascular structure would
permit depth-resolved functional MRI applications. In the
past 5 years, we have seen proof that laminar fMRI profiles
can be measured and do exhibit task-dependent and stimu-
lus-dependent modulation that is consistent with known
properties of the underlying neuronal populations [33]. Lami-
nar fMRI is possible and, in fact, easier to verify than studies
seeking to identify cortical columns because the GM and WM
boundaries provide good landmarks for verifying the
accuracy of laminar analyses. There have, however, also
been many convincing demonstrations of the presence of
confounding factors in both data acquisition and analysis.

The confounding factor that is the most important but
also the most difficult to demonstrate is the potential for
mis-registration between functional data and the anatomical
boundaries that delineate the GM depth. It is clear that seg-
mentation of GM on images that have the same distortion as
the functional data is the best approach for addressing this
problem, but that is not a readily achievable goal. The
current challenge in the field is to standardize acquisition tech-
niques, e.g. T1-weighted EPI to provide distortion-matched
images that can be segmented, as well as analysis techniques
(i.e. segmentation algorithms optimized for the contrast in
T1-weighted EPI) to enable a routine solution to the problem
of accurately defining GM boundaries in functional data.

If CNR and coverage were no object, all mesoscopic appli-
cations would use T2-, CBF- or CBV-weighted acquisition
approaches that have been amply demonstrated to offer
improved spatial specificity and truly beautiful images. As

https://shorturl.at/lyAE2
https://shorturl.at/lyAE2
https://shorturl.at/lyAE2
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an extra advantage, VASO or CBF experiments that control
for BOLD contamination by alternating between T2*- and
T1-weighted acquisitions generate excellent contrast between
GM and WM that can be used to address the registration pro-
blems discussed above. However, the limitations to coverage
and CNR remain problematic, even with the advantages
offered by 7 T field strength. The development of scanners
that operate at even higher field (e.g. the 10.5 T system
recently installed at our institution) can address some of the
CNR problems, but not the problem of coverage.

While fMRI acquisition techniques other than GE EPI con-
tinue to catch up in terms of coverage (temporal resolution)
and CNR, good progress can be made with T2*-weighted
techniques as long as the field (investigators, reviewers and
readers) remains mindful of the spatial confounds of macro-
vasculature. None of the techniques for removing these
confounds—which displace signal in both radial and tangen-
tial directions, with respect to the cortical surface—is perfect.
Deconvolution to remove vertical signal pooling requires
modelling assumptions and high CNR; masking and GLM-
based approaches can remove some but not all of the
spatially non-selective signal.

The UHF laminar imaging field is in the fortunate pos-
ition of having developed and communicated good tools
for quantifying and addressing the known challenges of
laminar fMRI. Continued open and informal communication
of best practices is crucial to continued progress of the field.
At the moment, the community is using a Slack team to facili-
tate communication between a network of users and hosting
regular virtual workshops for informal discussion of current
problems. The Slack sign-up link is posted at layerfmri.com,
where virtual workshop announcements are also made. All
readers are encouraged to monitor these sites to stay abreast
of developments and participate in discussions.
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dominance in human V1 demonstrated by functional
magnetic resonance imaging. J. Neurophysiol. 77,
2780–2787. (doi:10.1152/jn.1997.77.5.2780)

20. Yacoub E, Shmuel A, Logothetis N, Uğurbil K. 2007
Robust detection of ocular dominance columns in
humans using Hahn Spin Echo BOLD functional MRI
at 7 Tesla. NeuroImage 37, 1161–1177. (doi:10.1016/
j.neuroimage.2007.05.020)

21. Yacoub E, Harel N, Uğurbil K. 2008 High-field fMRI
unveils orientation columns in humans. Proc. Natl
Acad. Sci. USA 105, 10 607–10 612. (doi:10.1073/
pnas.0804110105)

22. Sun P, Ueno K, Waggoner RA, Gardner JL, Tanaka K,
Cheng K. 2007 A temporal frequency-dependent
functional architecture in human V1 revealed by
high-resolution fMRI. Nat. Neurosci. 10, 1404–1406.
(doi:10.1038/nn1983)

23. Nasr S, Polimeni JR, Tootell RBH. 2016
Interdigitated color- and disparity-selective columns

https://openneuro.org/datasets/ds002684
https://openneuro.org/datasets/ds002684
http://dx.doi.org/10.1002/mrm.1910250220
http://dx.doi.org/10.1073/pnas.89.12.5675
http://dx.doi.org/10.1073/pnas.89.13.5951
http://dx.doi.org/10.1016/j.neuroimage.2018.01.072
http://dx.doi.org/10.1016/j.neuroimage.2018.01.072
http://dx.doi.org/10.1002/mrm.25677
http://dx.doi.org/10.1016/S0166-2236(02)00039-5
http://dx.doi.org/10.1016/S0166-2236(02)00039-5
http://dx.doi.org/10.1002/mrm.1156
http://dx.doi.org/10.1016/j.neuroimage.2009.05.015
http://dx.doi.org/10.1016/j.neuroimage.2009.05.015
http://dx.doi.org/10.1002/mrm.1080
http://dx.doi.org/10.1098/rstb.2015.0361
http://dx.doi.org/10.1098/rstb.2015.0361
http://dx.doi.org/10.1016/J.NEUROIMAGE.2017.03.060
http://dx.doi.org/10.1016/j.neuroimage.2017.07.004
http://dx.doi.org/10.1016/j.neuroimage.2017.07.004
http://dx.doi.org/10.1073/pnas.1221398110
http://dx.doi.org/10.1002/cne.24040
http://dx.doi.org/10.1016/j.dib.2016.06.058
http://dx.doi.org/10.1152/jn.1957.20.4.408
http://dx.doi.org/10.1152/jn.1957.20.4.408
http://dx.doi.org/10.1001/archopht.1990.01070090127054
http://dx.doi.org/10.1001/archopht.1990.01070090127054
http://dx.doi.org/10.1016/S0896-6273(01)00477-9
http://dx.doi.org/10.1152/jn.1997.77.5.2780
http://dx.doi.org/10.1016/j.neuroimage.2007.05.020
http://dx.doi.org/10.1016/j.neuroimage.2007.05.020
http://dx.doi.org/10.1073/pnas.0804110105
http://dx.doi.org/10.1073/pnas.0804110105
http://dx.doi.org/10.1038/nn1983


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200040

10
within human visual cortical areas V2 and V3.
J. Neurosci. 36, 1841–1857. (doi:10.1523/
JNEUROSCI.3518-15.2016)

24. Zimmermann J et al. 2011 Mapping the
organization of axis of motion selective features in
human area MT using high-field fMRI. PLoS ONE 6,
e28716. (doi:10.1371/journal.pone.0028716)

25. De Martino F, Moerel M, Ugurbil K, Goebel R,
Yacoub E, Formisano E. 2015 Frequency preference
and attention effects across cortical depths in the
human primary auditory cortex. Proc. Natl Acad. Sci.
USA 112, 16 036–16 041. (doi:10.1073/pnas.
1507552112)

26. Horton JC, Adams DL. 2005 The cortical column: a
structure without a function. Phil. Trans. R. Soc. B
360, 837–862. (doi:10.1098/rstb.2005.1623)

27. Moss R, Hunter B, Shah D. 2012 A theory of
hemispheric specialization based on cortical
columns. J. Mind Behav. 33, 141–172.

28. Adams DL, Horton JC. 2003 Capricious expression of
cortical columns in the primate brain. Nat. Neurosci.
6, 113–114. (doi:10.1038/nn1004)

29. Hubel DH, Wiesel TN. 1972 Laminar and columnar
distribution of geniculo-cortical fibers in the
macaque monkey. J. Comp. Neurol. 146, 421–450.
(doi:10.1002/cne.901460402)

30. Felleman DJ, Van Essen DC. 1991 Distributed
hierarchical processing in the primate cerebral
cortex. Cereb. Cortex 1, 1–47. (doi:10.1093/cercor/1.
1.1)

31. Rockland KS, Pandya DN. 1979 Laminar origins and
terminations of cortical connections of the occipital
lobe in the rhesus monkey. Brain Res. 179, 3–20.
(doi:10.1016/0006-8993(79)90485-2)

32. Fischl B, Dale AM. 2000 Measuring the thickness of
the human cerebral cortex from magnetic resonance
images. Proc. Natl Acad. Sci. USA 97, 11 050–11 055.
(doi:10.1073/pnas.200033797)

33. Olman CA, Harel N, Feinberg DA, He S, Zhang P,
Ugurbil K, Yacoub E. 2012 Layer-specific fMRI
reflects different neuronal computations at different
depths in human V1. PLoS ONE 7, e32536. (doi:10.
1371/journal.pone.0032536)

34. Polimeni JR, Fischl B, Greve DN, Wald LL. 2010 Laminar
analysis of 7 T BOLD using an imposed spatial
activation pattern in human V1. NeuroImage 52,
1334–1346. (doi:10.1016/j.neuroimage.2010.05.005)

35. Waehnert MD, Dinse J, Weiss M, Streicher MN,
Waehnert P, Geyer S, Turner R, Bazin P-L. 2014
Anatomically motivated modeling of cortical
laminae. NeuroImage 93, 210–220. (doi:10.1016/j.
neuroimage.2013.03.078)

36. Bok ST. 1929 Der Einflu\ der in den Furchen und
Windungen auftretenden Krümmungen der Gro
\hirnrinde auf die Rindenarchitektur. Z. Für Gesamte
Neurol. Psychiatr. 121, 682. (doi:10.1007/
BF02864437)

37. Funkhouser EB. 1915 The visual cortex, its
localization, histological structure, and physiological
function. J. Exp. Med. 21, 617–628. (doi:10.1084/
jem.21.6.617)

38. Trampel R, Ott DVM, Turner R. 2011 Do the
congenitally blind have a Stria of Gennari? First
intracortical insights in vivo. Cereb. Cortex 21,
2075–2081. (doi:10.1093/cercor/bhq282)

39. Fracasso A, Luijten PR, Dumoulin SO, Petridou N.
2017 Laminar imaging of positive and negative
BOLD in human visual cortex at 7T. NeuroImage
164, 100–111. (doi:10.1016/J.NEUROIMAGE.2017.
02.038)

40. De Martino F, Zimmermann J, Muckli L, Ugurbil K,
Yacoub E, Goebel R. 2013 Cortical depth dependent
functional responses in humans at 7T: improved
specificity with 3D GRASE. PLoS ONE 8, e60514.
(doi:10.1371/journal.pone.0060514)

41. Huber L et al. 2015 Cortical lamina-dependent
blood volume changes in human brain at 7T.
NeuroImage 107, 23–33. (doi:10.1016/j.
neuroimage.2014.11.046)

42. Kok P, Bains LJ, Van Mourik T, Norris DG, De Lange
FP. 2016 Selective activation of the deep layers of
the human primary visual cortex by top-down
feedback. Curr. Biol. 26, 371–376. (doi:10.1016/j.
cub.2015.12.038)

43. Koopmans PJ, Barth M, Norris DG. 2010 Layer-
specific BOLD activation in human V1. Hum. Brain
Mapp. 31, 1297–1304. (doi:10.1002/hbm.20936)

44. Muckli L, De Martino F, Vizioli L, Petro LS, Smith
FW, Ugurbil K, Goebel R, Yacoub E. 2015 Contextual
feedback to superficial layers of V1. Curr. Biol. 25,
2690–2695. (doi:10.1016/j.cub.2015.08.057)

45. Finn ES, Huber L, Jangraw DC, Molfese PJ,
Bandettini PA. 2019 Layer-dependent activity in
human prefrontal cortex during working memory.
Nat. Neurosci. 22, 1687–1695. (doi:10.1038/s41593-
019-0487-z)

46. Sharoh D, van Mourik T, Bains LJ, Segaert K, Weber
K, Hagoort P, Norris DG. 2019 Laminar specific fMRI
reveals directed interactions in distributed networks
during language processing. Proc. Natl Acad. Sci.
USA 116, 21 185–21 190. (doi:10.1073/pnas.
1907858116)

47. Marquardt I, De Weerd P, Schneider M, Gulban OF,
Ivanov D, Wang Y, Uludağ K. 2020 Feedback
contribution to surface motion perception in the
human early visual cortex. eLife 9, e50933. (doi:10.
7554/eLife.50933)

48. Haynes J-D, Rees G. 2005 Predicting the orientation
of invisible stimuli from activity in human primary
visual cortex. Nat. Neurosci. 8, 686–691. (doi:10.
1038/nn1445)

49. Kamitani Y, Tong F. 2005 Decoding the visual and
subjective contents of the human brain. Nat.
Neurosci. 8, 679–685. (doi:10.1038/nn1444)

50. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten
JL, Pietrini P. 2001 Distributed and overlapping
representations of faces and objects in ventral
temporal cortex. Science 293, 2425–2430. (doi:10.
1126/science.1063736)

51. Bergmann J, Morgan AT, Muckli L. 2019 Two
distinct feedback codes in V1 for ‘real’ and
‘imaginary’ internal experiences. bioRxiv, 664870.
(doi:10.1101/664870)

52. Vizioli L, De Martino F, Petro LS, Kersten D, Ugurbil K,
Yacoub E, Muckli L. 2020 Multivoxel pattern of blood
oxygen level dependent activity can be sensitive to
stimulus specific fine scale responses. Sci. Rep. 10,
7565. (doi:10.1038/s41598-020-64044-x)

53. Jezzard P, Clare S. 1999 Sources of distortion in
functional MRI data. Hum. Brain Mapp. 8, 80–85.
(doi:10.1002/(SICI)1097-0193(1999)8:2/3&lt;80::
AID-HBM2>3.0.CO;2-C)

54. Jezzard P. 2012 Correction of geometric distortion in
fMRI data. NeuroImage 62, 648–651. (doi:10.1016/
j.neuroimage.2011.09.010)

55. Marques JP, Kober T, Krueger G, van der Zwaag W,
Van de Moortele P-F, Gruetter R. 2010 MP2RAGE, a
self bias-field corrected sequence for improved
segmentation and T1-mapping at high field.
NeuroImage 49, 1271–1281. (doi:10.1016/j.
neuroimage.2009.10.002)

56. Mugler JP, Brookeman JR. 1990 Three-dimensional
magnetization-prepared rapid gradient-echo
imaging (3D MP RAGE). Magn. Reson. Med. 15,
152–157. (doi:10.1002/mrm.1910150117)

57. Sanchez-Panchuelo RM, Francis S, Bowtell R,
Schluppeck D. 2010 Mapping human somatosensory
cortex in individual subjects with 7T functional MRI.
J. Neurophysiol. 103, 2544–2556. (doi:10.1152/jn.
01017.2009)

58. Cox RW. 1996 AFNI: Software for analysis and
visualization of functional magnetic resonance
neuroimages. Comput. Biomed. Res. 29, 162–173.
(doi:10.1006/cbmr.1996.0014)

59. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich
MW, Smith SM. 2012 FSL. NeuroImage 62,
782–790. (doi:10.1016/j.neuroimage.2011.09.015)

60. Fischl B. 2012 FreeSurfer. NeuroImage 62, 774–781.
(doi:10.1016/j.neuroimage.2012.01.021)

61. Saad ZS, Glen DR, Chen G, Beauchamp MS, Desai R,
Cox RW. 2009 A new method for improving
functional-to-structural MRI alignment using local
Pearson correlation. NeuroImage 44, 839–848.
(doi:10.1016/j.neuroimage.2008.09.037)

62. Greve DN, Fischl B. 2009 Accurate and robust brain
image alignment using boundary-based
registration. NeuroImage 48, 63–72. (doi:10.1016/j.
neuroimage.2009.06.060)

63. van Mourik T, Koopmans PJ, Norris DG. 2019
Improved cortical boundary registration for locally
distorted fMRI scans. PLoS ONE 14, e0223440.
(doi:10.1371/journal.pone.0223440)

64. Weldon KB, Burton PC, Grant AN, Yacoub E, Olman
CA. 2019 Defining region-specific masks for reliable
depth-dependent analysis of fMRI data. bioRxiv
557363. (doi:177814/557363)

65. Glasser MF et al. 2013 The minimal preprocessing
pipelines for the human connectome project.
NeuroImage 80, 105–124. (doi:10.1016/j.
neuroimage.2013.04.127)

66. Kashyap S, Ivanov D, Havlicek M, Poser BA, Uludağ
K. 2017 Impact of acquisition and analysis strategies
on cortical depth-dependent fMRI. NeuroImage
168, 332–344. (doi:10.1016/j.neuroimage.2017.
05.022)

67. van der Zwaag W, Buur PF, Fracasso A, van Doesum
T, Uludağ K, Versluis MJ, Marques JP. 2018
Distortion-matched T1 maps and unbiased T1-
weighted images as anatomical reference for high-

http://dx.doi.org/10.1523/JNEUROSCI.3518-15.2016
http://dx.doi.org/10.1523/JNEUROSCI.3518-15.2016
http://dx.doi.org/10.1371/journal.pone.0028716
http://dx.doi.org/10.1073/pnas.1507552112
http://dx.doi.org/10.1073/pnas.1507552112
http://dx.doi.org/10.1098/rstb.2005.1623
http://dx.doi.org/10.1038/nn1004
http://dx.doi.org/10.1002/cne.901460402
http://dx.doi.org/10.1093/cercor/1.1.1
http://dx.doi.org/10.1093/cercor/1.1.1
http://dx.doi.org/10.1016/0006-8993(79)90485-2
http://dx.doi.org/10.1073/pnas.200033797
http://dx.doi.org/10.1371/journal.pone.0032536
http://dx.doi.org/10.1371/journal.pone.0032536
http://dx.doi.org/10.1016/j.neuroimage.2010.05.005
http://dx.doi.org/10.1016/j.neuroimage.2013.03.078
http://dx.doi.org/10.1016/j.neuroimage.2013.03.078
http://dx.doi.org/10.1007/BF02864437
http://dx.doi.org/10.1007/BF02864437
http://dx.doi.org/10.1084/jem.21.6.617
http://dx.doi.org/10.1084/jem.21.6.617
http://dx.doi.org/10.1093/cercor/bhq282
http://dx.doi.org/10.1016/J.NEUROIMAGE.2017.02.038
http://dx.doi.org/10.1016/J.NEUROIMAGE.2017.02.038
http://dx.doi.org/10.1371/journal.pone.0060514
http://dx.doi.org/10.1016/j.neuroimage.2014.11.046
http://dx.doi.org/10.1016/j.neuroimage.2014.11.046
http://dx.doi.org/10.1016/j.cub.2015.12.038
http://dx.doi.org/10.1016/j.cub.2015.12.038
http://dx.doi.org/10.1002/hbm.20936
http://dx.doi.org/10.1016/j.cub.2015.08.057
http://dx.doi.org/10.1038/s41593-019-0487-z
http://dx.doi.org/10.1038/s41593-019-0487-z
http://dx.doi.org/10.1073/pnas.1907858116
http://dx.doi.org/10.1073/pnas.1907858116
http://dx.doi.org/10.7554/eLife.50933
http://dx.doi.org/10.7554/eLife.50933
http://dx.doi.org/10.1038/nn1445
http://dx.doi.org/10.1038/nn1445
http://dx.doi.org/10.1038/nn1444
http://dx.doi.org/10.1126/science.1063736
http://dx.doi.org/10.1126/science.1063736
http://dx.doi.org/10.1101/664870
http://dx.doi.org/10.1038/s41598-020-64044-x
http://dx.doi.org/10.1002/(SICI)1097-0193(1999)8:2/3&amp;lt;80::AID-HBM2%3E3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1097-0193(1999)8:2/3&amp;lt;80::AID-HBM2%3E3.0.CO;2-C
http://dx.doi.org/10.1016/j.neuroimage.2011.09.010
http://dx.doi.org/10.1016/j.neuroimage.2011.09.010
http://dx.doi.org/10.1016/j.neuroimage.2009.10.002
http://dx.doi.org/10.1016/j.neuroimage.2009.10.002
http://dx.doi.org/10.1002/mrm.1910150117
http://dx.doi.org/10.1152/jn.01017.2009
http://dx.doi.org/10.1152/jn.01017.2009
http://dx.doi.org/10.1006/cbmr.1996.0014
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2012.01.021
http://dx.doi.org/10.1016/j.neuroimage.2008.09.037
http://dx.doi.org/10.1016/j.neuroimage.2009.06.060
http://dx.doi.org/10.1016/j.neuroimage.2009.06.060
http://dx.doi.org/10.1371/journal.pone.0223440
http://dx.doi.org/177814/557363
http://dx.doi.org/10.1016/j.neuroimage.2013.04.127
http://dx.doi.org/10.1016/j.neuroimage.2013.04.127
http://dx.doi.org/10.1016/j.neuroimage.2017.05.022
http://dx.doi.org/10.1016/j.neuroimage.2017.05.022


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200040

11
resolution fMRI. NeuroImage 176, 41–55. (doi:10.
1016/J.NEUROIMAGE.2018.04.026)

68. Kim S-G, Ogawa S. 2012 Biophysical and
physiological origins of blood oxygenation level-
dependent fMRI signals. J. Cereb. Blood Flow Metab.
32, 1188–1206. (doi:10.1038/jcbfm.2012.23)

69. Uludağ K, Müller-Bierl B, Uğurbil K. 2009 An
integrative model for neuronal activity-induced
signal changes for gradient and spin echo functional
imaging. NeuroImage 48, 150–165. (doi:10.1016/j.
neuroimage.2009.05.051)

70. Petridou N, Siero JCW. 2019 Laminar fMRI: What
can the time domain tell us? NeuroImage 197,
761–771. (doi:10.1016/j.neuroimage.2017.07.040)

71. Uludağ K, Blinder P. 2018 Linking brain vascular
physiology to hemodynamic response in ultra-high
field MRI. NeuroImage 168, 279–295. (doi:10.1016/
J.NEUROIMAGE.2017.02.063)

72. Boxerman JL, Bandettini PA, Kwong KK, Baker JR,
Davis TL, Rosen BR, Weisskoff RM. 1995 The
intravascular contribution to fMRI signal change:
Monte Carlo modeling and diffusion-weighted
studies in vivo. Magn. Reson. Med. 34, 4–10.
(doi:10.1002/mrm.1910340103)

73. Duong TQ, Yacoub E, Adriany G, Hu X, Uğurbil K,
Kim S-G. 2003 Microvascular BOLD contribution at 4
and 7 T in the human brain: gradient-echo and
spin-echo fMRI with suppression of blood effects.
Magn. Reson. Med. 49, 1019–1027. (doi:10.1002/
mrm.10472)

74. Uğurbil K et al. 2000 Magnetic resonance studies of
brain function and neurochemistry. Annu. Rev.
Biomed. Eng. 2, 633–660. (doi:10.1146/annurev.
bioeng.2.1.633)

75. Feinberg D, Harel N, Ramanna S, Ugurbil K, Yacoub
E. 2008 Sub-millimeter single-shot 3D GRASE with
inner volume selection for T2 weighted fMRI
applications at 7Tesla. Proc. Intl. Soc. Mag. Reson.
Med. 16, 2373.

76. Yacoub E, Duong TQ, Van De Moortele P-F, Lindquist
M, Adriany G, Kim S-G, Uğurbil K, Hu X. 2003 Spin-
echo fMRI in humans using high spatial resolutions
and high magnetic fields. Magn. Reson. Med. 49,
655–664. (doi:10.1002/mrm.10433)

77. Krishnamurthy LC, Liu P, Xu F, Uh J, Dimitrov I, Lu
H. 2014 Dependence of blood T2 on oxygenation at
7 T: In vitro calibration and in vivo application.
Magn. Reson. Med. 71, 2035–2042. (doi:10.1002/
mrm.24868)

78. Olman CA, Van de Moortele P-F, Schumacher JF,
Guy J, Uğurbil K, Yacoub E. 2010 Retinotopic
mapping with Spin Echo BOLD at 7 Tesla. Magn.
Reson. Imaging 28, 1258–1269. (doi:10.1016/j.mri.
2010.06.001)

79. Olman CA, Bao P, Engel SA, Grant AN, Purington C,
Qiu C, Schallmo MP, Tjan BS. 2018 Hemifield
columns co-opt ocular dominance column structure
in human achiasma. NeuroImage 164, 59–66.
(doi:10.1016/j.neuroimage.2016.12.063)

80. Rua C, Costagli M, Symms MR, Biagi L, Donatelli G,
Cosottini M, Del Guerra A, Tosetti M. 2017
Characterization of high-resolution Gradient Echo
and Spin Echo EPI for fMRI in the human visual
cortex at 7T. Magn. Reson. Imaging 40, 98–108.
(doi:10.1016/j.mri.2017.04.008)

81. Oshio K, Mulkern RV. 1992 Stimulated echoes in
multi-slice RARE sequences: experimental and
theoretical considerations. In Book of abstracts:
Society of Magnetic Resonance in Medicine, p. 4508.
Berlin, Germany: Society of Magnetic Resonance in
Medicine.

82. Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger
DR, McLaughlin AC. 1997 Correction for vascular
artifacts in cerebral blood flow values measured by
using arterial spin tagging techniques. Magn.
Reson. Med. 37, 226–235. (doi:10.1002/mrm.
1910370215)

83. Moerel M, De Martino F, Uğurbil K, Formisano E,
Yacoub E. 2018 Evaluating the columnar stability of
acoustic processing in the human auditory cortex.
J. Neurosci. 38, 7822–7832. (doi:10.1523/
JNEUROSCI.3576-17.2018)

84. Zamboni E et al. 2020 Suppressive recurrent and
feedback computations for adaptive processing in
the human brain. bioRxiv 2020.02.14.947895.
(doi:10.1101/2020.02.14.947895)

85. Lu H, van Zijl PCM. 2012 A review of the
development of vascular-space-occupancy (VASO)
fMRI. NeuroImage 62, 736–742. (doi:10.1016/j.
neuroimage.2012.01.013)

86. Huber L, Uludağ K, Möller HE. 2019 Non-BOLD
contrast for laminar fMRI in humans: CBF, CBV, and
CMRO2. NeuroImage 197, 742–760. (doi:10.1016/j.
neuroimage.2017.07.041)

87. Huber L et al. 2020 Layer-dependent functional
connectivity methods. Prog. Neurobiol. 101835.
(doi:10.1016/j.pneurobio.2020.101835)

88. Liu P, Hebrank AC, Rodrigue KM, Kennedy KM, Park
DC, Lu H. 2013 A comparison of physiologic
modulators of fMRI signals. Hum. Brain Mapp. 34,
2078–2088. (doi:10.1002/hbm.22053)

89. Huber L, Ivanov D, Krieger S, Streicher M, Mildner T,
Poser B, Möller H, Turner R. 2014 Slab-selective,
BOLD-corrected VASO at 7 Tesla provides measures
of cerebral blood volume reactivity with high
signal-to-noise ratio. Magn. Reson. Med. 72,
137–148. (doi:10.1002/mrm.24916)

90. Beckett AJS, Dadakova T, Townsend J, Huber L, Park
S, Feinberg DA. 2019 Comparison of BOLD and
CBV using 3D EPI and 3D GRASE for cortical layer
fMRI at 7 T. Magn. Reson. Med. 84, 3128–3145.
(doi:10.1002/mrm.28347)

91. Huber L, Ivanov D, Handwerker DA, Marrett S, Guidi
M, Uludağ K, Bandettini PA, Poser BA. 2016
Techniques for blood volume fMRI with VASO: from
low-resolution mapping towards sub-millimeter
layer-dependent applications. NeuroImage
164, 131–143. (doi:10.1016/j.neuroimage.2016.
11.039)

92. Huber L et al. 2017 High-resolution CBV-fMRI
allows mapping of laminar activity and connectivity
of cortical input and output in human M1. Neuron
96, 1253–1263. (doi:10.1016/j.neuron.2017.11.005)

93. Fracasso A, Petridou N, Dumoulin SO. 2016
Systematic variation of population receptive field
properties across cortical depth in human visual
cortex. NeuroImage 139, 427–438. (doi:10.1016/j.
neuroimage.2016.06.048)

94. Kay K, Jamison KW, Vizioli L, Zhang R, Margalit E,
Ugurbil K. 2019 A critical assessment of data quality
and venous effects in sub-millimeter fMRI.
NeuroImage 189, 847–869. (doi:10.1016/j.
neuroimage.2019.02.006)

95. Olman CA, Inati S, Heeger DJ. 2007 The effect of
large veins on spatial localization with GE BOLD at 3
T: displacement, not blurring. NeuroImage
34, 1126–1135. (doi:10.1016/j.neuroimage.2006.
08.045)

96. Heinzle J, Koopmans PJ, den Ouden HEM, Raman S,
Stephan KE. 2016 A hemodynamic model for
layered BOLD signals. NeuroImage 125, 556–570.
(doi:10.1016/j.neuroimage.2015.10.025)

97. Markuerkiaga I, Barth M, Norris DG. 2016 A cortical
vascular model for examining the specificity of the
laminar BOLD signal. NeuroImage 132, 491–498.
(doi:10.1016/j.neuroimage.2016.02.073)

98. Birkl C, Langkammer C, Sati P, Enzinger C, Fazekas
F, Ropele S. 2019 Quantitative susceptibility
mapping to assess cerebral vascular compliance.
Am. J. Neuroradiol. 40, 460–463. (doi:10.3174/ajnr.
A5933)

99. Havlicek M, Uludağ K. 2020 A dynamical model of
the laminar BOLD response. NeuroImage 204,
116209. (doi:10.1016/j.neuroimage.2019.116209)

100. Peters AM, Brookes MJ, Hoogenraad FG, Gowland
PA, Francis ST, Morris PG, Bowtell R. 2007 T2*
measurements in human brain at 1.5, 3 and 7T.
Magn. Reson. Imaging 25, 748–753. (doi:10.1016/j.
mri.2007.02.014)

101. Koopmans PJ, Manniesing R, Niessen WJ, Viergever
MA, Barth M. 2008 MR venography of the human
brain using susceptibility weighted imaging at very
high field strength. Magn. Reson. Mater. Phys. Biol.
Med. 21, 149. (doi:10.1007/s10334-007-0101-3)

102. Malonek D, Grinvald A. 1996 Interactions between
electrical activity and cortical microcirculation
revealed by imaging spectroscopy: implications for
functional brain mapping. Science 272, 551–554.
(doi:10.1126/science.272.5261.551)

103. Duerk JL. 1999 Principles of MR image formation
and reconstruction. Magn. Reson. Imaging
Clin. N. Am. 7, 629–659.

104. Farzaneh F, Riederer SJ, Pelc NJ. 1990 Analysis of T2
limitations and off-resonance effects on spatial
resolution and artifacts in echo-planar imaging.
Magn. Reson. Med. 14, 123–139. (doi:10.1002/
mrm.1910140112)

105. Pfeuffer J, de Moortele P-FV, Ugurbil K, Hu X, Glover
GH. 2002 Correction of physiologically induced
global off-resonance effects in dynamic echo-planar
and spiral functional imaging. Magn. Reson. Med.
47, 344–353. (doi:10.1002/mrm.10065)

106. Inglis B. 2013 The experimental consequences of
using partial Fourier for EPI. practiCal fMRI: the nuts
& bolts. Retrieved from: https://practicalfmri.
blogspot.com/2013/08/the-experimental-
consequences-ofusing.html.

107. Huber L. 2018 Partial-Fourier imaging at High
Resolutions. Layer fMRI Blog. Retrieved from:

http://dx.doi.org/10.1016/J.NEUROIMAGE.2018.04.026
http://dx.doi.org/10.1016/J.NEUROIMAGE.2018.04.026
http://dx.doi.org/10.1038/jcbfm.2012.23
http://dx.doi.org/10.1016/j.neuroimage.2009.05.051
http://dx.doi.org/10.1016/j.neuroimage.2009.05.051
http://dx.doi.org/10.1016/j.neuroimage.2017.07.040
http://dx.doi.org/10.1016/J.NEUROIMAGE.2017.02.063
http://dx.doi.org/10.1016/J.NEUROIMAGE.2017.02.063
http://dx.doi.org/10.1002/mrm.1910340103
http://dx.doi.org/10.1002/mrm.10472
http://dx.doi.org/10.1002/mrm.10472
http://dx.doi.org/10.1146/annurev.bioeng.2.1.633
http://dx.doi.org/10.1146/annurev.bioeng.2.1.633
http://dx.doi.org/10.1002/mrm.10433
http://dx.doi.org/10.1002/mrm.24868
http://dx.doi.org/10.1002/mrm.24868
http://dx.doi.org/10.1016/j.mri.2010.06.001
http://dx.doi.org/10.1016/j.mri.2010.06.001
http://dx.doi.org/10.1016/j.neuroimage.2016.12.063
http://dx.doi.org/10.1016/j.mri.2017.04.008
http://dx.doi.org/10.1002/mrm.1910370215
http://dx.doi.org/10.1002/mrm.1910370215
http://dx.doi.org/10.1523/JNEUROSCI.3576-17.2018
http://dx.doi.org/10.1523/JNEUROSCI.3576-17.2018
http://dx.doi.org/10.1101/2020.02.14.947895
http://dx.doi.org/10.1016/j.neuroimage.2012.01.013
http://dx.doi.org/10.1016/j.neuroimage.2012.01.013
http://dx.doi.org/10.1016/j.neuroimage.2017.07.041
http://dx.doi.org/10.1016/j.neuroimage.2017.07.041
http://dx.doi.org/10.1016/j.pneurobio.2020.101835
http://dx.doi.org/10.1002/hbm.22053
http://dx.doi.org/10.1002/mrm.24916
http://dx.doi.org/10.1002/mrm.28347
http://dx.doi.org/10.1016/j.neuroimage.2016.11.039
http://dx.doi.org/10.1016/j.neuroimage.2016.11.039
http://dx.doi.org/10.1016/j.neuron.2017.11.005
http://dx.doi.org/10.1016/j.neuroimage.2016.06.048
http://dx.doi.org/10.1016/j.neuroimage.2016.06.048
http://dx.doi.org/10.1016/j.neuroimage.2019.02.006
http://dx.doi.org/10.1016/j.neuroimage.2019.02.006
http://dx.doi.org/10.1016/j.neuroimage.2006.08.045
http://dx.doi.org/10.1016/j.neuroimage.2006.08.045
http://dx.doi.org/10.1016/j.neuroimage.2015.10.025
http://dx.doi.org/10.1016/j.neuroimage.2016.02.073
http://dx.doi.org/10.3174/ajnr.A5933
http://dx.doi.org/10.3174/ajnr.A5933
http://dx.doi.org/10.1016/j.neuroimage.2019.116209
http://dx.doi.org/10.1016/j.mri.2007.02.014
http://dx.doi.org/10.1016/j.mri.2007.02.014
http://dx.doi.org/10.1007/s10334-007-0101-3
http://dx.doi.org/10.1126/science.272.5261.551
http://dx.doi.org/10.1002/mrm.1910140112
http://dx.doi.org/10.1002/mrm.1910140112
http://dx.doi.org/10.1002/mrm.10065
https://practicalfmri.blogspot.com/2013/08/the-experimental-consequences-ofusing.html
https://practicalfmri.blogspot.com/2013/08/the-experimental-consequences-ofusing.html
https://practicalfmri.blogspot.com/2013/08/the-experimental-consequences-ofusing.html


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.S

12
https://layerfmri.com/2018/03/17/partial-fourier-
imaging-at-high-resolutions/.

108. Van de Moortele P-F, Pfeuffer J, Glover GH, Ugurbil
K, Hu X. 2002 Respiration-induced B0 fluctuations
and their spatial distribution in the human brain at
7 Tesla. Magn. Reson. Med. 47, 888–895. (doi:10.
1002/mrm.10145)

109. Engel SA, Glover GH, Wandell BA. 1997 Retinotopic
organization in human visual cortex and the spatial
precision of functional MRI. Cereb. Cortex 7,
181–192. (doi:10.1093/cercor/7.2.181)

110. Parkes LM, Schwarzbach JV, Bouts AA, Deckers RHR,
Pullens P, Kerskens CM, Norris DG. 2005 Quantifying
the spatial resolution of the gradient echo and spin
echo BOLD response at 3 Tesla. Magn. Reson. Med.
54, 1465–1472. (doi:10.1002/mrm.20712)

111. Chaimow D, Yacoub E, Uğurbil K, Shmuel A. 2018
Spatial specificity of the functional MRI blood
oxygenation response relative to neuronal activity.
NeuroImage 164, 32–47. (doi:10.1016/j.
neuroimage.2017.08.077)

112. Kriegeskorte N, Cusack R, Bandettini P. 2010 How
does an fMRI voxel sample the neuronal activity
pattern: compact-kernel or complex spatiotemporal
filter? NeuroImage 49, 1965–1976. (doi:10.1016/j.
neuroimage.2009.09.059)

113. Wang D, Doddrell DM, Cowin G. 2004 A novel
phantom and method for comprehensive 3-
dimensional measurement and correction of
geometric distortion in magnetic resonance
imaging. Magn. Reson. Imaging 22, 529–542.
(doi:10.1016/j.mri.2004.01.008)

114. Huber L. 2020 Layer fMRI Blog. See: https://
layerfmri.com/.

115. Gopinath K, Krishnamurthy V, Sathian K. 2018
Accounting for non‐Gaussian sources of spatial
correlation in parametric functional magnetic
resonance imaging paradigms I: Revisiting
clusterbased inferences. Brain Connect 8, 1–9.
(doi:10.1089/brain.2017.0521)

116. Bodurka J, Ye F, Petridou N, Murphy K, Bandettini
PA. 2007 Mapping the MRI voxel volume in which
thermal noise matches physiological noise—
implications for fMRI. NeuroImage 34, 542–549.
(doi:10.1016/j.neuroimage.2006.09.039)

117. Krüger G, Glover GH. 2001 Physiological noise in
oxygenation-sensitive magnetic resonance imaging.
Magn. Reson. Med. 46, 631–637. (doi:10.1002/
mrm.1240)

118. Kemper VG, De Martino F, Vu AT, Poser BA, Feinberg
DA, Goebel R, Yacoub E. 2015 Sub-millimeter T2
weighted fMRI at 7 T: comparison of 3D-GRASE and
2D SE-EPI. Front. Neurosci. 9, 163. (doi:10.3389/
fnins.2015.00163)
 o
c.B
376:20200040

https://layerfmri.com/2018/03/17/partial-fourier-imaging-at-high-resolutions/
https://layerfmri.com/2018/03/17/partial-fourier-imaging-at-high-resolutions/
http://dx.doi.org/10.1002/mrm.10145
http://dx.doi.org/10.1002/mrm.10145
http://dx.doi.org/10.1093/cercor/7.2.181
http://dx.doi.org/10.1002/mrm.20712
http://dx.doi.org/10.1016/j.neuroimage.2017.08.077
http://dx.doi.org/10.1016/j.neuroimage.2017.08.077
http://dx.doi.org/10.1016/j.neuroimage.2009.09.059
http://dx.doi.org/10.1016/j.neuroimage.2009.09.059
http://dx.doi.org/10.1016/j.mri.2004.01.008
https://layerfmri.com/
https://layerfmri.com/
http://dx.doi.org/10.1089/brain.2017.0521
http://dx.doi.org/10.1016/j.neuroimage.2006.09.039
http://dx.doi.org/10.1002/mrm.1240
http://dx.doi.org/10.1002/mrm.1240
http://dx.doi.org/10.3389/fnins.2015.00163
http://dx.doi.org/10.3389/fnins.2015.00163

	Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging
	Introduction
	Achievements and limitations of sub-millimetre resolution
	Separation of neural subpopulations by columnar organization
	Separation of neural subpopulations by laminar organization
	Information representation without explicit separation of neural subpopulations
	Challenges for accurate localization of mesoscopic functional magnetic resonance imaging signal

	Optimizing spatial specificity in ultra-high field functional magnetic resonance imaging
	Two-dimensional spin-echo echo-planar imaging
	Three-dimensional GRASE
	Vascular space occupancy
	Gradient echo is hard to leave behind
	Addressing the ‘large vein’ problem in T2*-weighted acquisitions

	Acquisition considerations
	Characterizing blurring
	Closing remarks
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	References


