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The functions of proteins are mainly determined by their subcellular localizations in cells.

Currently, many computational methods for predicting the subcellular localization of

proteins have been proposed. However, these methods require further improvement,

especially when used in protein representations. In this study, we present an

embedding-based method for predicting the subcellular localization of proteins. We

first learn the functional embeddings of KEGG/GO terms, which are further used in

representing proteins. Then, we characterize the network embeddings of proteins on

a protein–protein network. The functional and network embeddings are combined as

novel representations of protein locations for the construction of the final classification

model. In our collected benchmark dataset with 4,861 proteins from 16 locations, the

best model shows a Matthews correlation coefficient of 0.872 and is thus superior to

multiple conventional methods.

Keywords: protein subcellular localization, network embedding, functional embedding, gene ontology, KEGG

pathway

INTRODUCTION

The functions of proteins are closely related to their subcellular locations in cells. In studying
proteins, determining their locations in cells is usually the first step, and these locations are used
as guides for designing drugs. Thus, many experimental methods for identifying protein locations
have been developed, such as in situ hybridization. Through these methods, a large number of
proteins have been verified and recorded in biological databases, such as the Swiss-Prot database.
In addition, these data serve as benchmark datasets for developing machine learning methods and
useful in the computational identification and investigation of protein locations.

Many computational methods based on machine learning for predicting protein subcellular
locations have been proposed. For example, Chou and Cai (2002) proposed a support vector
machine-based method for predicting protein locations with the use of functional domain
data. LocTree2 (Goldberg et al., 2012) presents a hierarchical model for classifying 18
protein locations. To further improve prediction effectiveness, LocTree3 incorporates homology
information into the models (Goldberg et al., 2014). Hum-mPloc 3.0 trains an ensemble classifier
by integrating sequence and gene ontology information (Zhou et al., 2017). Recently, deep
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learning has achieved remarkable results in computational
biology, particularly in identifying protein subcellular locations.
In classification tasks, deep learning automatically learns high-
level features rather than hand-designing features. For example,
DeepLoc (Almagro Armenteros et al., 2017) presents a recurrent
neural network with attention mechanism for the identification
of protein locations, using sequences alone. rnnloc (Pan et al.,
2020a) combines network embeddings and one-hot encoded
functional data to predict protein locations with the use of
a recurrent neural network. In Hum-mPloc 3.0 and rnnloc,
functional data demonstrate strong discriminating power for
different subcellular locations. However, both methods encode
functional data into a high-dimensional one-hot encoded vector,
which may cause feature disaster, especially when the number of
training samples is smaller than the number of features.

For the above issues, embedding-based methods can be
applied to the transfer of high-dimensional one-hot encoding
into distributed vectors for sequential and network data. Given
that interacting proteins generally share similar locations,
node2vec (Grover and Leskovec, 2016) can be used in learning
network embeddings for individual proteins from a protein–
protein network, which help better represent the protein
interaction information into feature vectors.

In this study, we present an embedding-based method for
predicting protein locations. It learns network embeddings
from a protein–protein network and functional embeddings
of GO/KEGG terms. Then, these learned embeddings are
used to represent proteins and further selected using feature
selection methods. Finally, an optimal feature subset and
classifier are obtained for the classification of protein subcellular
localization, and the optimal classifier is superior to multiple
conventional methods.

MATERIALS AND METHODS

In this study, we first collect a benchmark dataset for protein
localization. Then we learn network embeddings from a protein–
protein network, using node2vec and functional embeddings
from KEGG/GO functional data and word2vec. Then, the
learned embeddings are used to represent each protein. To obtain
refined combined embeddings, we use two-step feature selection
methods in determining the optimal features and classifiers in
predicting protein locations. The whole process is illustrated in
Figure 1.

Datasets
The original 5,960 protein sequences are retrieved from a
previous study (Li et al., 2014), which are extracted from Swiss-
Prot (http://cn.expasy.org/, release 54.0). The protein sequences
do not include proteins with <50 amino acids or more than
5,000 amino acids and unknown amino acids. The included
proteins are processed through CD-HIT (Li and Godzik, 2006).
Sequence similarity between each pair of proteins is <0.7. Given
that we extract features from gene ontology (GO) terms and
KEGG pathways of proteins through natural language processing
methods, we exclude proteins without GO terms and KEGG

FIGURE 1 | Flowchart of the proposed method in this study.

TABLE 1 | Number of proteins in each category.

Category Number of proteins

Biological membrane 1,483

Cell periphery 33

Cytoplasm 488

Cytoplasmic vesicle 69

Endoplasmic reticulum 188

Endosome 25

Extracellular space or cell surface 636

Flagellum or cilium 3

Golgi apparatus 95

Microtubule cytoskeleton 48

Mitochondrion 326

Nuclear periphery 31

Nucleolus 108

Nucleus 1,229

Peroxisome 45

Vacuole 54

pathways, finally obtaining a total of 4,861 proteins. The proteins
are classified into 16 categories according to their subcellular
locations. The number of proteins from each location is listed in
Table 1.
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Protein Representation
One-Hot Encoded Representation Based on GO Term

and KEGG Pathway
The GO terms and KEGG pathways are the essential properties
of proteins. A representation containing this information is an
excellent scheme for encoding each protein.

A protein p can be encoded into a binary vector,VGO(p), based
on its GO terms, which is formulated by

VGO (P) = [g1, g2, · · · , gm]
T , (1)

where m represents the number of GO terms and gi is defined
as follows:

gi =

{

1 if p is annotated by the i− th GO term
0 Otherwise

(2)

In this study, 22,729 GO terms are included, which induced a
22,729-D vector for each protein.

Moreover, with its KEGG pathways, it can also be encoded
into a vector, VKEGG(p), with the formula

VGO (P) = [k1, k2, · · · , kn]
T , (3)

where n represents the number of KEGG pathways and ki is
defined as follows:

ki =

{

1 if p is annotated by the i− th KEGG pathway
0 Otherwise

(4)

Here, 328 KEGG pathways are used, inducing a 328-D vector for
each protein.

Two vectors based on GO terms and KEGG pathways are
concatenated to a final vector. Thus, each protein is represented
by a 23,057-D vector. We use Boruta feature selection (Kursa and
Rudnicki, 2010) to reduce the computational burden and retain
relevant features.

Functional Embeddings Based on GO Term and

KEGG Pathway
Given that the one-hot encoded representation of GO
(Ashburner et al., 2000) and KEGG (Ogata et al., 1999)
terms is highly dimensional, the method by which they
are mapped into low-dimensional embeddings is extremely
important. GO/KEGG terms co-occur in a protein frequently
and may thus be similar in distance, although distances among
GO/KEGG terms vary. Thus, we apply word2vec (Mikolov et al.,
2013) to learn an in-depth representation of GO/KEGG terms,
representing each GO/KEGG term with a vector containing
continuous values.

We first collect whole human proteins with GO/KEGG
terms. Each GO or KEGG term is a word, and each protein
is a sentence. The set of human proteins is a corpus. We
run Word2vec program in genism (https://github.com/RaRe-
Technologies/gensim) on this corpus to learn the embeddings of
each GO/KEGG term.

Each protein contains multiple GO and KEGG terms. After
obtaining the embeddings for each KEGG/GO term, we average
the embeddings of KEGG/GO terms within a protein as the
functional embeddings of this protein.

Network Embeddings From a Protein–Protein

Network
In a protein–protein network, each node is a protein, and the
edge is whether the two proteins interact or not. We first
download a human protein–protein network from STRING
(version 9.1) (Szklarczyk et al., 2017), and the network consists
of 2,425,314 interaction pairs and 20,770 proteins.

node2vec is designed to learn embeddings from a graph
through a flexible sampling approach and maximizes the log
probability of nodes, given the learned embeddings:

maxe
∑

v∈V log P (N (v|e (v))) (5)

where v is the node, N(v) is the neighborhood of the node v, and
e is the mapping function from nodes to embeddings.

In this study, we use node2vec implemented at https://
snap.stanford.edu/node2vec/, and the dimension of the learned
embeddings is set at 500. Finally, the network embeddings of each
protein are obtained.

Feature Selection
Instead of directly using combined features from network
embeddings and functional embeddings for each protein, we
further use minimum redundancy maximum relevance (mRMR)
(Peng et al., 2005) to analyze these embedding features, which
has wide applications in tackling different biological problems
(Wang et al., 2018; Li et al., 2019, 2020; Zhang et al., 2019,
2020; Chen et al., 2020). This method has two criteria to evaluate
the importance of features. One is the maximum relevance to
class labels and the other is the minimum redundancy to other
features. Based on these two criteria, mRMR method generates
a feature list, named mRMR feature list. Regardless of relevance
and redundancy, mutual information (MI) is adopted in this
method to make evaluation. For two variables x and y, their MI is
computed by

I(x, y) =

∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (6)

where p(x) and p(x, y) denote the marginal probabilistic density
and joint probabilistic density, respectively. A high MI indicates
the strong associations of two variables. The mRMR feature list
is produced by adding features one by one. Initially, it is empty.
In each round, for each of features not in the list, its relevance to
class labels, evaluated by MI value of the feature and class labels,
and redundancy to features in the list, assessed by the mean of
MI values of the feature and those in the list, are calculated. A
feature with maximum difference of relevance to class labels and
redundancy to features in the list is picked up and appended
to the list. When all features are in the list, the mRMR feature
list is complete. Here, we used the mRMR program provided
in http://penglab.janelia.org/proj/mRMR/. It is executed with its
default parameters.

The mRMR method can only output a feature list. Which
features are optimum is still a problem. In view of this, the
incremental feature selection (IFS) (Liu and Setiono, 1998)
method is employed. This method can extract an optimum
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feature combination for a given classification algorithm. In detail,
from the mRMR feature list yielded by mRMR, IFS generates a
series of feature subsets with a step 1, that is, the top feature in
the list comprises the first feature subset, the top two features
comprise the second feature subset, and so forth. For each feature
subset, a classifier is built with a given classification algorithm
and samples represented by features in the subset. All constructed
classifiers are evaluated by a cross-validation method (Kohavi,
1995). We select the classifier with the best performance and call
it as the optimum classifier. The corresponding feature subset is
termed as the optimum feature subset and features in this feature
subset are denoted as the optimal features.

Synthetic Minority Oversampling
Technique
The number of proteins from different locations varies, resulting
in a data imbalance problem. To reduce the impact of
data imbalance on classification model construction, we apply
synthetic minority oversampling technique (SMOTE) (Chawla
et al., 2002) to generate some synthesized samples for minority
classes. For each location, except the location with the largest
number of proteins, we synthesize new proteins and add them
to this location until each location has almost the same number
of proteins.

Classification Algorithm
In this study, we test four classification algorithms to select
the best one for our task: decision tree (DT) (Safavian and
Landgrebe, 1991), K-nearest neighbors (KNN) (Cover and Hart,
1967), random forest (RF) (Breiman, 2001), and support vector
machine (SVM) (Cortes and Vapnik, 1995).

K-Nearest Neighbors
KNN is a simple intuitive method for classifying samples. Given
a query sample, it calculates the distance between a query sample
and training samples. Then. it selects k training samples with the
least distance, and the label of the query sample is determined
by major voting, which assign a label with the most votes to the
query sample.

Decision Tree
The DT is an interpretable classifier method, which can
automatically learn classification rules from data. It uses a greedy
strategy to build a flow-like structure; each internal node is
determined by a feature to go to the left or right child node. The
leaf node represents the outcome labels. The DT in Scikit-learn
implements the CART algorithm with Gini index. It is used in
this study.

Random Forest
RF (Breiman, 2001; Jia et al., 2020; Liang et al., 2020; Pan et al.,
2020b) is a meta predictor with multiple DTs, which are grown
from the bootstrap samples consisting of randomly selected
features. Given a new sample, RT first uses its multiple trees for
the prediction of sample labels, and then majority voting is used
in determine the label of the new sample.

Support Vector Machine
SVM (Cortes and Vapnik, 1995; Chen et al., 2018a,b; Liu et al.,
2020; Zhou et al., 2020) is a supervised classifier based on
statistical theory, and it builds a hyperplane with a maximum
margin between two classes. It first transforms nonlinear data
from a low-dimensional space to a linear high-dimensional space
with a kernel trick, then the margin between two classes in the
high-dimensional space is maximized for acquisition of SVM
parameters. Given a test sample, SVM determines the label
according to the side of the hyperplane where it is located.

In this study, we use the Scikit-learn package to implement
above four classification algorithms.

Baseline Methods
BLAST
To indicate the utility of the proposedmethod, we further employ
basic local alignment search tool (BLAST) (Altschul et al., 1990)
to construct a baseline method and make comparisons. In a
given protein sequence, BLAST search the most similar protein
sequences, measured with an alignment score, in the training
dataset. The method based on BALST directly assigns the class of
the most similar protein sequence to a given protein sequence as
its predicted class. Such method is evaluated with a Jackknife test.

DeepLoc
DeepLoc (Almagro Armenteros et al., 2017) is another deep
learning based method for predicting protein locations from
sequences. We use DeepLoc downloaded from https://github.
com/ThanhTunggggg/DeepLoc with default parameters.

RESULTS AND DISCUSSION

In this section, we first visualize the learned embeddings, using
T-SNE, then we evaluate the effectiveness of different classifiers
with different input embedding features. Finally, we compare our
proposed method with baseline methods.

Visualization of the Learned Functional and
Network Embeddings
To demonstrate the power of the learned embeddings, we
visualize these embeddings, one-hot encoded features, and the
combined network and functional embeddings, respectively. As
shown in Figure 2, the embeddings can distinguish proteins
from different locations to some extent. The learned functional
embeddings (Figure 2B) shows higher discriminate power on
some locations (e.g., for discriminating biological membrane)
than the one-hot encoded representation based on functional
data (Figure 2A). As shown in Figure 2C, the network
embeddings have some discriminate power for some locations,
for example, endosomes, which cannot be easily separated
by functional embeddings. Also, the combined embeddings
(Figure 2D) of functional and network embeddings have strong
discriminating power. Intuitively, the four types of embeddings
have similar discriminating power on the whole.
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FIGURE 2 | Visualization of one-hot encoded functional features and the learned embeddings. (A) One-hot encode representation of functional data KEGG/GO

terms; (B) the learned network embeddings from a protein-protein network; (C) the learned embeddings of functional data using word2vec; (D) the combined

network and functional embeddings.

Effectiveness of Different Classifiers With
Different Input Embedding Features
We evaluate the effectiveness of different classifiers with different
input features, including one-hot encoded representations of
GO/KEGG terms, functional embeddings, network embeddings,
and the combination of network and functional embeddings.
All the input features are first reordered using mRMR, resulting
in the mRMR feature list. Then, a series of feature subsets
are generated based on such list. On the series of feature
subsets, several classifiers are built with a given classification
algorithm. Each constructed classifier is assessed by 10-fold
cross-validation. The measurements for each classifier, including
accuracies on 16 categories, overall accuracy (ACC) andMatthew
correlation coefficient (MCC) (Matthews, 1975; Gorodkin, 2004),
are provided in Supplementary Tables 1–4. For each feature type
and each classification algorithm, a curve is plotted with MCC
as Y-axis and number of used features as X-axis, as shown in
Figure 3. The MCC values change with the number of features
for each classification algorithm. Clearly, for each feature type,
RF outperforms other three classification algorithms.

For one-hot encoded representations of GO/KEGG terms,
the corresponding curves are illustrated in Figure 3A. The
optimum RF classifier yielded the MCC of 0.858, which uses
the top 511 features. The corresponding ACC is 0.885 (Table 2).
The MCCs of the optimum DT and SVM classifiers are 0.763
and 0.832, respectively, and the corresponding ACCs are 0.805
and 0.864. They are all lower than those of the optimum RF

classifier. The MCC of the optimum KNN classifier is also 0.858,
however, the ACC is only 0.882, lower than that of the optimum
RF classifier. The accuracies of 16 categories yielded by four
optimum classifiers are shown in Figure 4A, further confirming
the superiority of RF.

Of the functional embeddings, Figure 3B shows the curve for
each classification algorithm. It can be observed that the four
optimum classifiers yield the MCCs of 0.697, 0.837, 0.762, and
0.876, respectively. The corresponding ACCs are 0.743, 0.860,
0.799, and 0.897 (Table 2), respectively. Likewise, RF still yields
the best performance. The detailed performance (accuracies on
16 categories) of four optimum classifiers is listed in Figure 4B.
Again, the optimum RF classifier produces the most high
accuracies, indicating the advantage of RF.

For the third feature type (network embeddings), we also plot
four curves, one curve corresponds one classification algorithm,
as shown in Figure 3C. The highest MCCs for four classification
algorithms are 0.612, 0.755, 0.618, and 0.803, respectively.
Corresponding ACCs are 0.669, 0.786, 0.669, and 0.835 (Table 2),
respectively. Also, the optimum RF classifier yields the best
performance. We further list the accuracies on all categories
produced by four optimum classifiers in Figure 4C. Clearly, the
optimum RF classifier is superior to other optimum classifiers.

As for the last feature type (the combination of network and
functional embeddings), four curves are plotted in Figure 3D.
The optimum RF classifier generates the MCC of 0.872 and
ACC of 0.893 (Table 2). The optimum KNN classifier yields a
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FIGURE 3 | MCC changes with the number of features for IFS with different classification algorithms. (A) one-hot encoded representation derived from KEGG/GO

terms; (B) functional embeddings from KEGG/GO terms; (C) network embeddings from a protein-protein network; (D) the combined functional and network

embeddings.

TABLE 2 | Comparisons of different classifiers with or without feature selection.

Feature type Classification algorithm ACC MCC

With feature

selection

Without

feature

selection

With feature

selection

Without

feature

selection

One-hot

encoded

representations

Decision tree 0.805 0.776 0.763 0.726

K-nearest neighbors 0.882 0.854 0.858 0.826

Random forest 0.885 0.878 0.858 0.849

Support vector machine 0.864 0.859 0.832 0.825

Functional

embeddings

Decision tree 0.743 0.717 0.697 0.666

K-nearest neighbors 0.860 0.852 0.837 0.828

Random forest 0.897 0.889 0.876 0.867

Support vector machine 0.799 0.798 0.762 0.760

Network

embeddings

Decision tree 0.669 0.648 0.612 0.588

K-nearest neighbors 0.786 0.785 0.755 0.754

Random forest 0.835 0.827 0.803 0.795

Support vector machine 0.669 0.661 0.618 0.609

Functional

and network

embeddings

Decision tree 0.746 0.720 0.699 0.670

K-nearest neighbors 0.858 0.832 0.835 0.805

Random forest 0.893 0.884 0.872 0.861

Support vector machine 0.825 0.823 0.793 0.791
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FIGURE 4 | Performance of the optimum classifiers on 16 categories with different feature types. (A) one-hot encoded representation derived from KEGG/GO terms;

(B) functional embeddings from KEGG/GO terms; (C) network embeddings from a protein-protein network; (D) the combined functional and network embeddings.

KNN, K-nearest neighbors; RF, random forest; SVM, support vector machine; DT, decision tree.

FIGURE 5 | Performance of the optimum RF classifiers on majority and

minority categories using the combined functional and network embeddings.

The majority categories contain more than 100 proteins, whereas the minority

categories consist of <100 proteins. The performance on minority categories

is not lower than that on the majority categories.

high MCC of 0.835. However, the other two optimum classifiers
produce much lower MCC (lower than 0.800). The ACCs shows
the same results (see Table 2). Accuracies on all categories
are shown in Figure 4D. Similarly, the optimum RF classifier
provides the best performance.

As mentioned above, the optimum RF classifier is all best
for four different feature types. The optimum RF classifier on
functional embeddings derived from KEGG/GO terms yields
the best MCC value (0.876). This classifier is based on the top
239 features. The optimum RF classifier with the combined
embeddings only yields an MCC value of 0.872 and is a little
worse than the RF with only functional embeddings. However, it
uses only the top 129 features, which is nearly half of the number
of features of the optimum RF classifier with only functional
embeddings (239). Thus, in this study, we use the combined
network and functional embeddings as the final input features.

We select the optimum RF classifier with the combined
embeddings as the proposed method. As the sizes of 16
categories are of great difference, it is necessary to investigate
the performance of such classifier on majority and minority
categories. We set 100 as the threshold, that is, categories
containing more than 100 proteins are deemed as majority
categories, whereas other categories are termed as minority
categories. In this case, we obtain seven majority categories
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TABLE 3 | Performance of BLAST, DeepLoc, and our proposed method.

Class BLAST DeepLoc Ours

Biological membrane 0.843 – 0.829

Cell periphery 0.424 – 1.000

Cytoplasm 0.455 – 0.852

Cytoplasmic vesicle 0.232 – 1.000

Endoplasmic reticulum 0.532 – 0.989

Endosome 0.280 – 1.000

Extracellular space or cell surface 0.739 – 0.936

Flagellum or cilium 0.000 – 1.000

Golgi apparatus 0.379 – 1.000

Microtubule cytoskeleton 0.333 – 1.000

Mitochondrion 0.356 – 0.982

Nuclear periphery 0.097 – 1.000

Nucleolus 0.241 – 1.000

Nucleus 0.733 – 0.884

Peroxisome 0.289 – 0.978

Vacuole 0.333 – 1.000

Overall accuracy 0.660 0.659 0.893

MCC 0.576 0.568 0.872

and nine minority categories. The performance on majority and
minority category of the proposed classifier is shown in Figure 5.
It is surprising that the performance onminority categories is not
lower than that on the majority categories. This result indicates
that the performance of such classifier is not influenced by the
imbalanced problem after SMOTE is applied.

Comparison of Classifiers With or Without
Feature Selection
In this study, we employed a feature selection procedure to
improve the performance of different classification algorithms.
Table 2 lists the performance of different classification algorithms
on four feature types with or without feature selection. It can
be observed that the performance of DT is enhanced most by
the feature selection. MCC is improved about 3% and ACC is
enhanced about 2.5%. The improvement on the performance
of KNN yielded by feature selection is quite different for
different feature types. For one-hot encoded representations and
combined functional and network embeddings, the performance
is evidently enhanced, while the performance is improved limited
for other two feature types. As for other two classification
algorithms (RF and SVM), the improvement is not very evident
(almost all <1% for both ACC and MCC). Anyway, it can be
confirmed that the employment of feature selection can improve
the performance of all classification algorithms.

Proposed Method Is Superior to
State-of-the-Art Methods
To demonstrate the power of our proposed method, we compare
our method with published methods, including BLAST and
Deeploc. The results are listed in Table 3. BLAST and DeepLoc
nearly have the same level of performance and are inferior to
our proposed method. Of the 16 locations, our method can

achieve 100% accuracy on nine locations. Here, DeepLoc has the
worst performance, and a potential reason is that our benchmark
dataset is heavily imbalanced and results in biased preference for
majority classes. To resolve the data imbalance issue, our method
applies SMOTE in the construction of a balanced training set.

CONCLUSION

In this study, we present an embedding-based method to
predict protein subcellular locations by integrating protein
interactions and functional information. The proposed
method first learns network embeddings from a protein–
protein network and functional embeddings from associations
between proteins and GO/KEGG terms. We demonstrate
that our proposed method is superior to state-of-the-
art methods, and the learned embeddings offer valuable
biological insights.
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