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Abstract

The structure-dynamics-function has become one of central problems in modern sciences, and it is a great challenge to
unveil the organization rules for different dynamical processes on networks. In this work, we study the vibration spectra of
the classical mass spring model with different masses on complex networks, and pay our attention to how the mass spatial
configuration influences the second-smallest vibrational frequency (v2) and the largest one (vN ). For random networks, we
find that v2 becomes maximal and vN becomes minimal if the node degrees are point-to-point-positively correlated with
the masses. In these cases, we call it point-to-point matching. Moreover, v2 becomes minimal under the condition that the
heaviest mass is placed on the lowest-degree vertex, and vN is maximal as long as the lightest mass is placed on the
highest-degree vertex, and in both cases all other masses can be arbitrarily settled. Correspondingly, we call it single-point
matching. These findings indicate that the matchings between the node dynamics (parameter) and the node position rule
the global systems dynamics, and sometimes only one node is enough to control the collective behaviors of the whole
system. Therefore, the matching rules might be the common organization rules for collective behaviors on networks.
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Introduction

Various dynamical processes on complex networks [1–16] have

attracted a great deal of interest in many disciplines, ranging from

physical, chemical, and biological sciences, to even social sciences

and engineering technology, with the central target to decipher

and even utilize the emergent features coming out of the interplay

between the structure and function via dynamics. Since a function

is a dynamic property, the structure-dynamics-function has been

one of common problems in modern sciences [1–5]. These

dynamical behaviors can be very rich including synchronization in

coupled nonlinear systems, consensus or grouping in multi-agent

systems, self-organized criticality, epidemic spreading, traffic jam,

stochastic resonance, and many others. They pose astonishing

challenges for us to unveil the organization rules for all these

different dynamical processes on networks.

So far the dynamics on extensive systems composed of many

coupled identical units has been extensively studied, for example,

the complete synchronization in coupled chaotic systems based

on the stability analysis of the synchronous manifold and in the

framework of the master stability function [17–23]. However, the

assumption of identical units is not very realistic for many realistic

systems, in which the units composing the ensemble always

present a disparity in the values of some characteristic param-

eters. Under these conditions, the system (parameter) diversity

becomes very important [24–29]. It is, however, still unknown

how these nodes with different characteristic parameters settled

on networks determine the systems dynamics, especially when

some key parameters are properly placed on some special

positions of networks. This optimal configuration problem has

never been carefully studied, to the best knowledge of the

authors, although it certainly could help to better understand the

collective behaviors of coupled nonidentical systems, which are

determined by not only the interplay between the temporal

information (the node dynamics with different parameters) and

the spatial information (these nodes’ positions on networks), but

also their matchings.

For this purpose, we study the optimal configuration problem

for the vibration spectrum (or frequencies) of coupled nonidentical

harmonic oscillators on complex networks. Each vertex is

occupied by a mass point and they are connected by an edge

(spring) each other with a uniform spring constant. This mass-

spring (linear) model and the normal mode analysis originally

developed in classical mechanics [30,31], have been found very

useful in many other disciplines, such as lattice vibrations and

associated phonon excitations in solid-state physics [32], and

protein dynamics in structural biology [33,34]. As we are

interested in the diversity effect, we only consider the case for

each node having a different mass; this is the key distinction with

all previous studies on coupled harmonic oscillators [35–38].
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Model and Results

Model
The motion equation for the systems can be written as

mj €xxj~k
PN

i~1

aij(xi{xj), j~1, � � � ,N ð1Þ

where mj represents the j-th oscillator’s mass, k is the coupling

strength (or spring coefficient), and N represents the number of

mass points. aij~1 if nodes i and j are connected and aij~0

otherwise. For simplicity, we take k:1 throughout the paper. The

masses mj for all j are different. The system’s motion can be

viewed as N normal modes with different frequencies:

xj~
PN

i~1 yje
ivi t, where vi and yj denote one independent

frequency and the amplitude, respectively. v1ƒv2ƒ . . . ƒvN .

Clearly v1~0, representing the translational motion. For the

other modes, usually the second smallest (slowest) vibration

frequency v2 characterizes the most global vibrational motion of

the systems, whereas the largest vibration frequency vN reflects

the most tightly packed and constrained local motion; both of

them are the most representative. Therefore, below we only

consider the values of v2 and vN for different spatial configura-

tions of the masses.

The above equations [Eqs. (1)] can be written in a compact

form based on the normal mode analysis:

(v2M{L)Y~0, ð2Þ

where the mass matrix M~diag(fmjg), the Laplacian matrix

L~(dijdi{aij), where dij~1 for i = j and dij~0 otherwise, di is

the degree of node i, and Y is the N-dimensional nonzero column

vector with the components yi.

Solving Eqs. (2) is equivalent to finding v satisfying

det(v2M{L)~0, where ‘‘det’’ denotes the determinant. Since

M is nonsingular, it is convenient to change the mass-weighted

Laplacian matrix to a symmetric one and get a faster numerical

result. Therefore, we have

v2~l(M{1L)~l(M{1=2LM{1=2), ð3Þ

where l denotes the eigenvalue of the corresponding matrix. And

we obtain v based on solving the eigenvalues of the symmetrical

matrix M{1=2LM{1=2 for a given network. In numerics, we have

studied various networks, such as the random Erdos-Renyi (ER)

[39], scale-free (SF) [40], and small-world (SW) [41] networks. For

each network, an ensemble of masses is produced from a random

distribution (1ƒmjƒ10) and these values are fixed and scattered

on networks. For each configuration, its vibration frequencies can

be easily calculated from the above eigenvalue analysis [Eq. (3)].

We are interested in how the correlation between degrees and

masses influences the normal mode frequencies v2 and vN .

Simulation results
Figure 1(a) illustrates the numerical results of v2 in an ascending

order for completely random configurations (i.e., all masses can be

arbitrarily shuffled on complex networks); a random ER network

(N = 200 and the average degree SdT~30) is chosen here. The

corresponding distribution re-scaled by the peak value is given in

Fig. 1(b). Clearly v2 shows a very wide distribution from v2&1:2
to v2&1:65. However, we may also choose configurations

purposefully, such as point-to-point-positive correlation between

the node masses and the node degrees (namely, we may arrange

the masses in an ascend order fm1ƒm2ƒ . . . ƒmNg and the

degrees in an ascend order also fd1ƒd2ƒ . . . ƒdNg, and put

these arranged masses on the network in a point-to-point-positive

correlation order fd1=m1,d2=m2, . . . ,dN=mNg). We really find its

v2 for this configuration is maximal, as shown the open square in

Figs. 1(a) and 1(b). Correspondingly, for the configuration of point-

to-point-negative correlation fd1=mN ,d2=mN{1, . . . ,dN=m1g il-

lustrated by a solid square, it seems that v2 is very small.

Below let us see if the above strong correlation condition for the

point-to-point matching could be loosened. Figure 1(c) shows the

results for the single-point-positive correlation fd1=m1g (upper

curve) and fdN=mNg (lower curve), with all other N{1 masses

randomly placed. Here we use fd1=m1g to denote the configu-

ration of putting the lightest mass on the lowest-degree node,

whereas fdN=mNg for that of the heaviest on the highest-degree

node. It is discernible that the curve for fd1=m1g is slightly above

the counterpart for fdN=mNg, which is quite similar to that for the

random configurations in 1(a). Moreover, Figs. 1(d) and 1(e) show

the results for the single-point-negative correlation fdN=m1g and

fd1=mNg, respectively, with all other N{1 masses randomly

placed again. Clearly the distribution in 1(d) is still similar to that

for the random configurations in 1(a). However, very remarkably

Figure 1. The results of v2 for a random ER network. N = 200,
SdT~30, dmin~15, and dmax~41, the plot includes completely random
configurations (black points), the point-to-point-positive correlation
configuration (open squares), and the point-to-point-negative correla-
tion configuration (solid squares) in (a); the single-point-positive
correlation configurations fd1=m1g and fdN=mNg in (c); and the
single-point-negative correlation configurations fdN=m1g in (d) and
fd1=mNg in (e). (b) The histogram for random configurations. (f) Smin vs
v2

2 . A remarkable finding in (e) is v2 ’s are not only very small, but also
their range is very narrow, indicating one is enough in determining the
networked dynamics. For more details, see the text.
doi:10.1371/journal.pone.0082161.g001
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the values of v2 for fd1=mNg (with one and only one heaviest

mass on the lowest degree) have been greatly squeezed into a

much smaller regime: 1:204vv2v1:210 and they are indeed very

small [noticing the different ordinates and their scales used in

Figs. 1(a) and 1(e)]. This range is only one-hundredth of the

original range for the random distribution or other single-point

matching distributions. We also find that v2 for the point-to-point-

negative correlation in Fig. 1(a) is not minimal, which is re-plotted

in Fig. 1(e) with the same solid square. This indicates that the

single-point matching fd1=mNg has already caught the essential

feature of the collective behavior in such a model of harmonic

oscillators on random networks, regardless of all other nodes. As a

result, for v2, the single-point matching fd1=mNg should give rise

to (v2)min, whereas the point-to-point matching fd1=m1,
d2=m2, . . . ,dN=mNg should lead to (v2)max, although these

observations still need proof in theoretical analysis.

Figure 2 presents the results for vN instead with the same

random network and the ensemble of masses. For the random

configurations, vN ’s are distributed in a very wide range

(5:0vvNv6:2). The configurations for the point-to-point-positive

correlation and the point-to-point-negative correlation, as shown

the open and solid squares in Fig. 2(a), give rise to the minimal and

maximal values of vN , respectively. They are just opposite to those

for v2. Again vN for the configuration of point-to-point-positive

correlation is very far from the distribution in 2(b). In Figs. 2(c) and

2(e), the single-point matching distributions for fd1=m1g,
fdN=mNg, and fd1=mNg give no significant difference with that

for the random distribution. However, for the single-point-

negative correlation fdN=m1g in 2(d), we do find vN ’s have been

squeezed into a much smaller regime; this time it corresponds to

the part of the largest vN . All these findings show the key

qualitatively unchanged features with those for v2.

To show the generality of matching rules for any random

networks, we give some more examples. For instance, the results

for a scale-free network (N = 200 and SdT~50) with a randomly

distributed ensemble of masses are shown in Figs. 3(a)–3(h).

Figure 3(a) illustrates v2 for random configurations with the two

extreme points (open and solid squares) for the configurations

(point-to-point-positive and point-to-point-negative correlations).

The histogram is shown in 3(b). Again Fig. 3(c) exhibits the

unusual effect of single-point-negative correlation fd1=mNg for

v2, indicative of an insensitivity of vibration frequency if the

temporal information and spatial information of only one node are

matched. Similarly, Figs. 3(e)–3(h) give the patterns for vN ,

showing the same qualitative results as in Fig. 2.

Figures 4(a)–4(d) illustrate the distributions of v2 for random

configurations of a SW network with some different rewiring

probabilities P: P = 0.4, 0.3, 0.2, and 0.1, respectively; N = 200 and

SkT~30. The open and solid squares represent the configurations

of point-to-point-positive and point-to-point-negative correlations

between the node masses and node degrees, respectively. Clearly

with increasing random connections for larger P, such as the plots

in Figs. 4(a) and 4(b), the two points keep as extreme, locating far

away the distribution for random configurations. However, with

decreasing random connections for smaller P, as shown in 4(c) and

4(d), these relations become broken. Based on these comparisons,

we understand that the rules of point-to-point matching and the

single-point matching may only work for sufficiently random

networks, such as ER or SF networks, and these rules could

gradually be broken with the weakening of the network random

connections, such as the SW networks.

Analysis

So far some unusual effects of matching rules have been well

revealed. Below let us demonstrate them in a rigid way with the

aid of mathematical analysis. As we have known, the normal mode

frequencies are solely determined by the mass-weighted Laplacian

matrix [Eq. (3)]. Therefore, some approximation results for the

weighted Laplacian matrix developed in the matrix algebra and

applied in the chaos synchronization study should be very valuable

for our problems here [20,21,42]; for the second smallest and

largest eigenvalues l2 and lN , we have

Sminm2cƒl2ƒSminc
0
, SmaxƒlNƒSmaxmN , ð4Þ

where c and c
0

can be approximated by 1 for most complex

networks, and Si, the intensity function of a node, is defined as

Si~
PN

j~1 Wijaij , where Wij is the element of the weighted

matrix. Since Wij~1=mi here, we have Si~
di
mi

and further

Smin~minfdi

mi

,i~1, � � � ,Ng,

Smax~maxfdi

mi

,i~1, � � � ,Ng:
ð5Þ

When the network is sufficiently random (dmin&1 and

dmin&
ffiffiffiffiffiffiffiffiffi
SdT
p

),

Figure 2. The results of vN for a random ER network. Similar to
Fig. 1 for the results of vN with the same ER network considered
instead. Again the effect of one is enough appears, but this time vN

becomes maximal for the single-point-negative correlation configura-
tion fdN=m1g in (d). For more details, see the text.
doi:10.1371/journal.pone.0082161.g002
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m2^1{
2
ffiffiffiffiffiffiffiffiffi
SdT
p , mN^1z

2
ffiffiffiffiffiffiffiffiffi
SdT
p : ð6Þ

Therefore, for a sufficiently large SdT,

l2^Smin,lN^Smax: ð7Þ

As a result, l2 and lN (and hence v2 and vN correspondingly)

should be completely determined by Smin and Smax, respectively.

These linear relations have been perfectly proved by our

simulations, for example, the plot of Smin versus v2
2 in Fig. 1(f) and

that of Smax versus v2
N in 2(f). Based on these analyses [Eq. (5)], we

immediately know that the configuration of single-point-negative

correlation fd1=mNg (with the heaviest mass on the lowest-degree

node) should always give rise to (Smin)min and (v2)min irrespective

of all other masses. Here one node match is dominant.

The result for point-to-point-positive correlation for (v2)max can

also be easily understood. Without losing generality, suppose that

the masses and the degrees have been perfectly placed, i.e.,

fd1

m1

, . . . ,
du

mu

, . . . ,
dv

mv

, . . . ,
dN

mN

g: ð8Þ

Here uvv, duƒdv and muƒmv. If any one pair of nodes (u-th and

v-th) are not placed in order, namely, node with mass mu is placed

on the node of degree dv while mv on du instead, we have the new

configuration

fd1

m1
, . . . ,

du

mv

, . . . ,
dv

mu

, . . . ,
dN

mN

g: ð9Þ

Based on the following inequalities

du
mv

ƒ
dv
mu

, du
mv

ƒ
du
mu

, du
mv

ƒ
dv
mv

, ð10Þ

giving rise to

minfdu

mv

,
dv

mu

g~ du

mv

ƒminfdu

mu

,
dv

mv

g, ð11Þ

we can derive that any one permutation from the original, perfect

configuration of the point-to-point-positive correlation [Eq. (8)]

would not let Smin increase. Therefore, the original configuration

would be globally optimal, corresponding to (v2)max. On the other

hand, we may use the same idea to the analysis of Smax for

(vN )min.

Finally after mastering these features of coupled harmonic

oscillators, we may even control the systems collective behavior by

a slight manipulation [43–45]. E.g., a single node with the heaviest

mass m = 10 (1ƒmjƒ10) has been added and connected to any

nodes of an ER network, as shown in Fig. 5, where the lower part

represents N trials with one connection and the higher part

represents Z (Z~C2
N~N(N{1)=2) trials with any two connec-

tions; N = 200. Therefore, we have v2&
ffiffiffiffiffiffiffiffiffiffi
1=10

p
&0:32 for the

lower value and v2&
ffiffiffiffiffiffiffiffiffiffi
2=10

p
&0:45 for the higher value. In

contrast, the original big value v2~1:48 is illustrated by a dashed

line. By this method, we may accomplish precise control of v2.

Similar results have also been obtained for other networks.

Discussion

In conclusion, we have studied the parameter diversity effect of

coupled harmonic oscillators with different masses on complex

networks, and found that the values of v2 and vN highly depend

Figure 3. The results of v2 and vN for a scale-free network.
Similar to Figs. 1 and 2 for a scale-free network (N = 200, SdT~50,
dmin~25, and dmax~125) instead.
doi:10.1371/journal.pone.0082161.g003

Figure 4. Histograms of v2 for random configurations of a SW
network. (a)–(d) N = 200 and SkT~30 with different rewiring
probabilities P: P = 0.4, 0.3, 0.2, and 0.1, respectively. The open and
solid squares represent the configurations of point-to-point-positive
and point-to-point-negative correlations between the node masses and
node degrees, respectively.
doi:10.1371/journal.pone.0082161.g004
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on the configurations of these masses on the network spatial

structure. Especially, two key matching rules including the point-

to-point matching and single-point matching determine their

extreme values. These findings might be helpful for explaining

some interesting phenomena, such as biological swarming and

flocking in nature, where the match of the head’s ability with its

position in hierarchy is always crucial for the behaviors of the

whole group. In addition, the optimal configuration not only

exhibits the importance of matching between the node dynamics

and the node position and their impact on the collective behaviors

of coupled systems, but also provides a potential control method

for the manipulation of the systems dynamics. A possible candidate

for this might be the point mutation in the protein dynamics study.

We expect that the feature of ‘‘one is enough’’ may arouse general

interest in studying the structure-dynamics-function relation in

complex systems, and the matching rules may also become the

common organization rules for various dynamical processes on

complex networks.
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