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Abstract

Associative classification mining (ACM) can be used to provide predictive models with high accuracy as well as
interpretability. However, traditional ACM ignores the difference of significances among the features used for mining.
Although weighted associative classification mining (WACM) addresses this issue by assigning different weights to features,
most implementations can only be utilized when pre-assigned weights are available. In this paper, we propose a link-based
approach to automatically derive weight information from a dataset using link-based models which treat the dataset as a
bipartite model. By combining this link-based feature weighting method with a traditional ACM method–classification
based on associations (CBA), a Link-based Associative Classifier (LAC) is developed. We then demonstrate the application of
LAC to biomedical datasets for association discovery between chemical compounds and bioactivities or diseases. The results
indicate that the novel link-based weighting method is comparable to support vector machine (SVM) and RELIEF method,
and is capable of capturing significant features. Additionally, LAC is shown to produce models with high accuracies and
discover interesting associations which may otherwise remain unrevealed by traditional ACM.
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Introduction

Chemical and biological data contain information about various

characteristics of compounds, genes, proteins, pathways and

diseases. Thus a wide spectrum of data mining methods is used

to identify relationships in these large and multidimensional

datasets and to generate predictive models with high accuracy and

interpretability. Recently, associative classification mining (ACM) has

been widely used for this purpose [1–4]. ACM is a data mining

framework utilizing association rule mining (ARM) technique to

construct classification systems, also known as associative classifi-

ers. An associative classifier consists of a set of classification

association rules (CARs) [5] which have the form of XRY whose

right-hand-side Y is restricted to the classification class attribute.

XRY can be simply interpreted as if X then Y. ARM is

introduced by Agrawal et al [6] to discover CARs which satisfy the

user specified constraints denoted respectively by minimum

support (minsup) and minimum confidence (minconf) threshold.

Given a dataset with each row representing a compound, each

column (called as item, feature or attribute) is a test result of this

compound on a tumor cell line and all compounds are labeled as

active or inactive class, a possible classification association rule can

be {MCF7 inactive, HL60 (TB) inactive R inactive} with

support = 0.6 and confidence = 0.8. This particular rule states that

when a compound is inactive to both MCF7 cell line and HL60

(TB) cell line, it tends to be inactive. The support, which is the

probability of a compound being inactive to both MCF7 and

HL60 (TB) and being classified as inactive together, is 0.6; the

confidence, which is the probability of a compound to be inactive

given inactive to both MCF7 and HL60 (TB), is 0.8. In ACM, the

relationship between attributes and class is based on the analysis of

their co-occurrences within the database so it can reveal

interesting correlations or associations among them. For this

reason, it has been applied to the biomedical domain especially to

address gene expression relations [7–11], protein-protein interac-

tions [12], protein-DNA interactions [13], and genotype and

phenotype mapping [14] inter alia.

Traditional ACM does not consider feature weight, and

therefore all features are treated identically, namely, with equal

weight. However, in reality, the importance of feature/item is

different. For instance, {beef R beer} with support = 0.01 and

confidence = 0.8 may be more important than {chips R beer}

with support = 0.03 and confidence = 0.85 even though the former

holds a lower support and confidence. Items/features in the first

rule have more profit per unit sale so they are more valuable.

Wang et al [15–17] proposed a framework called weighted

association rule mining (WARM) to address the importance of

individual attributes. The main idea is that a numerical attribute

can be assigned to every attribute to represent its significance. For

example, {Hypertension = yes, age.50R Heart_Disease} with

{Hypertension = yes, 0.8}, {age.50, 0.3} is a rule mined by

WARM. The importance of hypertension and age .50 to heart

disease is different and denoted by value 0.8 and 0.3 respectively.

The major difference between ARM and WARM is how the

support is computed. Several frameworks are developed to

incorporate weight information for support calculation [15–22].

Studies have been carried out on WARM by using pre-assigned

weights. Nonetheless, most datasets do not contain those pre-

assigned weight information.
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In machine learning, feature selection and feature weighting are

broadly used to deal with the significance of features and derive

weight information automatically from a dataset itself. Feature

selection is a technique of selecting a subset of relevant features by

removing low significant features; feature weighting is a technique

of approximating the optimal degree of influence of individual

features. Feature weighting preserves all features by assigning

smaller weight to relatively insignificant features and has the

advantage of taking into account of all features as well as not

requiring searching an appropriate cut-threshold [23]. In some

circumstances, it might be the only option when eliminating

features with a low contribution to classification is inappropriate.

Especially, to understand the overall relationship between genes

and a disease, a small subset of genes although having good

prediction ability may not have sufficient discriminating power

[24]. Like feature selection, feature weighting approaches fall into

two categories: 1) filter methods which are performed in a pre-

processing step before modeling; 2) wrapper methods which are

iterative and generally use the same learning algorithm as

modeling. In wrapper methods, the evaluation result of relevancy

is used for feature weighting. Usually, wrapper methods perform

better than filter methods while filter methods are faster and

cheaper.

Sun et al. [25] proposed a link-based filter feature weighting

approach. The weights are derived from the dataset itself by

extending Kleinberg’s HITS (Hyper Induced Topic Selection)

model [26] and algorithm on bipartite graphs. HITS and

PageRank are two major link-based ranking algorithms. PageRank

is developed by Brin and Page [27] and has been commercially

successfully used in the search engine Google. HITS ranks

webpages by analyzing the in-links and out-links. Webpages

pointed to by many other pages are defined as ‘‘authority’’ while

webpages linked to many other pages are called ‘‘hub’’. HITS

emphasizes the notion of ‘‘mutual reinforcement’’ between the

‘‘authority’’ and ‘‘hub’’. Its intuitive interpretation is that a good

‘‘authority’’ is pointed to by a lot of good ‘‘hubs’’ and a good

‘‘hub’’ points to many good ‘‘authorities’’. PageRank uses a very

similar idea that a ‘‘good’’ webpage should be linked or link to

other ‘‘good’’ webpages. Unlike the ‘‘mutual reinforcement’’

approach, it focuses on hyperlink weight normalization and web

surfing based on random walk models. Both approaches have pros

and cons. The computation of PageRank is stable and its behavior

is well-defined due to the probabilistic interpretation. Further-

more, PageRank can be used on large page collections because

even though the larger communities will affect the final ranking,

they will not overwhelm the small ones. In contrast, HITS is not

stable and cannot be applied to large page collections since only

the largest web community will influence the final ranking.

However, it can capture the relationships among the webpages

with more details [28]. Hence, an algorithm capable of integrating

both HITS and PageRank may improve Sun’s weighting method.

The general PageRank cannot be applied to bipartite graphs as

it produces different rankings for webpages with the same in-links

[29], as a result, a better ranking scheme is needed for ranking in

bipartite graphs while integrating PageRank and HITS [30]. The

SALAS (stochastic approach for link structure analysis) [31–33]

combines the random surf model of PageRank with hub/authority

principle of HITS. It generates a bipartite undirected graph H
based on the web graph G. One subset of H contains all the nodes

with positive in-degree (the potential ‘‘authorities’’) and the other

subset consists of all the nodes with positive out-degree (the

potential ‘‘hubs’’). A travel is completed by a two-step random

walk. For example, from the ‘‘hub’’ to the ‘‘authority’’ and from

the ‘‘authority’’ back to the ‘‘hub’’. As in the PageRank, each

individual walk is a Markov process with a well-defined transition

probability matrix [31]. Nevertheless, besides SALAS does not

really implement the ‘‘mutual reinforcement’’ of HITS because

the scores of both authority and hub are not related by the hub to

authority and authority to hub reinforcement operations, its score

propagation differs from HITS (a similarity-mediated score

propagation). Moreover, its random walk model does not directly

simulate the behavior of the surfer in PageRank either. For

SALAS, a surfer can jump from webpage pi to pj even though there

is no hyperlink between them, and there is no link-interrupt jumps.

Based on a similar approach as SALAS, Ding et al proposed a

unified framework integrating HITS and PageRank [34].

Figure 1 indicates that a database can be represented by a

bipartite graph equally [25]. In the graph, left is the table layout

representation and can be represented by the bipartite graph on

the right. Compounds and features linked to each other can be

viewed as webpages. As a consequence, the link-based algorithms

used to rank the webpage such as HITS or PageRank can be

utilized to rank compounds or features. The algorithms say that if

a webpage has many important links to it, the links from it to other

Figure 1. The bipartite model of a dataset. (The bipartite model is also a heterogeneous system. Blue represents active compounds and red for
inactive compounds with both contributing to the green node-feature/attribute.).
doi:10.1371/journal.pone.0051018.g001
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webpages become important too. For our case, this means a highly

weighted compound should contain many highly weighted

features and a highly weighted feature should exist in many

highly weighted compounds. Accordingly, the ranking score can

be used for feature weighting. Although Ding’s unified framework

can be used to derive the ranking score automatically, it cannot

distinguish the contributions of different types of connections. For

chemical dataset mining, each chemical feature may connect to

both active and inactive compounds; for biological dataset mining,

each gene may connect to a disease either as suppressor or

activator. Chemical features existing frequently in active com-

pounds or genes major associated with suppressors are more

interested in. In Figure 1, when we consider the contribution of

compounds to the weight of a node/attribute 78, we want to

distinguish the contribution of compound 5469540 from the

contribution of compound 840827 and 5911714. Ding’s unified

framework treats the contribution of the nodes equally as a

homogenous system [34]; Chen et al developed a framework

calculating the weight for either homogenous or heterogeneous

systems [35]. In Chen’s model, connections can have different

impacts on a node.

In this paper, we describe a link-based unified weighting

framework which combines the mutual reinforcement of HITS

with hyperlink weighting normalization of PageRank based on

Ding and Chen’s frameworks, resulting in highly efficient link-

based weighted associative classifier mining from biomedical

datasets without pre-assigned weight information.

Our main contributions are: 1) development of a novel link-

based weighting scheme for mining biomedical datasets; 2)

implementation of a novel link-based associative classifier by

combining the feature weighting method, weighted association

rule mining (WARM) and the CBA algorithm [5]; 3) application of

this method to two important biomedical datasets.

In the following sections, the dataset, link-based feature

weighting, WARM and algorithm of LAC will be discussed,

followed by the application of LAC to two datasets. In the end, we

present our conclusions and future work.

Materials and Methods

1. Data Set
LAC is applied to two datasets: a. Ames mutagenicity dataset

[36], b. NCI-60 tumor cell line dataset [37]. In Ames dataset,

there are 6,512 compounds provided in SMILES format and is

benchmarked by SVM, Random Forests, k-Nearest Neighbors,

and Gaussian Processes. The authors used 5-fold cross validation

to evaluate the generated models. The area under this ROC-

Curve (AUC) is utilized to assess the performance which ranges

from 0.79 to 0.86. The GI50 data of NCI-60, which is the

concentration of the anti-cancer drug that inhibits the growth of

cancer cells by 50%, is used and processed as following. First,

among the 60 tumor cell lines, IGR-OV1, MDA-MB-468 and

MDA-N are removed due to too many missing values. Then,

compounds having missing values are also discarded. In the final

dataset, 5,937 compounds with 57 bioassay results in total are

included. For the Ames dataset, if a compound is positive, it is

carcinogenic; for the NCI-60, the compound is ‘‘active’’ only if its

GI 50 is greater than 5.

2. MDL Public Keys
MDL public key set also called MACCS key set is a 166-bit

string with each bit encoding a predefined chemical structure

feature. MDL public keys are extensively used in biomedical

research due to their relatively high performance and the one-to-

one map between the structural feature and fingerprint [37,38].

The fingerprint is computed by using the CDK [39] software

package and reformatted for LAC.

3. Bio Fingerprint
Bioassay readouts have been used as features (‘‘biospectra’’ or

‘‘bio fingerprint’’) for data mining in several studies and produced

high quality models [40,41]. These bioactivity profiles link the

potential targets with the chemical compounds and provide

insights into the relationships among diseases, compounds and

bioactivities. In this study, results of related bioassay analyses are

used as features for the classification of chemical compounds. Each

GI50 value is transformed into ‘‘active’’ (GI50 is greater or equal

than 5) or ‘‘inactive’’ (GI50 is less than 5). The T-47D is used as a

label class and the results from other cell lines are used as features.

For each of the 6,512 compounds in Ames data, we attempt to

predict whether it is carcinogenic or not based on the MDL public

keys. For the 5,937 compounds in NCI 60, we first use Bio

fingerprint to predict whether they are agonist or antagonist to T-

47D cell line. Then, for those 3,199 compounds in the NCI-60

Table 1. A compound dataset encoded by MDL public keys.

CID MDL Finger print

C1 {…81,82,83,84…}

C2 {…82,84…}

C3 {…81,84…}

C4 {…81,82,84,85…}

C5 {…81,82,83,84,85…}

C6 {…82,83,85…}

doi:10.1371/journal.pone.0051018.t001

Table 2. MDL public keys and their weight.

Feature Weight

81 0.8

82 1

83 0.8

84 1.6

85 1

doi:10.1371/journal.pone.0051018.t002

Table 3. Supports and types of itemsets (frequent or not).

Itemset Classical Weighted Adjusted Weighted

Support Frequent Support Frequent Support Frequent

81 0.67 Y 0.53 Y 0.75 Y

83 0.50 Y 0.4 Y 0.66 Y

81 83 0.33 Y 0.27 N 0.44 Y

83 84 0.33 Y 0.27 N 0.44 Y

81 84 0.67 Y 0.8 Y 0.75 Y

81 83 84 0.33 Y 0.35 Y 0.44 Y

doi:10.1371/journal.pone.0051018.t003
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dataset having 2D structures available in the downloaded structure

file, a hybrid fingerprint is generated by combing MDL public keys

and Bio fingerprint to build models.

Let L = (Lij) be the adjacency matrix of the web graph G =

(V,E), where V is the set of webpages and E is the set of links

between them. Lij = 1 if page i links to page j and Lij = 0 otherwise.

LT will be the transpose of L. If the graph is directed, the in-degree

matrix Din and out-degree matrix Dout are also defined. Given

vectors din = (b1, b2, …, bn)T where bj is the in-degrees of page

j(
P

k

Ljk) and dout = (o1,o2, …, on)T where oj is the out-degrees of

page j (
P

k

Lkj ). Din is a diagonal matrix denoted as Din = diag(din)

and Dout = diag(dout).

4. HITS
In HITS, vectors x = (x1,x2,…,xn)T and y = (y1,y2,…ym)T

represent the scores of authority and hub respectively. HITS

defines recursive equations as following:

x(k)~LT y(k{1) ð1Þ

y(k)~Lx(k{1) ð2Þ

Where k§1 and y(0) = e, e is a vector of all 1s and x(k) denotes k-th

iteration. Equation 1 tells that authoritative pages are those

linked by good hub pages, and equation 2 means good hubs are

pages that link to authoritative pages. It can be rewritten as:

x(k)~LT Lx(k{1) ð3Þ

y(k)~LLT y(k{1)

5. PageRank
In PageRank, given x = (x1,x2,…,xn)T, xi is the PageRank of

page i; the recursive PageRank equation is defined in matrix

notation as:

x(k)~PT x(k{1) ð5Þ

where P = (Pij) is a stochastic matrix (the sum of every column

equals to 1) with Pij =
1

oi

. PT can be expressed as:

PT~LT Dout
{1 ð6Þ

If considering the link-tracking jump and link-interrupt jump, the

full transition probability can be written as:

PT~aLT Dout
{1z(1{a)

1

n
eeT ð7Þ

where a is the damp factor from 0 to 1.

Figure 2. Link-based weighting.
doi:10.1371/journal.pone.0051018.g002

Figure 3. Weighted associative classification.
doi:10.1371/journal.pone.0051018.g003

ð4Þ
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As the way processed in SALAS, if the web graphs are

transformed into bipartite graphs, the above x will be the authority

score and the hub score y can be defined as:

y(k)~Py(k{1) ð8Þ

P~aLDin
{1z(1{a)

1

n
eeT ð9Þ

Comparing the equations between HITS and PageRank

(equation 1 & 2 versus 5 & 8), it is possible that a unified

framework can be derived to combine advantages from both

HITS and PageRank.

6. Unified Framework
If we define the LTL in equation 3 and PT in equation 5 as

operation Aop (authority) and LLT in equation 4 and P in

equation 8 as operation Hop (hub). The critical component of the

framework is to define the new Aop and Hop. Ding’s implemen-

tations of Aop and Hop [34] are used here since it generalizes the

features of HITS and PageRank and combines them together.

Chen’s model [35] divided the web pages into homogenous and

heterogeneous systems so the scores of authority and hub contain

the reinforcement of links from both systems. Different weights can

be assigned to homogenous or heterogeneous systems to adjust the

importance of their links in the final ranking. Similarly, in our

case, the nodes, such as compounds, are classified as active/

inactive or positive/negative thus the dataset is converted to a

heterogeneous system. The relatively higher weight values can be

Figure 4. Results of different weighting methods.
doi:10.1371/journal.pone.0051018.g004

Table 4. Correlation analyses of the weighting results.

Frequency SVM RELIEF LAC

Frequency Pearson Correlation 1 .776** .791** .947**

Sig. (2-tailed) .000 .000 .000

SVM Pearson Correlation .776** 1 .949** .759**

Sig. (2-tailed) .000 .000 .000

RELIEF Pearson Correlation .791** .949** 1 .712**

Sig. (2-tailed) .000 .000 .000

LAC Pearson Correlation .947** .759** .712** 1

Sig. (2-tailed) .000 .000 .000

**Correlation is significant at the 0.01 level (2-tailed).
doi:10.1371/journal.pone.0051018.t004
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assigned to the active/positive compounds to promote their

importance in the final feature weighting.

Our link-based framework can be written as follows. a
represents the ‘‘active’’ system and b is the ‘‘inactive’’ system.

x að Þ~bAopy að Þz(1{b)Aopy bð Þ ð10Þ

y að Þ~bHopx að Þ ð11Þ

Table 5. The rankings of chemical features from frequency and LAC.

Bit Frequency LAC Bit Frequency LAC Bit Frequency LAC Bit Frequency LAC

1 1 1 43* 24 19 85 69 78 126 110 101

2 1 1 44 4 6 86 68 71 127 152 152

3 3 5 45 27 30 87 63 66 128* 100 80

4 1 1 46 33 41 88 65 68 129* 94 77

5 1 1 47 44 44 89* 96 93 130 129 130

6 1 1 48* 40 39 90* 73 67 131* 118 111

7 1 1 49 85 109 91* 66 61 132* 111 91

8 12 12 50* 51 48 92 77 83 133 134 141

9 1 1 51* 32 26 93 93 96 134* 102 98

10 1 1 52 56 75 94 121 131 135 130 140

11 13 13 53* 52 50 95 88 88 136* 117 112

12 1 1 54 58 62 96 114 117 137 137 137

13 16 18 55* 35 31 97 99 99 138* 139 129

14 8 8 56 76 108 98 106 107 139* 123 115

15* 5 3 57 79 89 99* 98 94 140 147 148

16 47 53 58* 37 35 100 82 82 141 156 156

17 7 7 59 36 38 101 23 25 142 133 135

18 2 2 60* 39 34 102 119 127 143* 124 122

19 38 43 61* 41 36 103 72 79 144 128 134

20* 6 4 62 53 55 104* 80 70 145 143 145

21 15 16 63 92 114 105 141 143 146* 135 128

22 48 54 64* 34 33 106* 75 73 147* 112 92

23 14 14 65 97 106 107 81 81 148 136 138

24 95 113 66* 54 49 108* 70 58 149* 120 110

25 20 28 67* 49 46 109* 103 87 150* 126 123

26 25 27 68 59 69 110 89 90 151 122 124

27* 10 9 69 50 51 111* 91 84 152* 138 132

28 18 23 70 104 118 112* 87 72 153* 131 120

29* 19 15 71 109 121 113* 105 104 154* 140 126

30 11 11 72 90 95 114* 67 60 155* 132 119

31 9 10 73* 45 40 115* 83 64 156 148 149

32 29 29 74* 60 52 116* 86 74 157* 144 139

33 30 32 75 57 65 117* 108 103 158 146 146

34 31 20 76* 61 57 118* 71 63 159* 149 144

35 1 1 77 64 76 119 115 125 160* 145 142

36 46 47 78 42 42 120* 113 105 161 150 150

37 26 24 79 74 86 121 116 116 162 151 153

38 43 45 80 84 100 122 125 133 163 153 154

39 21 21 81 55 56 123* 107 85 164* 154 151

40 22 22 82* 62 59 124 127 136 165 155 155

41 17 17 83 101 102 125 142 147 166 1 1

42 28 37 84 78 97

*means the ranking in the frequency is higher than that in LAC otherwise bold, and the rest means the same.
doi:10.1371/journal.pone.0051018.t005
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y bð Þ~(1{b)Hopx bð Þ ð12Þ

b is a class factor ranging from 0 to 1 (In the case that Aop or Hop

involves D
{1

2
in or D

{1
2

out , b or (1-b) will be replaced by their square

roots). It has impact on the accuracy and size of classifiers along

with rules in the classifiers. Generally, in order to assign higher

weight values to active/positive compounds, b can be any value

greater than 0.5. In our study, b is set to 0.9.

Based on the comparison of implementations in [34], the

following definitions of Aop and Hop are used.

Aop : D
{1

2
in LT D

{1
2

out ð13Þ

Hop : D
{1

2
out LD

{1
2

in ð14Þ

7. Associative Classification Mining
Let F = { f1, f2, …, fn} be a set of n distinct features and C be a

list of classes { c1, c2,., cm}. D is a transaction/dataset over F and

C. Each transaction/compound ti contains a set of items f1, f2,

…fk[F and cj[ C. The set of items here is also called itemset. A

classification association rule (CAR) is an implication of the form

X [ Y or X ?Y where X ( F and Y [ C. The support of the rule

is the probability of transactions having both X and Y (X|Y )
among all the presented cases. An itemset is frequent only if its

support satisfies a minimum support h. Additionally, the confidence

of this rule is defined as the support of X and Y (X|Y )divided by

the support of X which is the conditional probability Y is true

under the circumstance of X. The process of discovering, pruning,

Table 6. The modeling results.

Model# RELIEF SVM Frequency CBA LAC Bio fingerprint MDL_Bio fingerprint

1 89.71% 89.71% 91.70% 93.39% 92.93% 100.00% 99.69%

2 89.09% 89.40% 90.63% 91.40% 91.40% 100.00% 100.00%

3 88.63% 88.63% 89.71% 90.32% 91.71% 99.33% 100.00%

4 87.86% 88.79% 88.79% 88.17% 91.71% 100.00% 100.00%

5 90.02% 90.02% 90.17% 90.48% 90.78% 100.00% 99.06%

6 86.64% 86.94% 88.02% 88.48% 90.32% 100.00% 100.00%

7 91.09% 91.40% 91.86% 90.63% 92.78% 100.00% 99.69%

8 88.63% 88.79% 88.79% 89.55% 90.63% 100.00% 100.00%

9 89.25% 89.40% 90.48% 91.86% 91.55% 100.00% 100.00%

10 89.55% 89.55% 90.94% 92.01% 91.86% 100.00% 99.06%

Average 89.05% 89.26% 90.11% 90.63% 91.57% 99.93% 99.75%

doi:10.1371/journal.pone.0051018.t006

Table 7. Top 20 rules from frequency and LAC classifier.

Number Frequency LAC

1 157,140,93 -.positive 155,140,62 -.positive

2 139,124,104 -.positive 140,62 -.positive

3 157,155,93 -.positive 132,69 -.positive

4 157,93 -.positive 140,118,69 -.positive

5 157,140,123 -.positive* 155,62 -.positive

6 163,140,93 -.positive* 157,140,69 -.positive

7 118 -.positive 157,62 -.positive

8 155,140,93 -.positive 158,140,69 -.positive

9 157,155,123 -.positive* 62 -.positive

10 157,123 -.positive 155,118,69 -.positive

11 144,124,104 -.positive 158,157,69 -.positive

12 155,140,123 -.positive* 157,118,69 -.positive

13 157,155,124 -.positive* 140,69 -.positive

14 140,101 -.positive 132,121,70 -.positive

15 161,139,104 -.positive 157,132,70 -.positive

16 157,126,124 -.positive* 132,70 -.positive

17 124,104 -.positive* 140,129,70 -.positive

18 139,126,124 -.positive* 157,129,70 -.positive

19 129,123 -.positive* 161,157,23 -.positive

20 144,139,124 -.positive 157,126,23 -.positive

*is exclusively in the frequency approach, bold only in LAC and others are
common ones.
doi:10.1371/journal.pone.0051018.t007

Table 8. Selected Top 5 active rules using bio fingerprint.

Number Rules Support Confidence

1 MCF7 inactive, HL60(TB) inactive R
inactive

29.1% 95.8%

2 MCF7 inactive, MOLT-4 inactive R
inactive

29.7% 95.8%

3 MCF7 inactive,CCRF inactive R
inactive

28.7% 95.4%

4 MCF7 inactive, K-562 inactive R
inactive

30.7% 95.4%

5 MCF7 inactive, RPMI-8226 inactive R
inactive

31.9% 95.2%

… … … …

doi:10.1371/journal.pone.0051018.t008
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ranking and selecting of CARs and applying them to classification

is called associative classification.

8. Weighted Associative Classification Mining
For the weighted associative classification (WAC) [15–17], each

feature fi is associated with a weight wi[ W = { w1, w2, …, wn}. A

pair (fi, wi) is called a weighted item. Each transaction/compound is a

set of weighted items plus the class type. The straightforward

definition of itemset weight is:

W (is)~

PDisD
k~1 Wk

DisD
ð15Þ

W(is) is the weight of itemset and is is the itemset. The weighted

support of itemset WS(is) is:

WS(is)~

PDsD

i~1

W (is)i

DT D
ð16Þ

T is total transactions and S is all the transactions containing the

itemset. In the classical associative classification, the difference of

significance of items is not taken into account. It is assumed that if

the itemset is frequent, then all of its subsets should be frequent as

well. This principle is called downward closure property (DCP).

Given the compounds C1–C6, their features and the weight of the

features (Table 1 & 2), if itemset {81, 83, 84} is frequent, then all

its subsets {81}, {83}, {84}, {81, 83}, {81, 84} and {83, 84} must

all be frequent. However, in WAC, provided the convenient

definition (equation 15 & 16), the DCP does not hold. An itemset

may be frequent even though some of its subsets are not frequent

which can be illustrated in the following example (h = 0.3). As

shown in Table 3, the support of {83, 84} and {81, 83} are both

0.27 so they are not frequent.

Several frameworks are proposed to maintain the DCP property

[15–22,25]. Before introducing the framework, we define the

transaction weight as:

W (t)~
PDtD

k~1

Wk ð17Þ

Figure 5. The connections between chemical features and cell lines. (Red dot means a connection to active; green solid to inactive; light gray
means features associated to each other. Purple: Non-small cell lung; Red: Renal; Pink: Breast cancer; Green; Ovarian and Light blue; Melanoma.).
doi:10.1371/journal.pone.0051018.g005

Table 9. Top 5 rules using the combined fingerprint.

Number Rules Support Confidence

1 MCF7 active, bit 29 R active 2.0% 98.2%

2 SK-MEL-2 active, bit 29 Ractive 1.8% 98.11%

3 UACC-62 active, bit 33 R active 2.0% 97.7%

4 NCI-H226 active, bit 33 R active 1.7% 97.3%

5 HCC-2998 active, bit 33 R active 1.6% 97.2%

doi:10.1371/journal.pone.0051018.t009
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t is the transaction. We then define the adjusted weighted
support as:

AWS(is)~

PDsD

i~1

W (t)i

PDT D

i~1

W (t)i

ð18Þ

The S and T are the same as above. This definition will ensure

that if X5Y then AWS(Y )ƒAWS(X ) since any transaction

containing Y will have X. By using the AWS, the DCP will not be

violated. The discovered association rules are ranked, evaluated

and pruned by using CBA approach [5]. The algorithm of

PageRank based associative classification is given in Figure 2 & 3.

All the computations are carried out on a PC Q6600 2.4GHz

with 6G memory running on the Windows 7 64bit operating

system. The classifier is implemented in C#. To explore all

possible rules, the mining is performed by using the following

settings: MinSup (20%) and MinConf (70%) for AMES dataset;

MinSup (1%) and MinConf (0%) for NCI-60 dataset. In all

experiments, the maximum length of the rules is set to 4 and the

maximum number of candidate frequent itemsets is 200,000. In

the AMES data set, the SVM and RELIEF weighting method are

applied for comparison. SVM and RELIEF are computed using

Rapidminer 5.1 [42].

9. Model Assessment and Evaluation
The classification performance is assessed using 10-fold ‘‘Cross

Validation’’ (CV) because this approach not only provides reliable

assessment of classifiers but the result can be generalized well to

new data. The accuracy of the classification can be determined by

evaluation methods such as error-rate, recall-precision, any label

and label-weight etc. The error-rate used here is computed by the

ratio of number of successful cases over total case number in the

test data set. This method has been widely adopted in CBA [5],

CPAR [42] and CMAR [4] assessment.

Results and Discussion

1. Comparison of Feature Weight and Rank
The comparison is performed on AMES dataset. For AMES

dataset mining, the identification of features which are good for

‘‘positive’’ compounds are considered more preferable. So the

‘‘positive’’ here is treated as ‘‘active’’. The weight generated by

LAC is compared to that generated by frequency of the bits, SVM

and RELIEF. Figure 4 shows that results of RELIEF and SVM

are very similar. To confirm this, a correlation analysis is

performed by SPSS 19 [43]. Table 4 shows at the 0.01 level (2-

tailed), SVM and RELIEF, LAC and frequency are highly

correlated as the coefficient is 0.949 and 0.958 respectively. The

coefficients of SVM, RELIEF and LAC with frequency are greater

than 0.75 indicating that all are correlated with frequency. Among

them, LAC has the strongest correlation (0.947) with frequency.

This is mainly caused by bit 3, 8, 11, 36 and 166. For bit 3, 8 and

11, since their frequencies are not 0, both LAC and frequency

assign small weight values while for SVM and RELIEF the weight

values are set to 0. On the contrary, the weight values of 36 and

166 are set to 0 for LAC and frequency but are not set to 0 in

SVM and RELIEF. The correlation of LAC and frequency can be

explained by the principle of link-based weighting–mutual

reinforcement. As expected, the rank and weight of features in

the LAC and frequency are different. In Table 5, all features are

ordered by ascending weight. 69 features (bold) are promoted and

61 features (*) are demoted while the rest remains unchanged in

LAC. Generally, higher frequency will lead to higher ‘‘authority’’

resulting bigger weight (Figure 4). For example, bit 135 has high

weight in both frequency and LAC; bit 127 and 141 are much

bigger in LAC (red data label) than in frequency (black data label)

since most of their connections are ‘‘active’’ compounds (58.6%

and 56.6% respectively). Table 5 is the rank of the features in

each scheme respectively. The bigger the number, the higher the

rank is and the more important the feature is. Some features (bold)

have a relatively lower rank in frequency; they may get higher

ranks due to the promotion from connecting to compounds having

higher ‘‘rank’’ values. Likewise, features (*) connected to many

‘‘bad’’ compounds may be degraded. The promotion or demotion

depends on the number and type of its connections.

2. Comparison of Accuracy of Classification
The average accuracies of frequency, LAC, RELIEF, SVM and

CBA are 90.11%, 91.57%, 89.05%, 89.26% and 90.63%

respectively (Table 6). The major purpose of WACM is to find

more rules containing interesting items, in other word, items with

higher significance, while trying to achieve high accuracy at the

same time. Most of current comparisons of performance between

WARM and traditional ARM are focused on time and space

scalability, such as number of frequent items, number of

interesting rules, execution time and memory usage [18–20,43–

45]. The results showed that the difference between WARM and

ARM are minor. The comparison of WACM and traditional

ACM is scant due to the lack of easily accessible weighted

association classifiers. Soni et al [46] compared their WACM

results with those generated by traditional ACM methods–CBA

[5], CMAR [4] and CPAR [47] on three biomedical datasets, and

their results showed that WACM offered the highest average

accuracy. In our study, among all four weighted schemes and

CBA, LAC has the highest accuracy.

3. Comparison of Classifiers
There are 10 models generated for each weighting scheme and

we are interested in the comparison between the classifiers of CBA

and LAC. Model 1 is used as an example and there are 30 rules in

the classifier of frequency and 132 in that of LAC. Among them,

14 rules are exclusively in the frequency classifier, 116 only in LAC

classifier and 16 rules are shared by both. Table 7 shows that

among the top 20 rules, 11 rules are shared by both classifiers, 9

rules (*) are only in the classifier of frequency and none of the top

20 rules (bold) are included in the classifier of frequency. All rules

are ordered based on the CBA definition. During the classification,

the match of the new compounds starts from the first and will stop

immediately as long as there is a hit. As a result, although those 11

rules are in both classifiers, they may have different impacts on the

final result of classification.

4. Rule Interpretation
Our recently submitted paper [48] showed that the rules

generated by associative classification based on chemical finger-

prints and properties can be interpreted by chemical knowledge

and shed a light on the molecule design. In this study, we focus on

the analysis of association rules generated by LAC using the bio

fingerprint (NCI-60 dataset). The analysis for those generated by

frequency can be done in the same manner. The accuracy of both

frequency and LAC are 99.93% (Table 6) and the average size of

the classifier is around 350 rules.

For all ten models, the top 5 rules are the same but with

different order, support and confidence. The intuitive explanation

of Rule 1 in Table 8 is that if compound is inactive to MCF7 and
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HL60 (TB) then it will be inactive to T47D at the same time. The

adjusted weighted support of this rule is 29.1% and weighted

confidence is 95.9%. Among the 5,937 compounds, 1730

compounds are covered by this rule. All these cell lines in the

top 5 rules fall into two categories: a) breast cancer and b)

Leukemia. On one hand, it means that there are many compounds

which are inactive neither to breast cancer cell lines nor to

Leukemia cell lines; on the other hand, it suggests that there might

be some associations between these two types of cancers. [49,50]

clustered the cell lines based on their gene expression data, their

results also indicated that the cell lines in these two categories were

clustered into one or their clusters were very close to each other.

The association of MCF7 and T47D is not surprising as they

belong to the same category–breast cancer. The rules here may

also provide a potential direction of the drug resistance of breast

cancer and leukemia. [50–52] discovered a novel ABC transport-

er, breast cancer resistance protein (BCRP). This transporter was

termed breast cancer resistance protein (BCRP) because of its

identification in MCF-7 human breast carcinoma cells. The drug-

sensitive cells become drug-resistant cells after transfection or

overexpression of BCRP. They also found that relatively high

expression of BCRP mRNA were observed in around 30% acute

myeloid leukemia (AML) cases and suggested a novel mechanism

of drug resistance in leukemia.

A hybrid feature set integrating the chemical fingerprint and bio

fingerprint is generated by combining the MDL public keys and

the bio fingerprint. Since we are only interested in the compounds

which are active against tumor cell lines, the ‘‘inactive’’ value of

the bioassay is treated as a feature of ‘‘not existed’’ in the

compound. This also helps to treat the chemical fingerprint and

the bio fingerprint equally.

The average accuracy of the classification is 99.7% (Table 6).

For rules in the final classifier, for example, (A, B R Active), it will

be converted to (A associate Active) and (B associate Active). All

the rules are transferred and plotted by Cytoscape 2.8.2 [53]. To

make it clearer, nodes with degree less than 10 are removed.

Figure 5 shows that generally compounds actively against MDA-

MB-231/ATCC, TK-10, OVCAR-4, UACC-257, HOP-92,

EKVX, NCI-H226 will also active to T-47D. Chemical features:

bit 46(Br), 51 (CSO), 58 (QSQ), 65 (CN), 127 and 111 (NACH2A)

are related to active or inactive depending on what other features

it coexists with. There are other features which mainly related to

inactive.

The top 2 rules in the classifier indicate that compounds

containing phosphorus and active to MCF7 or SK-MEL-2 will be

active to T-47D too (Table 9). 22 out of 23 compounds match

both rule 1 and 2. Among them, the once abandoned drug NSC

280594 (triciribine) attracts much attention and undergoes phase I

trial due to its potential possibility of against a common cancer-

causing protein [53–55]. These rules reveal that phosphorus might

be an important chemical structure for anti-cancer drugs.

Conclusions
In this paper, we describe a novel link-based feature weighting

framework for datasets without pre-assigned weight information.

This algorithm employs a unified framework which integrates the

advantage of HITS and PageRank–the mutual reinforcement and

normalized weights–to derive useful weights. It utilizes connectiv-

ity and connection type information. Combined with a weighted

support scheme, it offers an effective way to find the useful

associations by taking into account both the significance of

occurrence and the quality of features. The latter is included by

connections to the transactions.

Based on this new weight scheme, a CBA based classifier, LAC,

is developed. The classifier is applied to two cases: the chemical

fingerprint featured dataset and the bio-fingerprint featured

dataset. Our experimental results show that although the

weighting differs from the traditional RELIEF and SVM, it is

able to capture the important features and afford good results.

Especially for some sparse dataset, some significant features can be

discovered by this link-based analysis which will be ignored by

other methods.

The link-based classifier discovers interesting associations of

bioactivities with chemical features and potential relationships

among diseases, for instance, relationship between phosphorus and

bioactivity against T47D and potential relationship between breast

cancer and leukemia. Our next step will apply this method to large

semantic data sets to mine information from the RDF resources

such as ChEMBL [56] and KEGG [57].
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