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Abstract: The recent discovery of 2D magnets has induced various intriguing phenomena due to
the modulated spin polarization by other degrees of freedoms such as phonons, interlayer stacking,
and doping. The mechanism of the modulated spin-polarization, however, is not clear. In this work,
we demonstrate theoretically and computationally that interlayer magnetic coupling of the CrI3

bilayer can be well controlled by intercalation and carrier doping. Interlayer atomic intercalation
and carrier doping have been proven to induce an antiferromagnetic (AFM) to ferromagnetic (FM)
phase transition in the spin-polarization of the CrI3 bilayer. Our results revealed that the AFM to FM
transition induced by atom intercalation was a result of enhanced superexchange interaction between
Cr atoms of neighboring layers. FM coupling induced by O intercalation mainly originates from the
improved superexchange interaction mediated by Cr 3d-O 2p coupling. FM coupling induced by
Li intercalation was found to be much stronger than that by O intercalation, which was attributed
to the much stronger superexchange by electron doping than by hole doping. This comprehensive
spin exchange mechanism was further confirmed by our results of the carrier doping effect on the
interlayer magnetic coupling. Our work provides a deep understanding of the underlying spin
exchange mechanism in 2D magnetic materials.

Keywords: density functional theory; atomic intercalation; spin-polarization; superexchange

1. Introduction

The discovery of magnetic ordering in two-dimensional (2D) semiconductors has led
to increased interest in both fundamental physics and potential applications [1–4]. Among
these 2D magnetic materials, CrI3 is the most intensively studied due to its intrinsic in-
tralayer ferromagnetic (FM) coupling and interlayer antiferromagnetic (AFM) coupling [5].
The rather weak magnetic coupling in most 2D magnets has become a significant obstacle
for applications in spintronic devices. Hence, substantial research efforts have been made to
enhance the magnetic coupling in 2D magnetic materials. Doping [6], defect engineering [7],
and dimensionality reduction [8] are promising strategies to enhance the magnetic coupling
by introducing highly localized orbitals. Some other 2D materials with intrinsic FM order-
ing such as Cr2Ge2Te6 [9] and CrBr3 [10] have been developed experimentally or predicted
theoretically. This research has provided exciting new opportunities for applications of 2D
magnetic materials in spintronics.

As one of the first discovered 2D FM materials, CrI3 has attracted much attention [5].
The ferromagnetism of single-layer CrI3 has been widely studied. However, its Curie
temperature TC is much lower than room temperature [5]. A pivotal issue is tailoring
its magnetism through practical methods such as strains [11–14], carrier doping [15,16],
defect engineering [17–21], applying external fields [22–24], and surface adsorption [25–30].
Specifically, Zheng et al. applied strains to single-layer CrI3 and found a phase transition
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from FM to antiferromagnetic (AFM). They also found that tensile strain can tune its easy
magnetization axis to the in-plane direction from the original out-of-plane direction [31].
Lithium (Li), as a typical donor defect, has been widely used to engineer the electronic
properties of 2D materials [32–35]. It also has been proven that the adsorption of Li atoms
can further enhance FM spin-polarization of monolayer CrI3 and further increase the Curie
temperature [29]. However, the mechanism of manipulating magnetism in 2D CrI3 is has
not been well revealed.

Theoretical understanding of tunable magnetism in 2D magnets is of great importance
for their device applications. Previous work revealed that the intralayer FM and inter-
layer AFM order in the CrI3 bilayer are governed by direct-exchange and superexchange
interactions, respectively [36]. A further work demonstrated that the interlayer FM order
was favored by the eg–t2g interactions and AFM order was favored by the eg–eg and t2g–t2g
interactions [37]. X. Chen et al. also attributed the magnetic coupling in 2D CrSiTe3 to a
combined effect of AFM direct-exchange interaction and FM superexchange interaction [38]
while it is generally accepted that direct-exchange interaction usually occurs in metallic
magnets. It can be concluded from previous works that the eg–eg and t2g–t2g exchange
interactions are responsible for the AFM state and the eg–t2g hopping channels result in the
FM state. While a general model is lacking, the type of intralayer magnetic coupling in
the CrI3 bilayer is still under debate. Furthermore, these works also proved that interlayer
magnetic coupling in these 2D magnets showed sensitive modulation by strains, carrier
doping, and stacking form. How the magnetic coupling is tuned by these strategies is not
well understood yet.

In this context, we performed first-principles calculations on layered CrI3 to explore the
intralayer and interlayer magnetic coupling. It is proposed that the intralayer FM coupling
in CrI3 mainly originates from the eg–t2g superexchange interactions. The competition
between eg–eg, t2g–t2g interactions, and eg–t2g interactions gives rise to the stacking-tunable
interlayer magnetic order in the CrI3 bilayer. We also found that intercalation of Li or O
atoms and carrier injection are effective strategies to manipulate the interlayer magnetic
coupling. A magnetic phase transition from AFM to FM can be triggered by atomic
intercalations. Interestingly, the Li-intercalated CrI3 bilayer showed a more stable FM order
than O-intercalated, despite the stronger localization of O 2p orbitals than Li 2s orbital. This
abnormal behavior was attributed to a superexchange mechanism. The Curie temperature
Tc was also higher than the unintercalated. Furthermore, it was found that the interlayer
FM coupling and the magnetic anisotropy energy (MAE) could be effectively tuned by
charge doping.

2. Computational Methods

Density functional theory (DFT) calculations were carried out using the Vienna ab
initio simulation package (VASP5.4) [39,40] code with the projector augmented-wave (PAW)
method [41]. Exchange–correlation interactions are described by the generalized-gradient
approximation (GGA) augmented by Hubbard-U corrections (GGA+U method) in the
formalism of the Perdew–Burke–Ernzerhof (PBE) functional [42–44]. The calculated on-site
Coulomb repulsion and the Hund interaction for Cr 3d electrons in the CrI3 bilayer were set
as U = 2.9 eV and J = 0.7 eV, respectively [37]. An energy cutoff of 450 eV was used for the
planewave basis. The convergence threshold and residual force during the self-consistent
solution of the Kohn–Sham equations were set as 10−5 eV and 0.02 eV/Å, respectively.
For the self-consistent calculations, 9 × 9 × 1 and 5 × 5 × 1 Monkhorst–Pack k-point
grids were adopted for the CrI3 bilayer unitcell and a 2 × 2 × 1 supercell. A vacuum
layer larger than 15 Å was adopted to eliminate the interaction effects between periodic
images. The Monte Carlo (MC) simulation with the Wolff algorithm based on the classical
Heisenberg model is used to describe the thermal dynamics of magnetism in equilibrium
states [45,46]. Specific heat capacity is calculated by the dissipation-fluctuation theorem.
The real-space renormalization group with the majority rule is used to analyze the phase
transition and locate the Curie temperature. All of the Monte Carlo algorithms described
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here were implemented in open source code MCSOLVER [47]. Spin-orbital coupling (SOC)
was considered in the calculations of MAE.

3. Results and Discussion

The crystal structure of the CrI3 bilayer is given in Figure 1a. The optimized lattice
constants are a = b = 6.952 Å, α = β = 90◦, γ = 120◦. Each Cr atom is coordinated to six I
atoms, forming a [CrI6] octahedron. As a result of crystal field splitting, Cr 3d orbitals split
into two subsets, t2g =

{
dxy, dxz, dyz

}
and eg =

{
dx2−y2 , dz2

}
. In Figure 1a,b, the electronic

structures of the CrI3 bilayer are calculated. It was found that the CrI3 bilayer showed
intralayer FM and interlayer AFM coupling, which is consistent with previous works [48].
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(HT)-phase of the CrI3 bilayer, respectively. (b) Schematic diagram of the antiferromagnetic (AFM)
superexchange coupling mechanism.

In Figure 1b, we proposed a superexchange interaction mechanism to interpret the ori-
gin of interlayer AFM coupling in the CrI3 bilayer. To investigate the microscopic magnetic
coupling mechanism of the CrI3 bilayer, the intralayer magnetic coupling (FM coupling)
and the interlayer magnetic coupling (eg–eg AFM or t2g–eg FM coupling) were studied,
respectively. Monolayer CrI3 FM order is due to the near-90◦ Cr–I–Cr superexchange [15].
Since the distance of the two nearest Cr atoms in the same layer was only about 4 Å, it led
to the FM instead of AFM order in the monolayer CrI3. On the other hand, the interlayer
separation distance was around 7 Å, almost double the intralayer Cr–Cr separation distance.
We propose that the interlayer AFM coupling is mainly attributed to a superexchange inter-
action. In the case of a Cr–I–Cr angle larger than 145 degree, superexchange interaction
occurs through virtual electrons hopping between the Cr 3d orbitals mediated by the p
orbitals of two I atoms. Thus, it is expected that both the positions of ions and the layer
configuration play crucial roles in determining the resultant interlayer magnetic coupling.

Furthermore, virtual electron hopping is a spin-conserved process. As such, any
virtual hopping of Cr 3d electrons with the same spin is forbidden in the ferromagnetic state
due to the Pauli exclusion principle. Therefore, superexchange pathways that involve the
hybridization of two Cr eg orbitals must give rise to interlayer AFM exchange (see Figure 1b).
The hopping between the interlayer nearest neighbor Cr atoms is realized through eg–Ip–
t2g and the next-nearest-neighbor is realized through eg–Ip–eg [36]. Analyzing the CrI3
bilayer superexchange pathways of the nearest and next-nearest neighbor interlayer Cr
atom pairs in the CrI3 bilayer, the nearest-neighbor interlayer coupling involves t2g and
eg orbitals, while next-nearest-neighbor coupling involves only eg orbitals. Therefore, the
resulting ground state in the CrI3 bilayer is layered anti-ferromagnetism. The electronic
band structures and projected density of states (PDOS) of the CrI3 bilayer are given in
Figure 1a. The band structure of majority spin is the same as that of minority spin, and the
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band gap is 1.05 eV. This means that the CrI3 bilayer with high-temperature (HT) phase
is not magnetic. It is also apparent that the top of the valence band is formed mostly by
spin unpolarized p orbitals of the I atoms and the conduction band is formed by the spin
unpolarized t2g orbitals of Cr.

In order to manipulate interlayer magnetic coupling of the HT-phase CrI3 from AFM to
FM, the intercalation of Li and O atoms was applied, as displayed in Figure 2. In Figure 2b,
it can be seen that Li is located at directly below I of the upper layer and in the middle
between the CrI3 bilayer. Unlike the Li intercalation, O deviated below I of the upper layer
and was located closer to the underlying CrI3, as shown in Figure 2d.
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The band structures and PDOS near the Fermi level of Li and O intercalated structures
are drawn in Figure 2. It was found that both Li and O intercalation in the CrI3 bilayer
exhibited spin-polarized states, and the conduction band minimum (CBM) and the valence
band maximum (VBM) were both donated from the spin-up state. For the Li-intercalated
CrI3, the Fermi level was pushed up and across the spin-polarized conduction bands. As a
result, the spin-up channel was metallic, while spin-down sub-band remained a sizable
band gap of 2.69 eV, which led to the half-metallic character. Unlike the Li intercalated
structure, the O intercalated CrI3 bilayer maintained a semiconductor, while the band gap
was reduced to 0.79 eV. The PDOS of both Li and O intercalated CrI3 illustrates that the VBM
is mostly contributed by p orbitals of I and the CBM is mostly contributed by d orbitals of
Cr. According to the spin charge density in Figure 2b,d, the magnetic moment is provided
by Cr atoms. The average magnetic moments of Cr in the Li and O intercalated CrI3 bilayer
were 3.43 and 3.38 µB, respectively. In addition, the maximum magnetic moments were
3.58 and 3.45 µB, respectively. In short, these results revealed that intercalation had a
remarkable influence on the electronic and magnetic characteristics of the CrI3 bilayer.

To explore the mechanism for this spin-polarization transition, we compared the
crystal structure parameters (lattice constant, interlayer distance, bond length, and bond
angle) among the Li intercalated, O intercalated, and pristine CrI3 bilayer. As shown in
Figure 2b,d, the interlayer distance of Li intercalated decreased from 3.575 Å to 3.388 Å.
The Cr–I bond length (2.921 and 2.916 Å) was obviously longer than that of the pristine one
(2.764 Å) accordingly. The interlayer distance of O-intercalation was enlarged to 3.867 Å,
and the Cr–I bond length was slightly elongated to 2.812 and 2.801 Å. It is expected that
these changes in local structures will influence the electronic structure.

In order to explore the preferred magnetic interaction, we defined the exchange energy
per formula (f.u.) as

∆E = (EAFM − EFM)/n (1)

where EAFM and EFM are the energies of the CrI3 bilayer with AFM and FM spin config-
urations, respectively; and n is the number of CrI3 formulas in the supercell. A positive
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(negative) value of ∆E represents FM (AFM) coupling between the two CrI3 layers. The

interlayer exchange coupling coefficient J = ∆E/2
∣∣∣∣→S ∣∣∣∣2. The oxidation state of Cr in

these compounds is expected to be +3. Therefore, from Hund’s rules, we expect that Cr3+

has S = 3/2. The calculated ∆E of the pristine HT-phase CrI3 bilayer was as small as
−0.17 meV/f.u., which means a weak AFM coupling in the CrI3 bilayer and agrees well
with the previous work [22]. After the intercalation of Li and O, ∆E was calculated as 10.99
and 0.81 meV/f.u., respectively. These results indicate that the magnetic coupling of CrI3
bilayer is transformed from AFM to FM. Moreover, ∆E of the Li-intercalated CrI3 bilayer is
much larger than of the O-intercalated or the pristine CrI3 bilayer, which means a stronger
and more stable FM coupling in the Li-intercalated CrI3 bilayer.

Furthermore, based on the Bader charge analysis, the charge distribution in both
the Li-intercalation and O-intercalation systems was remarkably different to the pristine
one, as listed in Table 1. Obviously, Li transfers 0.867 e to the surrounding I atoms in Li-
intercalation, and the O atom obtains 0.871 e from the surrounding I atom in O-intercalation,
which brings about an electron/hole doping effect. These results indicate that charge
transfer in both Li-intercalation and O-intercalation can significantly affect their original
electronic properties.

Table 1. Charge transfer based on the Bader charge calculation in the pristine high-temperature
(HT) phase of the CrI3 bilayer, Li intercalated, and O intercalated HT phase in 2 × 2 supercell,
respectively. A negative value indicates charge accumulation on the respective atom, while a positive
value indicates charge depletion.

Pristine CrI3 Bilayer Li Intercalation O Intercalation

Atom Cr I Cr I Li Cr I O

Charge transfer 1.067 −0.356 1.043 −0.478 0.867 1.035 0.537 −0.871

To study the microscopic magnetic coupling mechanism of Li/O intercalated CrI3
bilayer. We calculated the differential charge density (∆ρ) of both the Li-intercalation and
O-intercalation, as shown in Figure 3a,c, respectively, where ∆ρ is obtained as follows:

∆ρ = ρLi/O-CrI3 − ρCrI3 − ρLi/O, (2)

where ρLi/O-CrI3 , ρCrI3 , and ρLi/O represent the charge density distributions of the Li/O-
intercalated, non-intercalated CrI3 bilayer, and an isolated Li/O atom, respectively. From
Figure 3a,c, it can be seen that the Li atom donates electrons in its intercalated configuration,
while the O atom obtains electrons from the nearest I atom. The results are consistent with
the Bader charge analysis. For Li-intercalation, the charge density transfer is localized on
the interlayer next-nearest-neighbor Cr atoms, which enhances the interlayer t2g–eg FM
coupling. For O-intercalation, the charge density transfer is localized near the O atom,
which enhances the intralayer FM coupling.

Figure 3b,d illustrate the band-decomposed partial charge densities of Li/O-intercalation,
where the isosurface indicates a distribution of electrons at the VBM and a hybridization
between the intercalated atom and neighboring atoms. For Li-intercalation, the VBM
originates mainly from interlayer Cr–I–Li–I-Cr exchange interactions. The hopping between
the interlayer next-nearest-neighbor Cr atoms is realized through eg–Ip σ, Ip–Ip σ, and Ip–t2g
σ bonding. For O-intercalation, the charge transfers only influenced the intralayer FM
coupling, resulting in the hopping between the intralayer Cr atoms through the eg–Ip–t2g
orbitals. Hence, there are two interaction mechanisms that occur in Li/O intercalation:
intralayer magnetic coupling and interlayer magnetic coupling. For the Li-intercalation
configuration, the interlayer exchange interaction was enhanced due to the enhancement
of t2g–eg FM coupling between the next-nearest-neighbor Cr atoms. As a result, the CrI3
bilayer switched from semiconducting to half-metallicity by Li intercalation. For the O-
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intercalation configuration, although the intralayer magnetic coupling was enhanced, the
interlayer FM coupling was weaker than that of the Li-intercalation configuration.
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To probe the Curie temperature of the CrI3 bilayer and the intercalated configuration,
we performed MC simulations using a 16 × 16 × 1 matrix, which is based on the classical
spin Hamiltonian:

H = Jintra∑
ij

→
S i ·

→
S j + Jinter∑

ij

→
S i ·

→
S j, (3)

where Jintra, Jinter are the intralayer and interlayer exchange interactions between Cr atoms,
respectively. Using the DFT-derived exchange interaction, the Curie temperature TC was
predicted by the MCSOLVER code. For each temperature point, the MC simulations
involved 8 × 104 sweeps to sufficiently thermalize the system into equilibrium, and the
next 6.4 × 105 sweeps per site to acquire the statistical results. The curve of TC is shown
in Figure 4. The Neel temperature (TN) of the pristine HT phase of the CrI3 bilayer was
about 63.39 K, which was close to 61 K of the bulk CrI3 [5]. After intercalated Li or O
atoms, the Tc reached up to 87.288 K or 97.143 K. It also proved that the intercalation of
atoms can further enhance the spin-polarization of the CrI3 bilayer and further increase the
Curie temperature.

In addition, Figure 5a exhibits the energy difference of AFM and FM (EAFM − EFM)
for the CrI3 bilayer as a function of the carrier doping. It illustrates that the magnetic
configuration switched from the interlayer AFM (EAFM − EFM < 0) to FM (EAFM − EFM> 0)
configuration when slightly increasing the carrier doping. Compared with the hole doping,
the electron doping significantly changed the energy difference (EAFM − EFM). These results
agreed well with that of the Li-intercalation and O-intercalation configurations. The MAE
of the CrI3 bilayer with different carrier doping is shown in Figure 5b. MAE = (Ex − Ez)/n,
where Ex and Ez are the energies of CrI3 bilayer in in-plane [100] and out-of-plane [001]
magnetization direction, and n is the number of Cr atoms. The positive and negative values
of MAE denote that the easy magnetization axis is perpendicular and parallel to the plane
of the CrI3 bilayer, respectively. Clearly, the MAE can be effectively tuned by the charge
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doping. The system has a magnetic phase transition from the out-of-plane to the in-plane as
y-axis after exceeding certain electron doping (∼0.2 per unit cell) and hole doping (~0.4 per
unit cell). It should be noted that there was almost no difference in energy with respect to
the different in-plane directions from our DFT calculations.
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4. Conclusions

In summary, we demonstrated computationally that the interlayer magnetic coupling
of the CrI3 bilayer could be well controlled by intercalation and carrier doping. Interlayer
atomic intercalation and carrier doping were proven to induce an antiferromagnetic (AFM)
to ferromagnetic (FM) phase transition for the spin-polarization in the CrI3 bilayer. Our
results revealed that the AFM to FM transition induced by atom intercalation is a result
of enhanced superexchange interaction between Cr atoms of neighboring layers. FM
coupling induced by O intercalation mainly originated from the improved superexchange
interaction mediated by Cr 3d–O 2p coupling. FM coupling induced by Li intercalation was
found to be much stronger than that by O intercalation, which was attributed to the much
stronger superexchange by electron doping than by hole doping. The stronger interlayer
ferromagnetic coupling generally means higher Curie temperature. This comprehensive
spin exchange mechanism was further confirmed by our results of the carrier doping effect
on the interlayer magnetic coupling. Our work provides a deep understanding of the
underlying spin exchange mechanism in 2D magnetic materials.
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