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Abstract: Natural hazards have caused damages to structures and economic losses worldwide. Post-
hazard responses require accurate and fast damage detection and assessment. In many studies, the
development of data-driven damage detection within the research community of structural health
monitoring has emerged due to the advances in deep learning models. Most data-driven models for
damage detection focus on classifying different damage states and hence damage states cannot be
effectively quantified. To address such a deficiency in data-driven damage detection, we propose a
sequence-to-sequence (Seq2Seq) model to quantify a probability of damage. The model was trained
to learn damage representations with only undamaged signals and then quantify the probability of
damage by feeding damaged signals into models. We tested the validity of our proposed Seq2Seq
model with a signal dataset which was collected from a two-story timber building subjected to
shake table tests. Our results show that our Seq2Seq model has a strong capability of distinguishing
damage representations and quantifying the probability of damage in terms of highlighting the
regions of interest.

Keywords: structural health monitoring; damage detection; deep learning; Seq2Seq model

1. Introduction

Natural hazards including hurricanes and earthquakes have caused damages to struc-
tures and incurred great economic costs in many countries. Post-hazard responses are
critical to save lives and mitigate economic losses, requiring accurate and efficient damage
assessment. The traditional approach to assessing post-hazard damage is on-site investi-
gations by employing expert inspectors to detect damages. Because of the accessibility to
specific locations, such as underneath a bridge deck, is often low, on-site investigations
have unavoidable disadvantages in terms of emergency response and post-hazard recovery
efforts. Additionally, manual visual inspection is subjective and laborious. Real-time
inspection using sensor data to address these drawbacks of on-site investigations have led
to the use of emerging technologies within the research community of structural health
monitoring (SHM) [1].

The core of real-time inspection technology is dependent on the sensor data. Advance-
ments in sensor technologies make rapidly acquiring rich data possible. Deep learning (DL)
models have become a new paradigm in data-driven SHM [2,3]. The key advantage of DL
models is that features related to damage patterns can be automatically extracted when de-
tecting damage based on sensor data. The driving forces behind the revolutionary progress
of DL-based damage detection can be attributed to the following factors: (1) rich sensor
data and powerful computational resources allow large-scale training based on DL models;
and (2) the superiority of DL algorithms in extracting features enables data-driven models
to outperform conventional inspection approaches in terms of accuracy and efficiency.

Vision-based and vibration-based models are two main data-driven models using
DL for detecting damage. Vision-based models implement computer vision technologies
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to detect damage in structures. Kong and Li [4] proposed a vision-based approach for
detecting fatigue cracks. Results show that their method can stably recognize the fatigue
cracks irrespectively of ambient lighting conditions. Cha et al. [5] proposes a vision-based
method using a convolutional neural network (CNN) for identifying concrete cracks. Their
CNN models were trained on a dataset of 40,000 images with 256 × 256 pixel resolutions,
achieving approximately 98% accuracy. Cha et al. [6] trained a region-based DL model
to recognize four-class damage types, including bolt corrosion, steel corrosion, steel de-
lamination, and concrete crack given a dataset including 2366 images. Gao et al. [7] used
transfer learning to avoid overfitting when training Visual Geometry Group (VGGNet) on
a relatively small dataset of 2000 images. Their damage detection tasks include compo-
nent recognition, spalling condition determination, damage level estimate, and damage
type classification. Additionally, unmanned aerial vehicles with high-resolution cameras
have been deployed with well-trained DL models, achieving the goal of broadening the
inspection scope and improving the accessibility [8,9]. These advancements in vision-based
methods have successfully addressed the weakness of conventional on-site investigations.
However, the main limitation of vision-based models concerns the invisible and internal
damage of structures not being recognized. Furthermore, vision-based models aim to iden-
tifying different damage classes with high accuracy instead of quantifying corresponding
damage states.

Vibration-based models provide promising solutions to the quantification of damage
using sensor data such as acceleration responses. These models rely on changes in vibration
characteristics due to damage and recognize features that are related to damage from
vibration data. Although DL models have been extensively employed to detect damage,
limitations are summarized as follows: (1) the probability of damage cannot be quantified
according to most proposed methods; (2) most proposed methods rely on a large amount
of sensor data, requiring a high computational capacity; (3) analyses regarding damage
representations to understand its effects on the quantification of damage are small. There-
fore, we propose a Seq2Seq model to quantify the probability of damage given signals
from a unknown damage state to address challenges in current data-driven models. We
trained the model to learn damage representations with only undamaged signals and
then quantified the probability of damage by feeding damaged signals into models. The
main contribution of this paper are two-fold: (1) our model only requires the undamaged
signals with simple signal processing, improving the computational efficiency; (2) our
model is the first to perform quantified damage detection on a 2-story timber building
under earthquake excitations.

The rest of paper is organized as follows: Section 2 reviews current progresses of
data-driven damage detection in SHM; Section 3 describes the architecture of our proposed
Seq2Seq model; Section 4 presents the experiments to verify our Seq2Seq model, including
the project overview, training details, and results; Section 5 provides a comprehensive
analysis to better understand the model in terms of learning curve, damage representation,
and the probability of damage; and Section 6 summarizes the highlights of our Seq2Seq
model and conclusions from experiments.

2. Related Work

In many studies, DL models have become most promising technology in SHM. Various
DL models are extensively used to identify or locate damage. Rafiei and Adeli [10] use a
deep restricted Boltzman machine (DRBM) to determine the damage states of a building,
with DRBM automatically extracting features from acceleration signals and being useful
in identifying both global and local damages. Cha and Wang [11] collected acceleration
responses from a steel bridge in the laboratory. First, the continuous wavelet transform
and fast Fourier transform were performed to transfer the time series data to the frequency
domain. They build an AutoEncoder with a CNN architecture as a feature extractor.
Then, a one-class support vector machine (OC-SVM) is trained with extracted features
to classify levels of damage. Wang and Cha [12] also proposed an end-to-end damage
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detection workflow. They designed an AutoEncoder to reconstruct acceleration signals and
three damage-sensitive features were then computed according to reconstruction losses.
Similarly, an OC-SVM was trained with these damage-sensitive features to predict levels
of damage, with an accuracy up to 97.4%. Avci et al. [13] used output-only response
data to identify the damage, achieving an accuracy of 99.46% when classifying three-class
levels of damage. Abdeljaber et al.’s model [14] can predict binary damage states but only
obtain the system-level damage information. Li and Sun [15] trained a CNN model to
recognize different levels of damage in a bridge, accurately predicting different severity
of damage. Ni et al. [16] built an AutoEncoder with a CNN architecture as a feature
extractor by feeding time series signals. Their model was validated using the acceleration
responses of a long-span bridge under ambient excitations, detecting damage with a high
accuracy. Li et al. [17] proposed a probabilistic structural damage detection algorithm
based on Sparse Bayesian Learning and model reduction to infer the stiffness degradation
from vibration responses. The algorithm is verified with the vibration responses of two
beam structures and a long-span cable-stayed bridge and can reliably detect and quantify
various damage scenarios. Yang et al. [18] proposed a novel damage recognition network
designed as an encoder–decoder–encoder combination for detecting damage in a building.
They trained the model using the Fourier spectra of acceleration signals in the undamaged
state to recognize the pattern that is related to damage. Then, the Fourier spectra of the
acceleration signals from a unknown damage state are fed into the damage recognition
network to quantify the level of damage accordingly. Sony et al. [19] used a recurrent
neural network to identify and locate damage based on vibration responses of the building.
Their proposed model was verified on two benchmark datasets for binary and multi-class
damage classification, respectively.

3. Methodology

Figure 1 illustrates the workflow of quantifying the probability of damage using
Seq2Seq models, including signal processing and damage representation learning. In the
first step, the signal processing was required to denoise the original signals with wavelet
transform. Then, Seq2Seq models were trained using signals in the undamaged state to
learn damage representations and quantify the probability of damage accordingly:

Start

Divide time series signals into a predefined 

number of segments

Denoise signal segments using 

wavelet transform

Reconstruct undamaged signal segments using 

Seq2Seq models

Quantify the probability of damage using 

reconstruction losses of damaged signal segments

End

Signal processing

Damage representation

learning

Figure 1. Workflow.

3.1. Signal Processing

The signal processing consists of two main steps, namely segmentation and denoising.
First, we divided each complete time series signal of t seconds that was sampled under a fre-
quency of fs Hz into n segments, with the length of each segment being t× fs/n. A proper
n was determined such that each signal segment included sufficient features for learning
representations given a damage state. Then, wavelet transform-based signal denoising was
performed to eliminate the effect of noises in signals on the damage representation learning.
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The process of signal denoising using wavelet transform can be summarized as follows:
(1) perform the wavelet transform on each original segments to compute corresponding
wavelet coefficients; (2) clean noises by carefully setting a limit to conserve large wavelet
coefficients; (3) recover the denoised signals by performing the inverse wavelet transform
according to preserved wavelet coefficients from step 2. Denoised signal segments were
finally normalized to a range of ±1 for Seq2Seq models.

3.2. Damage Representation Learning

A Seq2Seq model is a neural network that computes a conditional probability of p(y|x)
of mapping a source sequence, x = {x1, . . . , xn}, to a target sequence, y = {y1, . . . , yn} [20].
The Seq2Seq models were successfully applied for machine translations [20], exhibiting
their strong capability of extracting representations of the sequence data. As illustrated in
Figure 2, the basic architecture of a Seq2Seq model was comprised of two sub-networks:
(a) an encoder that extracts damage representations h for each signal segments; and (b)
a decoder that reconstructs a signal value at each time step and hence decomposes a
conditional probability as

log p(y|x) =
n

∑
j=1

log p(yj|y<j) (1)

E
n
c
o
d
e
r

D
e
c
o
d
e
r

...

...

...

...

<eos> <sos>

<eos>

Figure 2. Seq2Seq model—a stacking recurrent architecture for reconstructing segmented signals.
Here, <sos> marks the start of a signal; and <eos> marks the end of a signal.

A direct option to build a Seq2Seq model is to use a recurrent neural network (RNN)
architecture. Alternatively, to prevent the gradient vanishing during the training of long
sequences, the long short-term memory (LSTM) unit and gated recurrent unit (GRU) can
be used in a Seq2Seq model.

In more detail, one can parameterize the conditional probability of encoding each
segmented signal x as

p(h|x) = f (x, h0; θp) (2)

where f determines the probability distribution of the damage representation given the
signal, often referred to as the posterior probability, which can either be a vanilla RNN,
an LSTM, or a GRU. h0 is the hidden state at the initial time step, which is often set as an
all-zero vector. θp is the parameter set of the encoder.

Then, one can parameterize the condition of decoding each segmented signal with a
damage representation h from an encoder as

p(yj|y<j, h) =
‖Wh∗j ‖2

2

‖xj‖2
2

(3)
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with W being the weight matrix of the fully connected layer that outputs a signal-sized
vector. ‖ · ‖2

2 denotes the 2nd power of the L2 norm. Here, h∗j is the RNN hidden unit in the
decoder, which can be computed as

h∗j = g(xj−1, h∗j−1; θq) (4)

where g recursively outputs the current hidden state according to the previous hidden state.
The initial hidden state of the decoder h∗0 is the damage representation h that is extracted
from the encoder. Likewise, g can be either a vanilla RNN, an LSTM, or a GRU. θq is the
parameter set of the decoder.

In this work, our training objective is to reconstruct the signal with a Seq2Seq model
and hence the loss function is formulated as follows:

L(x; θp, θq) = ∑
x
− log p(y|x) (5)

with x and y being the original and reconstructed signals, respectively.
The procedure of learning damage representations with a Seq2Seq model is given in

Algorithm 1.

Algorithm 1 Damage representation learning
Input: Original signal x
Input: Number of iterations N, signal length L
Output: Reconstructed signal y
Output: Parameter sets of a Seq2Seq model θp, θq

1: Initialize an initial hidden states h0
2: Initialize parameter sets of encoder and decoder θp, θq
3: for i ≤ N do
4: Extract hidden states: h← f (x, h0; θp)
5: for j ≤ L do
6: Extract hidden states: h∗j ← g(xj−1, h∗j−1; θq)

7: Reconstruct signal: yj ←Wh∗j
8: end for
9: Update θp, θq by optimizing Eq.(5)

10: end for
11: return θp, θq

3.3. Probability of Damage

We trained a Seq2Seq model with only undamaged signals to learn their representa-
tions and hence the model’s reconstruction results are supposed to deviate when inputting
damaged signals. The probability of damage according to the extent of deviation is defined
as suggested in [18]:

Pd = 1− exp (−e) (6)

with e being the reconstruction loss, which can be computed as follows:

e = L(x̃; θp, θq) (7)

where θp and θq are the parameter sets of a Seq2Seq model that is trained by undamaged
signals, while x̃ is the damaged signal.

4. Experiment

In this section, we test the feasibility and effectiveness of using a proposed Seq2Seq
model to learn damage representations with a two-story timber building subjected to shake
table tests [21]. To distinguish the capacity of our model in terms of learning damage
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representations, we used a vanilla AutoEncoder, a stacking architecture of multilayer
perceptron (MLP), as a baseline model.

4.1. Project Overview

The test building has a symmetric plan of 6.10 m by 17.68 m. The first floor height is
3.66 m from the base and the roof height is 3.05 m from the first floor. The total building
elevation is 6.71 m [21].

The test building was subjected to real ground motions that represent four increasing
hazard levels for the San Francisco site including service-level earthquake (SLE), design-
basis earthquake (DBE), maximum considered earthquake (MCE), and 1.2×MCE. To un-
derstand the effects of the damage inflicted to the test building as excitation intensity
increases, white noise tests were conducted before and after each ground motion test. To
quantitatively reflect the severity of damage after each hazard level, we used white noise
test WN1 (prior to excitation) to learn damage representations and four white noise tests
WN2, WN11, WN17, and WN21 to predict the probability of damage for different hazard
levels. The white noise excitation consists of a root mean squared acceleration of 0.03 g.
The white noise test data are available in DesignSafe-CI [22].

Microelectromechanical system (MEMS) accelerometers that are inertial sensors with
a low frequency response range but offer lower noise with an acceleration amplitude range
of ±5 g were used to measure the dynamic response of the test building [23]. The results
reported in [21] show that the amplitude of vibrations induced by the white noise tests is
0.2 g, which does not exceed the measurement range of MEMS accelerometers. The bi-axial
accelerometers were placed at seven locations on the first floor and roof, as illustrated in
Figure 3.

1/R-402

N

1/R-401

1/R-403 1-301/R-313 1/R-103

1/R-102

1/R-101

Shaking

Figure 3. Sensor layout.

4.2. Training Details

The overall statistical information of datasets is summarized in Table 1. Signals are
sampled under a frequency of 240 Hz. The durations of white noise tests WN1, WN2,
WN11, WN17, and WN21 are 295.5, 267.0, 176.0, 160.5, and 166.0 s, with the length of signals
being 70,902, 64,080, 42,240, 38,520, and 39,840, respectively. White noises are generated by
superimposing multi-frequency sinusoidal waves and random noises. The multi-frequency
sinusoidal waves are periodical, and the random noises represent the ambient environment
excitations. The first white noise test is the longest so that it is beneficial for our model
to learn damage representation because more noise can improve model’s robustness and
generalization. We divided a signal into 500 segments, as suggested in [10] and pad the last
segment with extra zeroes if its length is less than 500 to ensure that each signal segment
has the same length. Figure 4 illustrates the white noise data recorded by sensor 1-101 in
WN1 and WN21.
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Figure 4. White noise data of sensor 1-101: (a) WN1; and (b) WN21.

Table 1. Summary of dataset.

White Noise Test WN1 WN2 WN11 WN17 WN21

Excitation intensity NA SLE DBE MCE 1.2×MCE
Duration (s) 295.5 267.0 176.0 160.5 166.0
Length of signal 70,920 64,080 42,240 38,520 39,840
Length of a segment 500 500 500 500 500
Number of segments 142 129 85 78 80
Dataset size 3976 3612 2380 2184 2240

Given a segmented signal dataset D = [X1, ..., Xs]T ∈ Rs×d×n×l , with s being the
number of accelerometers (s = 14 in this study), m being the number of measurement
directions of an accelerometers (d = 2 in this study), s being the number of signal segments
(n = 500 in this study), and l being the length of a signal segment. Xi,j,k,: ∈ Rl represents a
signal of the kth segment in the jth measurement direction of the ith sensor. For the baseline
model, we reshaped D to Db ∈ Rs×n×dl by connecting signals in two directions end to end.

Table 2 summarizes the hyper-parameters of training a Seq2Seq model and a baseline
model. Our Seq2Seq model has one layer in both encoder and decoder, each with 500 cells,
and 2-dimensional embeddings. We used the following settings in training a Seq2Seq
model and a baseline model: (a) weights are uniformly initialized in [−1, 1]; (b) the hidden
size (dimensionality of damage representations) is 128; (c) we trained models using SGD
with a momentum coefficient of 0.9; (d) a fixed learning rate of 0.1 was employed; (e) our
batch size was 256 and (f) the numbers of epochs were 1000 and 10,000 for a Seq2Seq model
and a baseline model, respectively. In addition, dropout with a of probability 0.5 was used
for a Seq2Seq model and the normalized gradient was rescaled when its norm exceeded 5.
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Table 2. Hyper-parameter settings.

Model Seq2Seq Baseline

Architecture {RNN, LSTM, GRU} MLP
Weight initialization U(−0.01, 0.01) 1

Hidden size 128
Optimizer SGD with momentum
Learning rate 0.1
Batch size 256
Number of epoch 1000 10,000

1 Uniform distribution.

Our code was implemented in PyTorch and is available at the repository: https:
//github.com/qryang/Damage-representation (accessed on 1 December 2021). When run-
ning on an Amazon Web Service g4dn.xlarge instance, we achieved speed of reconstructing
6000 signals per second. It normally takes 5–6 min to complete training a model.

4.3. Reconstruction Results

Figure 5 illustrates the reconstructed results of the 10th segments by using a Seq2Seq
model (LSTM architecture) and a baseline model. Our Seq2Seq model has a better result
of reconstructing signals compared with the baseline model. The baseline model can only
reconstruct low frequency components in the EW direction while losing majority of high
frequency components in the NS direction. In contrast, our Seq2Seq model can restore both
low frequency and high frequency components in two directions. This can be attributed
to memory cells in an LSTM unit effectively establishing the relevance of signals. Better
reconstructed results indicate a stronger capacity of learning damage representations.
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Figure 5. Cont.
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Figure 5. Reconstructed signals: (a) Seq2Seq model (LSTM architecture); and (b) baseline model.

5. Discussion

In this section, we conducted a comprehensive analysis to better understand our
Seq2Seq models with respect to learning curves, damage representation, and the probability
of damage.

5.1. Learning Curve

Figure 6 illustrates the learning curves of Seq2Seq models and a baseline model, with
losses being transferred to a logarithmic scale. For Seq2Seq models, the loss of a vanilla
RNN architecture drops quickly at the early stage and smoothly decreases throughout
the training process. The LSTM and GRU architectures have a similar convergence speed,
converging after 300 epochs. The GRU architecture achieves the lowest loss among all
architectures. The baseline model converges after 10,000 epochs but with higher loss
compared to Seq2Seq models. The Seq2Seq model converges faster to lower losses than the
baseline model but the trade-off is that its time consumption of an epoch is 10 times that of
the baseline model.
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Figure 6. Learning curves: (a) Seq2Seq models; and (b) baseline model.

5.2. Damage Representation

The reliability of quantifying the probability of damage by models is heavily dependent
on the damage representation. Learning the damage representations of signals is essential
to extract useful information when building a decoder to reconstruct signals. In the case
of our Seq2Seq model, a probabilistic model, a good damage representation is often one
that captures the posterior distribution of the underlying explanatory factors for original
signals. Good damage representation is also effectively condensed information extracted
by an encoder [24].
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We used a 128-dimensional hidden vector extracted by an encoder as the damage
representation for both Seq2Seq models and the baseline model. To visualize the distribu-
tion of damage representations, we employed the linear discriminant analysis to obtain
2-dimensional damage representations. We chose the GRU architecture as representative of
Seq2Seq models as it achieves the lowest loss during the training.

Figure 7 illustrates dimensionally reduced damage representations extracted by a
Seq2Seq model with the GRU architecture and a baseline model. The distributions of
damage representations in the damaged states (WN2, WN11, WN17, and WN21) are dis-
tinct from those in an undamaged state (WN1). However, the distributions of damage
representations extracted by Seq2Seq models and the baseline model exhibits different
patterns. For a Seq2Seq model with the GRU architecture, damage representations for a
heavier damage states clearly scatter with a larger distance to the undamaged state. In
contrast, the distribution of damage representations extracted by the baseline model is
overlapped without effectively clarifying the different damage states. Damage representa-
tions from different damage states contain duplicate information. The better capability of
reconstructing signals, especially the high frequency components of our Seq2Seq models,
ensures that damage representations contain sufficient information to distinguish different
damage states. Therefore, we conclude that a Seq2Seq model behaves better in terms of the
discriminability of damage representations than the baseline model.
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Figure 7. Damage representations: (a) Seq2Seq model (GRU architecture); and (b) baseline model.

5.3. Probability of Damage

We trained Seq2Seq models to learn damage representations with only undamaged
signals and then quantify the probability of damage by feeding damaged signals into
models, indicating the severity of damage. Practitioners can reasonably judge the conditions
of structures and trace the progress of damage with the assistant of probabilities of damage.

In this section, we also used a Seq2Seq model with the GRU architecture to quantify
the probability of damage as comparisons with the baseline model. Table 3 summarizes
the results of the probabilities of damage by using our Seq2Seq model and the baseline
model. The probabilities of damage computed by our Seq2Seq model show an ascending
trend overall, indicating the effectiveness of its capability to quantify damage states. The
probabilities of damage computed by our Seq2Seq model and the baseline model are not the
exact same. This is due to their different capabilities of learning damage representations.
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Table 3. Summary of probabilities of damage.

Model Seq2Seq 1 Baseline
Sensors SLS DBE MCE 1.2×MCE SLS DBE MCE 1.2×MCE

1-101 0.074 0.276 0.367 0.578 0.222 0.366 0.390 0.513
1-102 0.061 0.226 0.279 0.500 0.238 0.384 0.403 0.571
1-401 0.050 0.179 0.234 0.380 0.220 0.386 0.407 0.562
1-402 0.048 0.196 0.240 0.421 0.217 0.357 0.410 0.574
1-103 0.074 0.239 0.318 0.516 0.197 0.359 0.390 0.495
1-301 0.084 0.263 0.375 0.526 0.183 0.339 0.358 0.483
1-403 0.057 0.211 0.286 0.423 0.200 0.391 0.405 0.562
R-101 0.078 0.275 0.304 0.474 0.203 0.328 0.389 0.485
R-102 0.060 0.219 0.265 0.391 0.204 0.335 0.402 0.538
R-401 0.074 0.243 0.283 0.425 0.202 0.318 0.391 0.514
R-402 0.076 0.236 0.267 0.456 0.193 0.320 0.370 0.518
R-103 0.052 0.225 0.244 0.399 0.180 0.371 0.377 0.531
R-313 0.055 0.202 0.239 0.371 0.189 0.354 0.401 0.510
R-403 0.071 0.243 0.259 0.406 0.188 0.338 0.368 0.501

1 GRU architecture.

Figure 8 illustrates the results of probabilities of damage at places where sensors
locate under excitations of increasing intensity by using the Seq2Seq model with the GRU
architecture and the baseline model. Probabilities of damage computed by the baseline
model are similar irrespectively of regions on the floor. This can be attributed to the
representations extracted by the baseline model being almost overlapped, resulting in the
model not being able to effectively quantify the distinct probability of damage. Unlike the
baseline model, the probabilities of damage computed by a Seq2Seq model can successfully
distinguish different regions on the first floor and roof. Probabilities of damage at the center
on Level 1 and at the corners on the roof are larger than in other regions. Therefore, our
Seq2Seq model has a stronger capability of quantifying the probability of damage in terms
of highlighting the regions of interest.

Table 4 summarizes the actual damage levels in terms of the degradation of stiffness, as
suggested in [12]. Given that the natural stiffness is proportional to the frequency squared
if the test building is considered as a single-degree-of-freedom system for simplicity, we
used the results of natural frequencies that are obtained by the modal analysis in [23] to
estimate the degradation of stiffness. The stiffness of test building degrades by 25.9%,
32.5%, 44.2%, 46.2%, and 56.8% compared with the undamaged state for four increasing
hazard levels. Conceptually, the percentage of degradation of stiffness corresponds to the
probability of damage. The core difference is that the percentage of degradation of stiffness
is a global index as the representative of damage state, the probability of damage is a local
index which can highlight the severity of damage at different regions.
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Figure 8. Probability of damage: (a) first floor (Seq2Seq model); (b) roof (Seq2Seq model); (c) first
floor (baseline model); and (d) roof (baseline model).

Table 4. Summary of damage levels.

White Noise Test Natural Frequency [23] Degardation
of Natural Frequency

Degradation
of Stiffness

WN1 1.39 Hz NA NA
WN2 1.22 Hz 12.2% 25.9%
WN11 1.18 Hz 15.1% 32.5%
WN17 1.11 Hz 20.1% 44.2%
WN19 1.10 Hz 20.9% 46.2%
WN21 1.04 Hz 25.2% 56.8%

6. Conclusions

In this paper, we proposed a Seq2Seq model to quantify the probability of damage
given white noise signals. We trained a model with undamaged signals to learn damage
representations and then fed damaged signals into a model. Damage representations can
recognize different damage states and determine the probability of damage according to
the deviation of reconstructed signals.
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We verified the effectiveness of using the proposed Seq2Seq model to learn damage
representations with a 2-story timber building subjected to shake table tests. To distin-
guish the capacity of our model in terms of learning damage representations, we used
a vanilla AutoEncoder as a baseline model. Results show that our Seq2Seq model can
reconstruct signals with a low loss while the baseline model can only reconstruct low
frequency components but lose a majority of high frequency components. Compared with
the baseline model, our Seq2Seq model has a stronger capability to distinguishing damage
representations and quantifying the probability of damage in terms of highlighting the
regions of interest.

Our Seq2Seq model is a general model for learning damage representations with the
time series data. In future work, one could extend our Seq2Seq model to other areas such
as anomaly detection.
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