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The aim of the present study was to assess synbiotic (Lactobacillus casei + inulin) influence on oxidative stress parameters
such as concentrations of malondialdehyde (MDA), hydrogen peroxide (H

2
O
2
), glutathione, and free sulfhydryl groups content.

Experiments were carried out on healthy volunteers (𝑛 = 32).The subjects were divided into women group (𝑛 = 16) andmen group
(𝑛 = 16) and randomly assigned to synbiotic and control groups. Blood samples were collected before synbiotic supplementation
and after 7wks, at the end of the study.The administration of synbiotic resulted in a significant decrease in MDA (𝑝 < 0.01), H

2
O
2

(𝑝 < 0.01), and GSSG concentrations (𝑝 < 0.05) as compared with the control groups and significant increase in the concentrations
of GSHt (𝑝 < 0.001), GSH (𝑝 < 0.01), and -SH group content (𝑝 < 0.05) versus control. Synbiotics containing L. casei plus inulin
may have positive influence on selected oxidative stress markers.

1. Introduction

Reactive oxygen species (ROS) are defined as chemical
molecules generated by a partial reduction of molecular oxy-
gen [1]. ROS can be divided into oxygen-centered radicals, for
example, superoxide anion and oxygen-centered nonradicals
such as hydrogen peroxide [2–4].

ROS that are generated in many ways during different
endogenous and exogenous processes have many physio-
logical functions but they are also involved in pathological
conditions [5, 6]. Fortunately, a human body has developed
a number of nonenzymatic defense mechanisms against
harmful effects of ROS.There are hydrophilic and hydropho-
bic antioxidants. The first group includes glutathione or
ascorbate (vitamin C). They aim at protecting the aquatic
environment of the cell. Hydrophobic antioxidants include
carotenoids, vitamin and provitamin D

3
, and tocopherols.

Their goal is to remove ROS from the area of cell membranes
and inhibit lipid peroxidation [7, 8].

Synbiotics are products which contain both probiotics
and prebiotics (nondigestible food ingredients that benefi-
cially affect the host by selectively stimulating the growth
or/and activity of one/or a limited number of bacteria in the
colon) [9].

There are pieces of evidence that confirm the antiox-
idative properties of probiotics/synbiotics. Strains that are
considered to be the most important probiotics in this
area are Lactobacillus and Bifidobacterium. A decrease in
the number of oxidative stress markers after probiotics
supplementation in many studies was reported [10, 11]. Suo
et al. [12] showed that after administration of L. fermen-
tum Suo to mice with gastric injuries MDA concentrations
were significantly reduced when compared to the mice
which were not supplemented with this probiotic. Similarly,
Tian et al. [13] evaluated the influence of L. rhamnosus
CCFM1107 on alcohol induced-liver injury in the ICR mice.
The study revealed that concentrations of plasma MDA were
significantly lower after supplementation of these bacteria.
Also, Zhang et al. [14] confirmed that male Sprague Daw-
ley rats after application of L. casei Zhang demonstrated
decreased MDA plasma levels. Other study [15] assessed
protective effects of L. plantarum CCFM8610 against acute
cadmium toxicity in adult male Kunming mice. Uskova and
Kravchenko [16] observed that only L. casei spp. (including
L. casei 114001) had antioxidant properties which affected
the blood plasma, liver, and intestines of Wistar rats and
contributed to a decrease in the MDA content in the blood
plasma. Al-Sheraji et al. [17] examined the effect of a yoghurt
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supplement containing B. pseudocatenulatum G4/B. longum
BB536 on lipid peroxidation in rats fed a cholesterol-enriched
diet. Animal groups which were fed this diet, supplemented
with B. pseudocatenulatum G4 or B. longum BB536, demon-
strated a significantly lower plasma MDA level. Gao et al.
[18] observed that FC225 strains of L. plantarum provide
antioxidant properties. Authors of another study [19] proved
that supplementation of the probiotic decreased MDA levels
in the serum of 90 kg pigs.

The aim of the study was to evaluate selected oxidative
stress parameters such as concentration of MDA, H

2
O
2
,

GSHt, GSSG, GSH, and free sulfhydryl (-SH) groups content
after administration of synbiotic in human plasma of healthy
volunteers.

2. Materials and Methods

2.1. ExperimentalDesign. Aswedescribed previously [20] the
study was carried out in Poland between December 2014 and
February 2015 on 32 healthy volunteers (20–35 years old),
randomly divided into synbiotic and control groups. Exclud-
ing criteria of the experiment were administration of antimi-
crobial, anti-inflammatory, or nonsteroidal drugs over last
three months, gastrointestinal disease, food allergy or acute
infections, and administration of yoghurt/vitamins/other
products that may influence antioxidant activity of plasma.
Also athletes and active and passive smokers were excluded.
Blood samples from the forearm veins were collected before
synbiotic administration and after 7wks when the study
finished. The protocol of the study was approved by the
Ethical Committee of Medical University of Lodz (number
RNN/801/14/KB).

2.2. Tested Dietary Supplement. A synbiotic (Lactobacillus
casei with inulin) was purchased from ICN Polfa Rzeszow
SA, Poland. Each capsule contained 4 × 108 CFU lyophilized
Lactobacillus casei and 400mg of inulin. Subjects were given
one capsule of synbiotic per day, at dinner time for 7 weeks
[20].

2.3. Measurement of MDA Concentration in Human Plasma.
To measure MDA concentration, Lipid Peroxidation Assay
Kit (Colorimetric/Fluorometric) (Item number ab118970),
manufactured by Abcam (Symbios Sp. z o.o. 83-010 Straszyn,
ul. Modrzewiowa 37, Poland) was used.This method is based
on the reaction of free MDA (present in the sample) with
thiobarbituric acid (TBA) to generate a MDA-TBA adduct
[21].

2.3.1. Chemicals. Lipid Peroxidation Assay Kit (Item number
ab118970) consisted of MDA lysis buffer, phosphotungstic
acid solution, BHT (100x),MDAStandard, andTBA solution;
one vial of TBAwas reconstituted with 7.5mL of glacial acetic
acid; in the next step ddH

2
O was added to 25mL.

2.3.2. Sample Preparation. To prepare samples 10𝜇L of
plasma with 500𝜇L of 42mM H

2
SO
4
was mixed. Then

125 𝜇L of phosphotungstic acid was added and mixed. In the
next step, the samples were incubated (room temperature, 5

minutes) and centrifuged at 13000 for 3 minutes; then the
pellet was collected and resuspended on ice with 100 𝜇L of
ddH
2
O. At the end, 200𝜇L of ddH

2
O
2
was adjusted to the

final volume.

2.3.3. Assay Protocol. After preparation of MDA standard
(0.1M—10 𝜇L of 4.17MMDA Standard was diluted in 407 𝜇L
of ddH

2
O; 2mM—10 𝜇L of 0.1MMDA Standard was diluted

in 490 𝜇L of ddH
2
O) each well on the plate was filled with

600𝜇L of TBA reagent and incubated at 95∘C for 60 minutes
and cooled to room temperature on ice for 10 minutes. Then,
300 𝜇L of n-butanol and 100 𝜇L of 5M NaCl were added to
wells. The layers were separated by centrifugation (3min at
16,000×g). Next step was to transfer the MDA-TBA adduct
to a new tube and evaporate the n-butanol. Then, MDA-TBA
adduct was dissolved in 200𝜇L of ddH

2
O and placed into the

96-well plate microplate for analysis. Absorbance was read
at 532 nm with plate reader (TECAN Sunrise with software
Magellan Standard).

2.4. Measurement of H2O2 Concentration in Human Plasma.
To measure H

2
O
2
concentration Hydrogen Peroxide Assay

Kit (Item number ab102500) manufactured by Abcam (Sym-
bios Sp. z o.o. 83-010 Straszyn, ul. Modrzewiowa 37, Poland)
was used. This method is based on the reaction of sub-
strate for hydrogen peroxide with H

2
O
2
in the presence of

horseradish peroxidase to produce product with color [22].

2.4.1. Chemicals. HydrogenPeroxideAssayKit (Itemnumber
ab102500) consisted of 25mL of H

2
O
2
Assay Buffer and

200𝜇L of OxiRed Probe (in DMSO) 100 𝜇L of 0.88M H
2
O
2

Standard and HRP dissolved in 220 𝜇L Assay Buffer.

2.4.2. Sample Preparation. The plasma was centrifuged at
1000×g for 15minutes at 4∘C; then the pelletwas removed and
kept on ice and deproteinization was carried out according to
the manual.

2.4.3. Assay Procedure. After preparation of H
2
O
2
Standard

wells (10mM—10 𝜇L of H
2
O
2
0.88M Standard was diluted

in 870 𝜇L of dH
2
O; 0.1mM—10 𝜇L of 10mMH

2
O
2
Standard

was dissolved in 990 𝜇L of dH
2
O) each well on the plate

was filled with 50𝜇L of Reaction Mix into each well and
incubated at room temperature for 10min. Absorbance was
read at 570 nm.

2.5. Measurement of GSHt, GSSG, and GSH Concentration
in Human Plasma. To measure GSHt concentration mixture
containing 50 𝜇L of the plasma, 700 𝜇L of 0.2mM NADPH,
100 𝜇L of 0.6mM DTNB, and 150 𝜇L of H

2
O were prepared.

The cuvette was incubated at +37∘C for 5min and then
supplemented with 0.7U of glutathione reductase (GR).
The reaction kinetics was traced for 5min by monitoring
the increase in absorbance. GSSG content was determined
using the same protocol after optimization of pH to 6-7
with 1M TEA, and endogenous GSH was determined with
2-vinylpyridine. The GSH concentration was calculated as
the difference between GSHt and GSSG. The increments in
absorbance at 412 nm were converted to GSH and GSSG
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Table 1: The influence of synbiotic containing Lactobacillus casei and inulin on the concentrations of selected oxidative stress parameters.
Data is shown as mean ± SEM. ∗𝑝 < 0.01, ∗∗𝑝 < 0.001, and #𝑝 < 0.05 versus control group.

Study groups OS parameters
MDA [nmol/mL] H

2
O
2
[pmol/𝜇L] GSHt [𝜇M] GSH [𝜇M] GSSG [𝜇M] GSH/GSSG [𝜇M] -SH groups [𝜇M]

Control “0” 7.32 ± 0.10 0.37 ± 0.01 18.42 ± 0.77 17.13 ± 0.85 1.29 ± 0.23 13.28 ± 0.90 82.58 ± 0.61

Control “7 wks” 7.94 ± 0.44 0.45 ± 0.01 19.09 ± 0.98 17.21 ± 1.24 1.88 ± 0.07 9.15 ± 0.76# 84.06 ± 0.82

Synbiotics “0” 9.44 ± 0.01 0.49 ± 0.01 19.93 ± 0.89 18.78 ± 0.89 1.15 ± 0.15 16.33 ± 1.98 76.98 ± 0.75

Synbiotics “7wks” 8.68 ± 0.01∗ 0.38 ± 0.02∗ 25.21 ± 0.12∗∗ 24.43 ± 0.97∗ 0.78 ± 0.21# 31.32 ± 1.99∗∗ 86.89 ± 0.68#

Female control “0” 7.03 ± 0.11 0.36 ± 0.03 18.36 ± 0.23 18.13 ± 0.45 1.37 ± 0.04 13.23 ± 0.89 79.43 ± 0.11

Female control
“7 wks” 7.58 ± 0.12 0.45 ± 0.02 19.28 ± 0.10 17.21 ± 0.11 1.83 ± 0.03 9.40 ± 0.67 80.93 ± 0.13

Female synbiotic
“0” 9.24 ± 0.22 0.49 ± 0.01 18.99 ± 0.21 19.78 ± 0.24 1.17 ± 0.01 16.08 ± 0.87 77.04 ± 1.23

Female synbiotic
“7 wks” 8.20 ± 0.10∗ 0.36 ± 0.01∗∗ 26.68 ± 0.45∗∗ 28.61 ± 0.19∗∗ 0.81 ± 0.06∗∗ 35.32 ± 0.69 90.99 ± 0.19∗∗

Male control “0” 7.60 ± 0.40 0.38 ± 0.02 18.46 ± 0.40 16.13 ± 0.42 1.23 ± 0.10 14.09 ± 0.41 85.73 ± 0.41

Male control
“7 wks” 8.30 ± 0.20 0.40 ± 0.01 18.91 ± 0.20 17.21 ± 0.20 1.92 ± 0.09 8.96 ± 0.90 87.19 ± 0.20

Male synbiotic “0” 9.65 ± 0.03 0.52 ± 0.02 20.87 ± 0.10 18.78 ± 0.14 1.13 ± 0.06 16.62 ± 0.65 76.91 ± 1.11

Male synbiotic
“7 wks” 9.15 ± 0.10# 0.44 ± 0.05 23.74 ± 0.11∗ 19.94 ± 0.10# 0.75 ± 0.07∗ 25.59 ± 0.14 82.79 ± 0.17∗

levels using a standard curve (3.2–500𝜇M of GSH for GSHt
and 0.975–60𝜇M of GSSG for GSSG). Obtained results
were expressed in 𝜇M. The redox ratio of each sample was
calculated by dividing its reduced glutathione content by its
oxidized glutathione content.

2.6. Measurement of Free -SH Groups Concentration. The
total sulfhydryl groups content was determined using the
Ellman method [23], based on the reaction of 5,5󸀠-dithio-
bis (2-nitrobenzoic acid) with thiol groups of proteins. To
measure -SH group concentration we prepared a mixture
containing 500 𝜇L of the plasma, 500 𝜇L of 0.3M Na

2
HPO
4
,

and 500 𝜇L of 0.04% Ellman reagent (DTNB). The last
component was freshly dissolved in a solution of 10% sodium
citrate. Absorbance was measured at 412 nm with a spec-
trophotometer (Perkin-Elmer Lambda 25).

2.7. Statistical Analysis. The data are presented as mean ±
SEM (standard error of the mean) in each group. The
statistical analysis was performed by ANOVA followed by a
post hoc Duncan’s multiple range test. A 𝑝 value lower than
0.05 was considered significant.

3. Results

3.1. Evaluation of MDA and H2O2 Concentrations. An
insignificant increase in MDA levels was observed in the
control group, female-control group, andmale-control group.
A significant decrease in MDA levels was observed in the
synbiotic group (𝑝 < 0.01), female-synbiotic group (𝑝 <
0.01), and male-synbiotic group (𝑝 < 0.05) in comparison to
the their control groups (resp.) before experiments (Table 1).

An insignificant increase in the H
2
O
2
concentration in

the control group, female-control group, and male-control

group was observed. A significant decrease in H
2
O
2
concen-

tration was observed in the synbiotic group (𝑝 < 0.01) and
female-synbiotic group (𝑝 < 0.001) in comparison to the
their control groups before experiments (resp.).There was an
insignificant decrease in the H

2
O
2
level in the male-synbiotic

group versus control group (Table 1).

3.2. Evaluation of GSHt, GSSG, and GSH Concentrations
and -SH Groups Content. Levels of GSHt and GSH in the
control group, female-control group, andmale-control group
were not significantly higher than those of the control group
before experiment. Supplementation of synbiotic signifi-
cantly improved levels of GSHt and GSH in the synbiotic
group (resp. 𝑝 < 0.001 and 𝑝 < 0.01), female-synbiotic
group (resp. 𝑝 < 0.001 and 𝑝 < 0.001), and male-synbiotic
group (resp. 𝑝 < 0.01 and 𝑝 < 0.05) in comparison to the
their control groups before experiments. Concentrations of
GSSG in the synbiotic group (𝑝 < 0.05), female-synbiotic
group (𝑝 < 0.001), andmale-synbiotic group (𝑝 < 0.01) were
lower versus control groups. There was a significant decrease
in the GSH/GSSG ratio in the control groups (𝑝 < 0.05).
Administration of synbiotics resulted in an increase in the
GSH/GSSG ratio in the synbiotic group (𝑝 < 0.001), female-
synbiotic group (𝑝 < 0.001), and male-synbiotic group (𝑝 <
0.05), compared with the control groups (Table 1).

The supplementation of synbiotics resulted in an increase
in -SH groups in the synbiotic group (𝑝 < 0.05), female-
synbiotic group (𝑝 < 0.001), and male-synbiotic group (𝑝 <
0.01) versus control groups (Table 1).

4. Discussion

Our results indicate that the concentration ofMDAandH
2
O
2

in human plasma was a higher in synbiotic “0” group than
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in control “0” group but there was no significant difference.
This observed group variation in oxidative stress parameters
could be explained by influence of various factors. Some
published work has focused on influence of environmental
factors, for example, seasonal variations [24, 25] on oxidative
stress parameters. Also, when the physical exercise takes place
under environmental conditions such as cold and pollution
or when the intensity is high there is overproduction of H

2
O
2

(autoxidation of haemoglobin) [26].
This paper shows that administration of synbiotics caused

a significant decrease in the MDA and H
2
O
2
concentration

in the human plasma. These finding are consistent with
a recent study [10]. We observed a greater reduction in
the concentration of MDA and H

2
O
2
in female-synbiotic

group. This fact can be explained by the increased activity
of antioxidant enzymes (particularly CAT) in women who
took synbiotics [20]. Melatonin can regulate CAT activity.
Its concentration during the day is higher in autumn and
winter [27]. Moreover, its levels are higher in females with
psychological stress [28] derived from lifestyle habits, liv-
ing environment, or premenstrual syndrome. This observed
group variation could be explained also by different levels
of hormones (testosterone and oestradiol). Estrogens have in
vitro and in vivo antioxidant effects [29]. These parameters
were not measured at work.

However, several studies [11, 30] have shown no signifi-
cant differences in MDA concentrations after the probiotics
application in humans. Mazloom et al. [11] examined the
effect of probiotic administration on the MDA concentration
in patients with type 2 diabetes. The authors showed a
decrease inMDA levels, but these results were not statistically
significant. Vaghef-Mehrabany et al. [30] reported no sig-
nificant differences in MDA concentrations after probiotics
application. A study was carried on 46 woman with rheuma-
toid arthritis (RA). They received probiotic containing L.
casei for 8wks.

Several other studies confirm the ability of probiotics
strains to decrease oxidative stress parameters, especially
MDA level. Yadav et al. [31] observed that probiotic contain-
ing L. acidophilus NCDC14 and L. casei NCDC19 decreased
STZ-induced oxidative damage in pancreatic tissues by
inhibiting lipid peroxidation. Rajpal and Kansal [32] proved
that probiotic (L. acidophilus + B. bifidum) stimulates antiox-
idant pathways in rats. Hathout et al. [33] evaluated the
protective effect of L. casei or/and L. reuteri against aflatoxin-
(AFs-) induced oxidative stress in female Sprague Dawley
rats. Administration of combined L. casei and L. reuteri in
rats showed decrease in MDA concentration in these organs.
Treatment with L. casei did not affect MDA levels; on the
other hand, treatment with L. reuteri caused a significant
decrease in MDA level in the liver but insignificant decrease
in the kidney.

Other authors [34] focused on B. longum subsp. longum
strains and their bioaccessible antioxidants. Mikelsaar and
Zilmer [35] noted that L. fermentum ME-3 has antioxidative
properties. They confirmed that this probiotic increased
antioxidative activity in different types of clinical studies
(double-blind, placebo-controlled, crossover) and in different
subjects (healthy volunteers, allergic patients, and those

recovering from stroke). The authors observed its good
hydroxyl radical scavenging efficiency and ability to survive
in high hydrogen peroxide environment.

Our results show that administration of synbiotic resulted
in a significant increase in the GSHt, GSH, and -SH free
groups content. Moreover, levels were higher in women than
in men after synbiotic administration. This gender variation
could be explained by different concentrations of hormones,
such as oestradiol and testosterone [29]. It is reported
that psychological stress reduces GSH concentrations and
leads to increased oxidative stress parameters [36–38]. Stress
may increase superoxide anion formation and subsequently
H
2
O
2
generation. Moreover, GSH deficiency can result from

inadequate dietary intake of methionine or cysteine [39, 40].
The activity of GPx was also decreased in rats exposed to
stress [41]. Moreover, plasma iron and factors that could
affect its levels, for example, diet, are associatedwith oxidative
stress parameters concentration in human [42]. Some authors
described that high plasma 𝛼-tocopherol and high 𝛽+𝛾-
tocopherol levels were associated with elevated plasma MDA
level [43].

Several studies have shown that probiotics can enhance
the activity of nonenzymatic antioxidants, for example, glu-
tathione. Asemi et al. [44] described effects of daily consump-
tion ofmultispecies probiotic supplements on oxidative stress
in diabetic patients. After administration of this probiotic
supplement, consisting of 7 viable and freeze-dried strains
L. acidophilus, L. casei, L. rhamnosus, L. bulgaricus, B. breve,
B. longum, and S. thermophilus, plasma GSHt was increased.
Another study [45] confirmed that consumption of synbiotic
(L. sporogenes) food by diabetic patients for 6 weeks had
significant positive effects on plasmaGSHt levels. Taghizadeh
et al. [46] proved that consumption of synbiotic food for
9 weeks resulted in a significant rise in plasma GSH levels
versus control. Similarly, another study [47] analyzed effects
of probiotic (L. casei, L. acidophilus, and B. bifidum/7wks)
supplementation on biomarkers of oxidative stress in patients
with major depressive disorder (MDD). An increased glu-
tathione level was observed after probiotic supplementation
compared with the placebo group.

Many authors describe correlations between probiotics
and glutathione concentrations in animals.

Erginel et al. [48] evaluated antioxidant mechanisms of
probiotics on gut mucosa in peritonitis. Rats were treated
with probiotics after CLP-induced peritonitis/5 days or
before the CLP procedure and after the surgery/5 days.
The authors reported increased glutathione levels. Ogita et
al. [49] obtained similar results. Tian et al. [13] observed
that administration of L. rhamnosus CCFM1107 elevated the
glutathione level in mice.

Verma and Shukla [50] showed that the use of synbiotics
(L. rhamnosus + L. acidophilus + inulin) is a better prophy-
lactic strategy than the use of probiotic and prebiotic alone
because of a greater increase in antioxidants concentration
(particularly GSH), associated with stronger attenuation of
DMH-induced tumorigenesis. Kavitha et al. [51] assessed the
effect of combination treatment of insulin, pioglitazone, and
synbiotic on streptozotocin- (STZ-) induced diabetic rats.
They observed increased GSH concentration. Lutgendorff
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et al. [52] confirmed that probiotics enhanced the biosyn-
thesis of glutathione, which may have reduced activation
of inflammation and acinar cell injury and ameliorated
experimental AP, via a reduction in oxidative stress. Şengül
et al. [53] assessed two probiotic strains, L. delbrueckii subsp.
bulgaricus B3 and L. delbrueckii subsp. bulgaricus A13, and
proved that EPS-producing probiotic bacteria significantly
attenuate oxidative stress in experimental colitis.

However, some authors have noted a decrease in
glutathione level after probiotic supplementation. Coşkun
Cevher et al. [54] evaluated the effect of L. delbrueckii
subsp. bulgaricus administration on systemic and intestinal
oxidant-antioxidant events in splenectomized rats. Plasma
and small intestine tissue lipid peroxidation, -SH group, and
glutathione levels were determined. In this work, thiobarbi-
turic acid reactive substances (TBARS) level was decreased
by L. delbrueckii subsp. bulgaricus supplementation after or
both after and before splenectomy but GSHt level was lower.
Similarly, Erdoĝan et al. [55] proved that synbiotics and
phytobiotics in combination (Enterococcus faecium, FOS) sig-
nificantly increased plasma malondialdehyde (MDA) levels
and decreased GSHt concentration in the blood of broilers.
Recently, Bahmani et al. [56] observed that consumption of
synbiotic bread for 8 weeks among patients with T2DM had
beneficial effects on plasmaMDAconcentration but it did not
affect plasma GSH level.

Recent studies support a gender-dependent difference/
signaling pathway that could be based in the intestine and/or
immune system [57]. Alzamora et al. [58] described that
estrogen can affect gut and immune system function. Pacifici
[59] proved that probiotic (L. reuteri) impacts estrogen
or/and progesterone sensitive pathways in male mice that are
fully active in adult females (insensitive to the bacterium).
Many authors [60–63] claim that supplementation of pro-
biotics with or without inulin increases serum testosterone
level. This effect is associated with the hypocholesterolemic
action of probiotics by metabolizing cholesterol to testos-
terone synthesis.

Another theory says that gut microbiota composition
depends on interactions between host diet and gender. In
Bolnick et al. study [64] diet-microbiota associations were
sex dependent in humans. Experimental diet manipulations
in mice confirmed that diet affects microbiota differently
in males versus females. The prevalence of genotype by
environment (sex by diet) interactions implies that therapies
to treat dysbiosis might have sex-specific effects.

It has been reported that gender is a crucial determinant
of probiotic effects. For example, an application of the L.
reuteri (ATCC PTA 6475) on mice has elicited gender-
dependent responses in TNF-𝛼 suppression and bone den-
sity [57]. Another study also suggested that gut-associated
microorganisms with host immune system responses and
metabolic activity are supported by biology distinct to the
host gender [65]. Lönnermark et al. [66] described that
gender, but not administration of the probiotic,may influence
acute symptoms during Salmonella infection and possibly
clearance of Salmonella. There was a difference in gender
symptoms in the postinfectious phase, which were modified
by the probiotic.

A weakness of the study is the use of only five biomarkers
of oxidative stress. Measurement of more oxidative stress
parameters will give a more comprehensive picture of their
significance. In our work, there was a significant negative
correlation between plasma glutathione andMDA levels after
synbiotics administration (Pearson correlation coefficient =
−0.469, 𝑝 < 0.001). However, present study had several
others limitations. There was not significant trend between
other OS parameters. For example, there was a positive
but not significant correlation between GSH and -SH free
groups content. Moreover, there were several factors which
might have influence on OS parameters levels, for exam-
ple, psychological stress [28] derived from lifestyle habits,
living environment, or premenstrual syndrome (female). In
this study we applied widely used method for oxidative
stress parameters determination at different sensitivity. To
measure the concentration of MDA special kit was used.
The assay kit detects malondialdehyde concentration as
low as 1 nmol/well colorimetrically. MDA level is the most
reliable biomarker, because it is a product of lipid oxidation.
Glutathione measurement is important to assess oxidative
stress parameters. Also -SH free groups contentmeasurement
may provide additional information on the redox state of a
subjects. Sensitivity of the determination of total sulfhydryl
groups in plasma using Ellman’s reagent is 50 𝜇M to 1000 𝜇M
(glutathione determination = 0.1 𝜇M).

The work was not blinded because the control group
did not consume any supplements during the experiment.
The key difference between presented study and others with
placebo group is that their experimentwas carried out only on
patients with different diseases, for example, that increasing
oxidative stress.

Our results are consistent with the results of Martarelli
et al. [67]. Authors proved that probiotics protect the human
body from oxidative stress damage in a healthy volunteers (in
not blinded study).

5. Conclusion

Synbiotics containing L. casei plus inulin are effective com-
pounds that protect a human body from oxidative stress
damage. Synbiotics may have a positive influence on selected
oxidative stress parameters, such as MDA and glutathione
concentrations.
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