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High-throughput methods such as next-generation sequencing or DNA microarrays lack precision, as they return hundreds of
genes for a single disease profile. Several computational methods applied to physical interaction of protein networks have been
successfully used in identification of the best disease candidates for each expression profile. An open problem for these methods is
the ability to combine and take advantage of the wealth of biomedical data publicly available. We propose an enhanced method to
improve selection of the best disease targets for a multilayer biomedical network that integrates PPI data annotated with stable
knowledge from OMIM diseases and GO biological processes. We present a comprehensive validation that demonstrates the
advantage of the proposed approach, Recursive RandomWalk with Restarts (RecRWR).The obtained results outline the superiority
of the proposed approach, RecRWR, in identifying disease candidates, especially with high levels of biological noise and benefiting
from all data available.

1. Introduction

A major research domain in molecular biology is the study
of the causal association between genomic variations and
clinical phenotypes [1–3]. Classical methods use a manual
approach where one or a limited number of genomic targets
are individually tested. However, due to the resources needed
to systematically perform this procedure and due to the
difficulty in controlling all experimental variables, improved
strategies were required.The possibility to use computational
methods to identify the best disease candidates to be further
validated was a major breakthrough [4–8]. A common
constraint of most methods is the need for training data,
which is scarce and difficult to validate.

A recent research trend consists of exploiting the topo-
logical properties of protein-protein interaction (PPI) net-
works combined with other biological data to envisage the
underlying mechanisms of genetic diseases. Barabási et al.

[9] and Joy et al. [10] discuss the role of proteins with high
betweenness as mediators of relevant metabolic processes.
Ma and Zeng [11] explore the use of the closeness centrality
to quickly identify the top central metabolites in large scale
networks. Approaches proposed by Erten et al. [12] and
Arrais andOliveira [13] explore the potentialities of the nodes
with high degree for the prioritization of disease-associated
genes.

While the previous methods focus on evaluation of
the weights given to each node, a complementary strategy
consists of evaluating the proximity of two given nodes in
the network. Some common methods to conduct this task
are the shortest path, log-likelihood, propagationmatrix, and
the RWR (Random Walk with Restarts). Previous studies
confirm that the RWR outperforms other methods [14–18].
One common limitation of these studies is that they assume
the graph is single concept, meaning that every node is
equally treated. However, as we demonstrate in this study,
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those methods are poor when the graph integrates nodes
from distinct data types.

In this paper, we propose a novel method to improve
selection of the best disease targets for multiconcept graphs.
Towards this aim we build a multilayer biomedical graph
that stores PPI data, annotated with stable knowledge from
OMIM diseases and Biological Process from Gene Ontology.
The inherent improvements of the proposed method are (a)
the use of multilayer networks formed with PPI data and by
the terms’ associations; (b) the combination of this data to
establish new associations among nodes; and (c) the use of
degree-based methods to evaluate node weights.

Finally, we present comprehensive validation that demon-
strates the superiority of the proposed approach, Recursive
RandomWalk with Restarts (RecRWR).

2. Methods

The method proposed herein uses a graph representation
of biomedical knowledge centred on proteins enriched with
biomedical terms. The first step consisted of selecting and
curating the required data and using it to construct the
graph. For performance issues this network is represented
as a matrix of adjacencies. Based on this ground-based
biomedical graph we apply a modified version of the Hubs
and Authorities (HITS) [13] algorithm adapted to this par-
ticular subject, in order to obtain a normalized and more
accurate association among relations. Although here we
are interested in tuning to protein-disease association, it is
important to stress that it can be extended to the study
of general association of many-to-many biomedical terms.
Finally, we formulate how the proposed method, RecRWR,
can be applied to this subject.

2.1. Multiconcept Graph Modelling. A graph-based represen-
tation is used to store the relations among the biomedical
terms. Since we are integrating three distinct data sources,
three interconnected subgraphs are obtained.

(i) PPI data are retrieved from STRING database [19],
where the average confidence level is considered. A
filter is applied to select only human.

(ii) Disease data are extracted from OMIM morbid map
[20] data where the genotype-phenotype associations
are preserved.The morbid map is also used to extract
the mapping relation for known protein diseases.

(iii) Biological Process from Gene Ontology (GO) [21]
Directed Acyclic Graph structure is extracted and
replicated.TheGO-GOmapping is also retrieved and
stored.

For each of the previous data sources a curated set of terms ⃗𝑎

is extracted:
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1
, 𝑎
2
, . . . , 𝑎
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of each edge 𝑒
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score between two nodes.
The graph 𝐺 = (𝑉, 𝐸,𝑊) is then mapped to an adjacency
matrix representation that consists of a |𝑉|×|𝑉| = 𝑛×𝑛matrix
𝐴:
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Because the graph is undirected the adjacency matrix is
symmetric and therefore 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
.

The compiled graph resulted in 60.000 nodes with an
average degree of 5. The memory space required to represent
the graph is Θ(|𝐸|), which is realistically equivalent to a
memory space of 6.0MB, excluding hash tables required for
node mapping. The adjacency matrix requires a memory
space of Θ(|𝑉|

2
), 7.2 GB.

2.2. RecRWR: Recursive Random Walk with Restarts. Next
we formulate the RecRWR algorithm including a detailed
pseudocode description of the algorithm (Algorithm 1). The
three main components are

(i) RandomWalk with Restarts;
(ii) recursive cross subgraph mapping;
(iii) node replacement.

2.3. RandomWalk with Restarts. The final probability vector
of RandomWalker is defined as

𝑝⃗

𝑡+1
= (1 − 𝑟)𝑊𝑝⃗

𝑡
+ 𝑟𝑝⃗

0
, (4)

where 𝑊 is the column-normalized adjacency matrix 𝐴 and
𝑝⃗

𝑡 is a vector in which the 𝑖th element holds the probability
of being at node 𝑖 at time step 𝑡. The vector 𝑝

0 holds the
probability of the initial states and is constructed such that
equal probabilities are assigned to the list of seed nodes where
the sum of the probabilities is equal to 1. This is obtained by a
given list 𝐿 of seed nodes, where 𝐿 ⊂ 𝑉.
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Algorithm Recursive RandomWalk with Restarts
Input: Adjancecy matrix A of size N × N;

Vector of size N with nseed proteins p0;

Restart probability r

Output: Sorted list of candidate diseases

(1) Let m1, . . ., mk be the binary vectors of length N

(2) Let W be a column normalized of the Amatrix of size N × N

(3)
(4) Let p := p0;

(5) Let i := 1, j := 1;

(6)
(7) While ((m1 󸀠 ∗|p − pt − 1|) >= rho)

(8) Process (i, j, p)

(9)
(10) Let x := top(p ∗ diag(m1));

(11) Output x;

(12)
(13)
(14) Process (i, j, p)

(15) If (i == j)

(16) While (j <= k)

(17) p := Process (i, j, p);

(18)
(19) If (i != j)

(20) p := Process (j, j, p)

(21)
(22) p := p 󸀠 ∗ Wmij;

(23) Wmij := diag(mi) ∗ W ∗ diag(mj)

(24) While ((mi 󸀠 ∗ (delta(p)) > ro)

(25) p := (r ∗ p0 + (1 − r)Wij ∗ p);

(26)
(27) p := p 󸀠 ∗ Wmij;

(28) p := SelectTop(p, n);

(29)
(30) return p;

Algorithm 1: Pseudocode for the RecRWR method.

2.4. Recursive Cross Subgraph Mapping. We extend the pre-
vious formulation to a symmetric matrix composed of 𝑘2/2
of submatrixes, where 𝑘 corresponds to the number of data
sources. The submatrix that corresponds to the mapping
between the subgraphs 𝑖 and 𝑗 is obtained by

𝑊
𝑖𝑗
= diag (󳨀→𝑚

𝑖
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𝑗
) , (5)

where 󳨀→
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represent the mask of the source and target subgraphs where
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The result of each iteration of the Random Walk with
Restarts is given by

𝑝

𝑡→∞

𝑖
=

∞

∏

𝑡=0

((1 − 𝑟)𝑊
𝑖𝑗
𝑝

𝑡
+ 𝑟𝑝

0
) , (6)

where in fact the algorithm stabilizes when the following
condition is met:

(
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where 󳨀→

𝑚
1
is disease mask vector and 𝑝⃗

𝑡 is weight vector at
time 𝑡. The product will result in a scalar that corresponds
to the sum of the differences between two iterations. The
condition is true when this value is less than a given constant
󰜚.

2.5. Node Replacement. The recursive iteration of the cross
subgraph mapping returns a new term. A node replacement
strategy is used to replace the genes to be used. The selection
of the node index 𝑎

𝑚
to be replaced by the node index 𝑎

𝑛
is

given by the minimum value of 𝑎
𝑚

= min
0≤𝑚≤|𝑉|

𝑝
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𝑖
and

where the candidate node is given by 𝑎
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𝑊
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∗

𝑝
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𝑗
.

3. Results and Discussion

In this sectionwe explore and evaluate the performance of the
proposed method. We present a systematic evaluation using
a synthetic datasets based on well-known disease profiles.
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Table 1: Comparison of the AUC for the analysed methods.

0% 20% 40% 60%
AUC-RWR 0.9866 0.9453 0.8894 0.8435
Δ (%) −4.36% −6.29% −5.44%
AUC-RWR all data 0.9866 0.9417 0.8838 0.8115
Δ (%) −4.77% −6.55% −8.91%
AUC-RecRWR 0.9856 0.9834 0.9534 0.9072
Δ (%) −0.22% −3.15% −5.09%

We also present how the results of RecRWR can be used to
explore the resemblances mechanisms on breast cancer.

3.1. Validation Procedure. For each selected phenotype entry
on the OMIM database we created a dataset with the asso-
ciated genotypes. We have selected 100 phenotype diseases
with at least 10 associated genotypes each.Then, we iteratively
replace genes from the original dataset by random ones, in
20% increments, and the dataset is progressively converted to
a fully random dataset. We use each of these protein datasets
as seed nodes on the graph. We end up with a test space of
600 gene sets (6 random step levels plus 100 diseases).

3.2. Information Paradox. Previous use of RWRonmolecular
biology typically concentrates on PPI networks. One would
expect that including additional data would contribute to an
improved overall result. Figure 1 presents a comparison of
the relative frequency of the ranks for each of the analysed
datasets, for two of the tested methods (RWR over only PPI
data and RWR over the whole network) and for four levels
of randomness. From analysis of this graph it is clear there
is no improvement with including external annotations on
the original PPI network. Indeed for original dataset, with
random effect, there are no perceptible differences between
the twomethods.This statement is even sharper when we test
progressive levels of randomness. For instance, when 20% of
the genes on the dataset are random, 55% of the RWR over
PPI ranks the disease in the top 3, while with the RWR over
all data this frequency drops to 48%. For 60% randomness,
35% of the RWR over PPI ranks the disease in the top 5, while
with the RWRover all data the frequency drops to 23%.These
results were the primarymotivation for the work presented in
this paper, as they clearly show that the RWR method is not
suitable for dealing with multiple biological data.

3.3. RecRWR Results on Synthetic Datasets. We evaluate the
performance of the RecRWRmethod using the receiver oper-
ating characteristic (ROC) curves where each curve contains
the results for each level of randomness. A higher AUC (area
under curve) corresponds to a better overall performance.
Figure 2 and Table 1 compile the obtained results.

With 0% randomness the AUC is approximately the
same for the three methods, the proposed one having the
lowest minimum value, which can be perceived visually. This
means that in the absence of biological noise the protein
annotation data does not contribute to improving the final
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Figure 1: Comparison of the RWR method using PPI data and PPI
enriched in biological terms.

result. However, if randomness is introduced the proposed
method shows a strong improvement.

With 20% randomness the RecRWR AUC is 0.9834,
which compared to 0.9453 on the RWRcorresponds to a 4.0%
of improvement. Comparing the behaviour of the RecRWR
the 20% randomness reflects no real impact (−0.22%) on the
obtained AUC.

For 40% and 60% the difference is even higher (7.1% for
40% and 7.6% for 60%) demonstrating the greater capability
of the proposed method.

It is also relevant to note a 1.0 TPR (true positive rate, 𝑦-
axis on the graphs from Figure 2), meaning that the disease is
always correctly identified and is consistently obtained at the
expense of a lower FPR (false positive rate, 𝑥-axis).

3.4. RecRWR Results on Breast Cancer. Breast cancer (MIM:
114480) is considered a complex disorder having 23 known
genotypes that are sharedwith other cancer-related disorders.
We have used RecRWR over the common expression profiles
of breast cancer to explore the network of diseases that share
common mechanism. The diseases most closely related to
breast cancer are hepatocellular carcinoma, bladder cancer,
and lung cancer.

From analysing the network of associations, we can
see that the proteins most related with breast cancer are
responsible for important cellular functions, such as DNA
repairing, cell cycle arrest and its regulation, induced cell
death (apoptosis), and tumor suppression. Also, we can
see that the more closely GO terms associated with breast
cancer are protein binding and apoptotic process.This means
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Figure 2: ROC curves with the comparison of the overall performance of RecRWR against existent methods.

that the probable causes of breast cancer are related to the
impairment of all these functions. For instance, a genetic
mutation causing loss of function on a tumor suppressor
gene (such as the cellular tumor antigen p53, P04637)
product would result in unrestrained cellular proliferation.
Conversely, the transformation of a protooncogene (a gene
that participates in a cell-growth pathway) into an oncogene
(a protein that can induce cancer on animals) requires
a gain-of-function mutation that will allow its permanent
activation. An example of this is the epidermal growth factor
receptor (EGFR, P00533), also present in Figure 3. EGFR is
involved in the conversion of extracellular stimulus to cellular
responses. Also, transcription errors are usually immediately
corrected by DNA repairing proteins, like the DNA repair
and recombination protein RAD54-like (Q92698), shown
in the network. A mutation in this gene would result in

the defective proteins, and subsequently the correction of
transcription and translation errors would cease. Finally, the
protein caspase-8 also seems to be a possible cause of breast
cancer. Since caspase-8 is involved in the apoptotic process,
impairment of this protein would result in the absence of
apoptosis, and defective cells would not be destroyed.

The shortest path between the two diseases ismediated by
the cellular tumor antigen p53. There are however other con-
nections between the two nodes. For instance, the proteins
receptor tyrosine-protein kinase erbB-2 (P04626), GTPase
KRas (P01116), and caspase-8 (Q14790) also connect the two
cancers.The influence of caspase-8 mutations on the onset of
cancer was explained above. ERBB2 is a protooncogene, with
the potential of being converted into an oncogene and induc-
ing cancer. The GTPase KRas is involved in a great variety of
important biological processes, including regulation of both
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Figure 3: Network of biological concepts associated with breast cancer.

of cell proliferation and gene expression, signal transduction,
and cell signalling.Themajority of the proteins analysed here
are part of the same KEGG pathways: pathways in cancer
(hsa05200), neurotrophin signaling pathway (hsa04722), and
focal adhesion (hsa04510). The first pathway consists of an
integration of the various cancer pathways.The neurotrophin
signalling pathway is responsible for the differentiation and
survival of neural cells. However, this second pathway is
heavily regulated by other intracellular signalling cascades, in
which some of the proteins presented in Figure 3 participate.
The focal adhesion pathway plays important roles in the
proliferation, differentiation, and survival of cells and in gene
expression. In case of compromise of any of the proteins
involved on this pathway cellular communication becomes
defective, which can also result in cancer.

4. Conclusion

In this paper, we have proposed a graph-based approach to
address the problem of selecting the best disease targets for

multiconcept graphs. Towards this aim we build a multilayer
biomedical graph that stores PPI data, annotated with stable
knowledge fromOMIMdiseases and Biological Process from
Gene Ontology. The inherent improvements of the proposed
method are the use of multilayer networks formed with the
PPI data and by the terms’ associations; combination of this
data to establish new associations among nodes; and use of
degree-based methods for evaluating node weights.

Finally, we have presented comprehensive validation that
demonstrates the superiority of the proposed approach,
Recursive Random Walk with Restarts (RecRWR). The
obtained results outline the superiority of the proposed
approach in identifying disease candidates, especially with
high levels of biological noise and benefiting from all data
available.
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