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Abstract: Periodontal disease can cause irreversible damage to tooth-supporting tissues such as the
root cementum, periodontal ligament, and alveolar bone, eventually leading to tooth loss. While
standard periodontal treatments are usually helpful in reducing disease progression, they cannot
repair or replace lost periodontal tissue. Periodontal regeneration has been demonstrated to be
beneficial in treating intraosseous and furcation defects to varied degrees. Cell-based treatment
for periodontal regeneration will become more efficient and predictable as tissue engineering and
progenitor cell biology advance, surpassing the limitations of present therapeutic techniques. Stem
cells are undifferentiated cells with the ability to self-renew and differentiate into several cell types
when stimulated. Mesenchymal stem cells (MSCs) have been tested for periodontal regeneration
in vitro and in humans, with promising results. Human umbilical cord mesenchymal stem cells
(UC-MSCs) possess a great regenerative and therapeutic potential. Their added benefits comprise
ease of collection, endless source of stem cells, less immunorejection, and affordability. Further, their
collection does not include the concerns associated with human embryonic stem cells. The purpose
of this review is to address the most recent findings about periodontal regenerative mechanisms,
different stem cells accessible for periodontal regeneration, and UC-MSCs and their involvement in
periodontal regeneration.

Keywords: umbilical cord mesenchymal stem cells; dental stem cells; non-dental stem cells;
periodontal disease; periodontal regeneration

1. Introduction

Periodontitis, a common and widespread condition, can cause irreparable deteriora-
tion of the tooth supporting structures and consequent tooth loss if left untreated [1]. When
soft (periodontal ligament (PDL)) and hard (alveolar bone (AB) and root cementum (RC))
connective tissues, a complex anatomical structure of the periodontium, are destroyed,
periodontal regeneration is of major therapeutic importance [2]. The fundamental objective
of periodontal treatment is to repair the structure as well as function of the injured peri-
odontium in a spatially defined microenvironment, as well as to manage the periodontal
inflammation and development of periodontitis.
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While traditional periodontal and/or surgical therapies are typically effective in
limiting disease development, they cannot repair destroyed periodontal tissue or restore
its functioning. Despite the use of different regenerative treatments, such as guided
tissue regeneration therapy (GTR) [3,4], bone replacement grafts (BRGs) [5–8], multiple
growth factor-based treatment [9,10], and enamel matrix derivative [11–13], the results are
sometimes disappointing, with poor clinical predictability.

Periodontal regeneration has been shown to be effective in managing intraosseous
and furcation defects with varying degrees of efficacy [14,15]. However, regenerative
procedures are still subject to clinical failures or incomplete success due to a variety of
limitations, including patient-specific factors (such as smoking, poor plaque control, etc.),
improper access flaps and biomaterials applied [16], and poor periodontal training [17].
The desired therapeutic outcome is regeneration of PDL, RC, and AB in previously injured
periodontium; however, this has not always been demonstrated [18]. To address these
constraints, novel access flaps [19–24] and biological agents [25,26] have been created
in recent years; nonetheless, clinical studies have shown a still debatable effectiveness,
and histological data is often lacking. As a result, the quest for innovative regenerative
procedures remains a difficult area of periodontal research.

With evolving tissue engineering and progenitor cell biology, cell-based treatment
for periodontal regeneration will become more efficient and predictable, overcoming the
limits of current therapeutic modalities [4]. Stem cells are appealing in this sector. They are
undifferentiated cells with regenerative potential due to their power of differentiation and
self-renewal into various types of cell when stimulated [27]. These cells can be inoculated
directly or supplied to the defect site via cell carriers or biomaterial scaffolds [28–30].
Mesenchymal stem cells (MSCs) have been used in vitro and in people for periodontal
regeneration, with encouraging results [31]. MSCs have been extracted and employed from
dental and non-dental tissues [32]. Dental pulp stem cells (DPSCs) [33], human exfoliated
deciduous tooth cells (SHEDs) [34], periodontal ligament stem cells (PDLSCs) [35], dental
follicle stem cells (DFSCs) [36], and stem cells from apical papilla (SCAPs) [37] are examples
of MSCs from dental tissues. Non-dental origin stem cells of various types have been
employed in periodontal regeneration. The most studied stem cells have been bone marrow-
derived mesenchymal stem cells (BMMSCs), embryonic stem cells (ESCs), adipose-derived
stem cells (ADSCs), and induced pluripotent stem cells (iPSCs).

Human umbilical cord mesenchymal stem cells (UC-MSCs) are produced from um-
bilical cords and are a cheap and endless source of stem cells. Their collection does not
necessitate the invasive method required for PDLSCs and does not include the concerns
associated with human ESCs [38]. Furthermore, human UC-MSCs were found to be pri-
mordial MSCs with significant plasticity and developmental flexibility [39]. Furthermore,
human UC-MSCs have shown little immunorejection in vivo and are not tumorigenic [39].
Because of these benefits, human UC-MSCs are a promising choice for periodontal regener-
ation treatment.

The purpose of this review is to discuss the current literature available related to regen-
eration mechanisms of periodontium, different types of stem cells available for periodontal
regeneration, human UC-MSCs and their role in periodontal regeneration. This narrative
review was reported using the Scale for the Assessment of Narrative Review Articles
(SANRA) standards. Various databases (PubMed and Google Scholar) were examined to
identify the most relevant material [40].
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2. Etiopathophysiology of Periodontal Tissue and Its Degeneration
2.1. The Dental Plaque and Calculus

The dental plaque-induced periodontal diseases (as the name implies) are primarily
caused by tooth plaque microbes [41]. Indeed, the bacterial oral biofilm has been widely
investigated and may contain up to 150 distinctive species in one individual, with up to
800 species found in human oral biofilm to date [42]. The dispute over whether species
are predominantly virulent and can cause infection has raged for years and is still unan-
swered [43,44]. Known pathogens comprise Gram-negative anaerobes, spirochetes, and
possibly viruses; however, it is more likely that dysbiosis (microbic biofilm discrepancy)
is the pathogenic ‘unit’ rather than a specific pathogen [45]. If periodontal disease (PD)
was caused by one or a few particular bacteria, a focused modification of the microbial
plaque rather than complete biofilm clearance would be the recommended treatment
approach [44].

In prospective cohort studies [46], aggressive PDs were related to colonization by
particular clones of Aggregatibacter actinomycetemcomitans. Other species, including Porphy-
romonas gingivalis, have been linked to severe or advanced PD [47], although the microbial
biofilm temporalty and its link to PD is less evident. A systematic review [48] showed that
aggressive and chronic periodontitis (CP) might not be distinguished depending on indi-
vidual periodontal infections, implying that the causal microbial biofilm in both conditions
is comparable. Most people have had several viral infections, and viral DNA or RNA might
still be identified in bodily tissues long after symptoms of illness have faded, and these
quiescent viruses can revive during inflammatory outbursts [49]. As a result, establishing
a cause–effect relationship between enhanced viral existence and PD is challenging, and
links between PD and herpes viruses may just be epiphenomena [50]. As a result, the viral
significance in the PD etiology remains debatable. However, when used in conjunction
with conventional therapy, antiviral therapy decreased probing pocket depth (PPD) and
periodontal inflammation [51], and is thus suggested for periodontal treatment by certain
clinicians [52].

Dental plaque can be unmineralized or mineralized: supragingival plaque (present
on the oral and tooth surfaces) is generally unmineralized; however, subgingival plaque
(between the gingival margin and the tooth’s neck or root) is usually black in color and
mineralized. Subgingival plaque mineralization is created by serum transudate ions, trig-
gered by the periodontal tissue infection, whereas supragingival plaque mineralization is
caused by salivary calcium and phosphate ions accumulated within the dental plaque [53].

2.2. Immunological Perspectives

The microbial biofilm presence may not be enough to cause PD development. Dis-
ease develops when the equilibrium between the oral bacterial biofilm and the host is
disrupted (Figure 1), either due to dysbiosis or an overreaction of the host’s immune system
to microbial existence [54–56]. This disproportion is challenging to understand because of
significant differences in the microbial plaque as well as the host immunological and genet-
ical profiles [45,57] and it culminates in aggravated inflammation causing the periodontal
destruction [58].
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Figure 1. The periodontal homeostasis, CP pathophysiology, and roles of the concerned cytokines.
Local challenge and a slight host immune response are balanced in health. The commensal bacteria
and mechanical spur from mastication contribute to the development of local mucosal immunity. An
adequate infiltrating neutrophil in the gingival sulcus, as well as several resident immune cells in the
gingival tissue, such as T helper (TH) 17 cells and innate lymphoid cells, are adequate in this condition.
Nonetheless, if the immunological pathogenicity of this microbiota is increased by the colonization of
keystone pathogens, tissue damage occurs due to hyperactivity of the host immune response. The
interface between the microbiota and host cells results in the primary wave of cytokine emission (1)
that primarily contributes to the intensification of the pro-inflammatory cytokine cascade as well as
the recruitment, activation, and differentiation of certain immune cells. Furthermore, mononuclear
phagocytes and antigen presenting cells release a group of cytokines (2) that are strongly associated
to the differentiation of a particular subset of lymphocytes after being stimulated by the microbiome.
All these cell subsets secrete a unique cytokine pattern, operating as a positive-feedback factor or
direct effector (3) and finally cause tissue death. The figure was adapted from Pan et al. (2019) [59].

Epithelial cells act as a physical barrier against pathological response and stimulate
both the types of immunity (innate and acquired) [57]. The epithelial dendritic Langerhans
cells collect microbic antigen and transport it to lymphoid tissue for presentation to lym-
phocytes. Infiltration of neutrophils, granulocytes, and lymphocytes into the periodontal
lesion follows: neutrophils try to ingest and destroy pathogen although are overpowered
by the volume and chronic perseverance of the bacterial oral biofilm. This strong chronic
inflammatory reaction causes the osteoclasts to resorb AB, the matrix metalloproteinases to
degrade PDL fibers, and the formation of granulation tissue [60,61]. This diseased state will
not be resolved until the microbial biofilm and granulation tissue are effectively eliminated
or the tooth is exfoliated.

T Cells: Friend or Foe?

The antibodies (produced by B cells) are thought to be significant in periodontitis
protection. T cells may contribute to cell-mediated immunity in addition to the antibody
reaction by triggering multiple TH cell reactions including TH1, TH2, and TH17. TH1
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cells may be involved in the early phases of CP, but TH2 cells may be crucial later on
(Figure 2) [62].

Modern cytokine profiling, on the other hand, has demonstrated that several TH cells
subsets including TH9, TH17, TH22, and regulatory T (Treg) cells, and cytokines (such as
interleukin (IL) 17), are significant in PD immunopathology [63]. A disparity in these cell
subset reactions may cause infection and may be associated with the function of leukocyte-
derived EGF-like repeat and developmentally regulated endothelial cell locus 1 protein
(DEL1), an endogenic inhibitor of neutrophil adherence [64], preventing IL17-induced
AB loss.
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Figure 2. A synopsis of how the previously described T and B cells can contribute to periodontal
health and disease. Treg and cytotoxic T cells (CD8+ T cells) in periodontal health contribute to
periodontal homeostasis by producing IL-10 and transforming growth factor-ß (TGF-ß). To improve
periodontal homeostasis, γδT cells generate amphiregulin and IL-17. B cells generate antibodies
against periodontal bacteria, slowing the progression of periodontal inflammation. Activated TH1,
TH2, and TH17 cells in periodontal disease release pro-inflammatory cytokines that lead to tissue
destruction. T and B cells both generate receptor activator of nuclear factor κ B-Ligand (RANKL),
activating osteoclasts and causing alveolar bone resorption. T-follicular helper (Tfh) cell clonal
stimulation of B cells can result in the generation of autoantibodies against collagen, fibronectin, and
laminin, which can contribute to local tissue damage. Periodontitis is most likely influenced by a lack
of Treg cells or their dysfunction. Other cells’ production of IL-17 can also contribute to tissue injury
via osteoclast activation. The figure was adapted from Figueredo et al. (2019) [65].

2.3. Susceptibility of PDs

Gingivitis susceptibility may represent vulnerability to CP [66,67] and epidemiological
reports show that gingivitis precedes the CP onset [68]. Additionally, the lack of gingival in-
flammation is an excellent predictor for long-term maintenance of periodontal health, both
individually [69] and on a site-specific basis [70]. Initial research exploring experimental
gingivitis in humans [71,72] indicated that the onset as well as severity of the gingivitis to
the dental plaque accumulation varied noticeably amongst individuals. The discrepancies,
however, were ascribed to quantitative plaque differences (differing plaque formation) or
qualitative plaque differences (distinct microbial species in the plaque biofilm) [73,74]. Thus,
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the intensity of the periodontal inflammation may be a single trait [75] and predisposition
to PD may also be influenced by host genetic factors [76–78].

There is no single host factor that has been recognized as the principal reason for
vulnerability to PD. The fact that inflammatory mediators such as IL1, tumor necrosis
factor, and prostaglandin E2 levels link with the periodontal destruction [79,80] and may
exacerbate the inflammation [62] advocated that individuals forming high levels of these
mediators will demonstrate greater detrimental loss of tissue. Reduced polymorphonuclear
leukocyte numbers or activity can further hasten and worsen tissue destruction [81]. Many
medications, including phenytoin (anti-epileptic), nifedipine (calcium channel blocker), and
cyclosporine (immunosuppressant), can induce gingival hypergrowth and hence alter pre-
existing periodontal infection [82]. Alterations in hormonal levels, such as estrogen, may
increase gingival inflammation, but do not typically increase CP susceptibility [83]. The
hormonal changes associated with menopause have been related to osteoporosis; however,
the relationship between this condition or estrogen insufficiency and PD susceptibility is
uncertain. Lastly, immunosuppression (both medication-induced and disease-induced)
may increase the risk of periodontal tissue loss [84]. Indeed, a weakened immune system
causes impaired host reactions to pathological infections, leading to more aggravated
disease-induced injury and increased inflammatory response. Unlike the present-day
knowledge on adaptive immunity, no immunoglobulins or lymphocytes have been clearly
interconnected to a PD higher susceptibility [85].

2.4. Impact of Genetics and Epigenetics

In a few studies, the genetical role in CP has been explored. A research on siblings
who did not develop severe CP despite not having routine dental treatment revealed
that hereditary factors may be at the root of the less severe types of PD [49,86]. Several
genes are most likely implicated in CP, and CP genotypes may differ between persons and
cultures. The polymorphism of genes implicated in cytokine production have received a lot
of interest [87], although none of the single nucleotide polymorphisms have been observed
repeatedly [53,88].

Although family studies can provide evidence for familial aggregation, they cannot
differentiate between environmental and genetical effects since environmental variables
can also influence gene expression. Epigenetic modifications influence gene expression
patterns by methylation or acetylation of DNA bases or chromatin alterations impacting
the readability of the genetic code [89], although the epigenetic processes involved in the
regulation of inflammatory and anti-inflammatory genes remain unknown [90]. Epigenetics
is a relatively new idea in CP research, and it has the potential to improve our understanding
of the factors of susceptibility and population variance, as well as provide a connection
between genetics, PD phenotypes, and the environment.

3. Regenerative Mechanisms of Periodontal Tissues

Understanding the anatomy and physiogenesis of the periodontium provides a firm
foundation for understanding the process of tissue deterioration and promoting the cre-
ation of more effective cell-based treatment modalities [91]. The periodontium, which
supports and secures the teeth in their alveolar sockets, has a well-organized structure
and may be separated into four major important components: gingiva, RC, PDL, and AB
(Figure 3) [91,92]. The periodontal complex is the primary component of this apparatus
and is hierarchically structured into the final three components (i.e., AB-PDL-RC) [93] and
characterized by PDL fibers inserted into the RC and surrounding AB. Because of this multi-
tissue complex’s interfacial linkage, the periodontium may support and maintain the teeth
by dispersing and absorbing stresses, as well as act as a barrier to guard against various
invading microbial pathogens [91,94–96]. Therefore, the periodontal complex is regarded
as the foundation of the periodontal structure and performs critical functions in healing
and sustaining proper tissue function. Because of the many tissue types and intricate
structures involved, full regeneration of the periodontal complex is exceedingly difficult to
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achieve with local administration of stem cells alone [97,98]. Researchers postulate that the
periodontal complex regeneration can obtain assistance from unique cell-material designs,
drawing inspiration from the anatomical structure of the periodontium, and have applied
the notion of tissue engineering to reconstruct the natural periodontal apparatus.
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3.1. Cementum Regeneration

The RC formed as a thin acellular layer around the root neck, with a thicker cellular
cementum covering the lower portion of the root up to the apex [100–102]. In the early
cementogenesis, Hertwig’s epithelial root sheath (HERS) cells were thought to release
acellular cementum. Later, the dental follicle-derived cementoblast formed cellular and
reparative cementum. Several illnesses, including periodontitis, commonly damage the
acellular cementum. However, in a clinical setting, the regularity and quality of RC regen-
eration appeared to be inadequate. As it contributed mostly to the attachment function, the
regenerated RC should ideally look like the acellular extrinsic fiber cementum (AEFC). The
characteristic of the attachment function was questioned in most periodontal regeneration
investigations since the newly generated RC was cellular intrinsic fiber cementum (CIFC)
rather than the expected AEFC. In CIFC, the numerical density of inserting fibers was small,
and interfacial tissue bonding appeared insignificant [100–102].

Various cementum-specific proteins have been demonstrated to induce the cementoge-
nesis and osteogenesis in injured periodontal tissues [103]. Cementum attachment protein
(CAP), cementum-derived growth factor (CDGF), and cementum protein-1 were among
the proteins studied (CEMP1). They may activate numerous mitogenesis-related signaling
pathways, raise cytosolic Ca2+ concentrations, trigger the protein kinase C cascade, and
stimulate progenitor cell motility and preferred adhesion. These activities may result in
the development of cementoblasts and osteoblasts, as well as the creation of a mineralized
extracellular matrix similar to RC [103]. Indeed, adding CEMP1 to 3D PDL cell cultures
boosted alkaline phosphatase (ALP) specific activity by a factor of two and stimulated the
cementogenic and osteogenic markers, resulting in the novel tissue formation resembling
RC and AB [104].

Cementoblast progenitors were derived from stem cells in the gingival, PDL, and
AB [105], which produced cementum-specific markers and cementum-like mineralized
nodules in vitro [106]. Certainly, PDLSCs, DFSCs, and ADSCs were able to develop into
cementoblasts and repair the periodontal tissues in vivo to construct RC-like tissue, PDL
fibers, and periodontal blood vessels regeneration [107,108]. DFSCs were mixed with
treated dentin matrix (TDM) and implanted into the dorsum of mice subcutaneously in
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another investigation. Histological analysis indicated a whirlpool-like orientation of the DF-
SCs in many layers that were positive for ALP, integrin 1, collagenase I (COLI), fibronectin,
and ALP, indicating the production of a rich extracellular matrix. TDM has the potential to
induce and promote DFSCs in the development of new RC-PDL complexes and dentin-
pulp-like tissues, signifying effective RC regeneration [109]. As a result, utilizing these stem
cells for periodontal abnormalities may be an efficient method for RC regeneration [110].

Furthermore, co-cultivating different cells may increase cementoblast development.
The biological effects of developing apical tooth germ cell conditioned media (APTG-CM)
on cementogenesis and PDLSCs differentiation were examined. The PDLSCs were grown
with APTG-CM and displayed cementoblast lineage traits. Morphological alterations,
increased ALP activity, increased proliferation and the expression of cementum-associated
genes and mineral nodules were all observed. The induced PDLSCs displayed tissue-
regenerative potential and formed new RC and PDL-like structures following transplanta-
tion in vivo in an immunocompromised mouse model. This structure was made from a
layer of RC-like tissues with PDL-like collagen fibers linked to the novel RC. In contrast, the
PDLSC transplant control produced solely connective tissues [111]. As a result, APTG-CM
revealed the potential to provide a cementogenic milieu and promote PDLSC differentiation
into the cementoblastic lineage; hence boosting periodontal tissue engineering.

The “cell sheet” approach was established by rearing cells in high confluency until
they formed a cell sheet and created significant cell–cell contacts [112]. The cells in the
DPSCs sheets were able to survive for at least 4 days while maintaining their stemness and
osteogenic differentiation capability. As a result, DPSCs sheets might be used as a natural
three-dimensional structure for treating AB defects [113]. Likewise, human PDL cells were
planted on temperature-reliant culture plates in a complete medium supplement for 72 h
before being transferred to an osteo-inductive culture medium for another 48 h to achieve
over-confluency. The cells sheets and PGA sheets were retrieved afterwards by detaching
them off the plates [114]. This procedure was performed two times more, resulting in
the PDL cell sheets. The exposed tooth root surfaces were covered with three-layered
PDL cell sheets sustained by PGA sheets. The lesion was then packed with macroporous
beta-tricalcium phosphate (ß-TCP) to form a three-walled intra-osseous lesion. Only the
PGA sheets were used in the control group. A histometric study revealed full periodontal
regeneration with well-aligned collagen fibers joining the novel RC to novel AB at 6 weeks.
In addition, PDL-like structures grew surrounding the new RC and AB, which were later
shown to be collagen fibers [115]. The autologous cells produced in vitro were successful
for tissue regeneration and had previously been used in various clinical studies, including
periodontal therapy [116].

The outcomes of micro-nano-hybrid surface HA bioceramics (mnHA) on the prolifera-
tion, attachment, osteogenic and cementogenic differentiation of PDLSC were examined
to explain the capability of cementogenic differentiation of stem cells [117]. The mnHA
bioceramics increased ALP activity, cell proliferation, and the osteogenic and cementogenic
markers such as CAP and CEMP1, runt-related transcription factor 2 (Runx2), ALP, and
osteocalcin. Furthermore, the canonical wingless-type MMTV integration site family (WNT)
signaling inhibitor dickkopf1 may suppress the stimulatory impact on ALP activity as
well as osteogenic and cementogenic gene expression (Dkk1). These results advocate that
mnHA can be a promising biomaterial for RC and AB repair. Nonetheless, further animal as
well and human research is required to assess and validate the effectiveness in periodontal
regeneration. As a result, cementum-related proteins were able to regulate periodontal
stability and regenerate RC structures.

Contemporary research found that the following new measures encouraged RC repair
as well as regeneration: (1) differentiation of cementoblast progenitors, (2) co-culture
with cytokines released by other particular cells, (3) cell sheet use, and (4) materials with
custom-made micro-nano-hybrid surfaces. These techniques provide novel and improved
therapeutic approaches for managing PD and generating periodontal regeneration.
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3.2. Periodontal Ligament

To reduce occlusal pressures, the PDL fibers join the RC to the AB and secure the tooth
in the alveolus. PDL renewal is a critical prerequisite for periodontal regeneration. The
optimum consequence would be the well-aligned regenerated collagen fibers to be securely
connected to the regenerated RC and the novel AB [118]. PDs have the potential to alter
the cell biology of the diseased periodontium. Once injured, the periodontal apparatus
has a restricted potential for regeneration that is dependent on the MSCs availability.
Several MSC types survive and are responsible for tissue homeostasis, as well as providing
as a basis of renewable progenitor cells to make other cells needed during adulthood.
Furthermore, research has revealed that periodontal stem cells may be implanted into
periodontal abnormalities with no deleterious immunologic/inflammatory repercussions.

As a result, efficient recruitment of locally produced viable precursor cells to the lesion
site for tissue stability and successive differentiation into PDL, RC, and AB cells is vital
for periodontal regeneration [119]. Novel PDL-like tissues were effectively produced after
stem cells were delivered to the defect locations [120,121], including PDLSCs [122,123],
BMMSCs [29], ADSCs [124], and iPSCs [125]. PDLSCs were grown, osteogenically stim-
ulated, and planted on a biphasic calcium phosphate scaffold (BCP) [61]. The scaffolds
were then planted with PDLSCs and implanted. At 3 months, the results demonstrated
excellent periodontal regeneration, comprising novel AB development and PDL with re-
structured and regenerated collage fibers incorporating into surrounding RC and AB at
the appropriate position, as well as plentiful blood vessels. As a result, PDLSC-seeded
scaffolds appeared to be a potential technique for periodontal regeneration.

Several implantations of BRGs into periodontal defects, however, created a long
junctional epithelium (LJE) but did not restore a true periodontal apparatus [126]. The
creation of a LJE merely reduced PPD but had no effect on PDL fiber regeneration. In
comparison, optimum periodontal tissue regeneration required well-arranged fibers that
attached to surrounding novel RC and AB [127]. To increase the PDLSCs proliferation
and the production of both PDL and AB, a barrier membrane was employed to preserve
the distance between the defect and the tooth root [127]. Periodontal regeneration was
shown histologically in animal investigations [126]. As a result, GTR might direct soft tissue
regeneration while preventing down-growth into the bony lesions, supporting periodontal
healing [128].

Non-resorbable membranes were more likely to be prone to the oral environment,
raising the possibility of post-operative contamination [129]. A large number of patients
were accessible for the study of vertical clinical attachment level (CAL-V) growth at 1
and 10 years following GTR treatment. At 1 and 10 years, the non-resorbable barrier
group acquired 3.4 ± 1.0 and 1.5 ± 1.2 mm CAL-V, respectively. At 1 and 10 years, the
bioabsorbable barrier group acquired 3.3 ± 1.6 and 3.5 ± 2.5 mm, respectively [130].
Another study found that after 9 months, the mean PPD decrease for bioabsorbable sites
was 5.2 ± 3.9 and 5.5 ± 3.0 mm for the non-resorbable group. The CAL increase at
9 months was 5.9 ± 3.3 mm for the resorbable group and 5.5 ± 3.4 mm for the non-
resorbable group [131]. As a result, there was an insignificant difference at 9 or 12 months;
nevertheless, 10-year monitoring revealed that the absorbable group achieved higher CAL-
V than the non-resorbable group (2.34-fold). Consequently, gingival mesenchymal stem
cells (GMSCs) and PDLSCs were first encapsulated in a new arginine–glycine–aspartic acid
tripeptide (RGD)-coupled alginate microencapsulation system to assess bone regeneration
capability [132]. The production of osteogenic markers ALP, Runx2, and osteocalcin was
increased in vitro by the microencapsulation scaffolds. In immunocompromised mice,
critical-sized calvaria defects (5 mm) were produced, and the cell–RGD–alginate complex
was implanted. At 2 months, new PDL fibers and AB were effectively produced [132,133].
Second, for periodontal tissue engineering applications, a combination of polylactic-co-
glycolic acid (PLGA), chitosan, and silver nanoparticles was studied [134,135]. In vitro
cell mineralization and osteogenic gene expression were achieved using this approach.
Meanwhile, following planting into the lower jaw in vivo, the experimental group bone
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density was greater than the control group [136]. Next, a consequent collagen self-assembly
approach was paired with mineral formation diffusion gradients to produce multiphasic
collagen scaffolds with interconnectivity and macroporosity between the layers [137].
Mineralization occurred in the scaffold layers, with mineralized collagen fibrils including
intrafibrillar and orientated minerals resembling bone. Furthermore, non-mineralized
fibrils were placed into the mineralized layer to provide mechanical interlocking and
consistency. As a result, these absorbable materials may be able to eliminate the necessity
for a second operation as well as the hindered wound healing.

Moreover, a study examined the result of an electrospun nanofibrous membrane scaf-
fold fabricated using the biomimetic fish collagen/bioactive glass/chitosan composite for
periodontal regeneration [138] and reported an outstanding hydrophilicity and a moder-
ately high tensile strength. The composite membrane outperformed the pure fish collagen
membrane in terms of antibacterial activity against Streptococcus mutans. In vitro, the com-
posite stimulated cell proliferation and osteogenic gene expression in PDLSCs. It also
increased the expression of Runx2 and osteopontine. Animal experiments confirmed the
capacity of this material to stimulate PDL and new AB development in class II (Glickman’s)
furcation lesions. This new composite membrane possesses high macroporosity and surface
area to facilitate cell to cell and cell to matrix interactions, as well as suitable antibacterial
capabilities, tensile strength, and osteogenic qualities to promote periodontal regeneration.

3.3. Alveolar Bone

Periodontitis is characterized by AB loss. Periodontitis and AB loss can be caused
by pathogenic biofilm microbes, hereditary causes, and environmental factors including
cigarette smoking. The loss of supporting AB surrounding a tooth causes tooth mobil-
ity and displacement, ultimately leading to tooth loss [1]. Numerous approaches, such
as BRGs [5–8,139], scaffolds [140], stem cells [141], and growth factors [9,10], have been
developed to improve the osteogenesis process. BRGs are usually classified into four
types [93,142]. To begin, autogenous bone transplants are often considered the “gold
standard” in BRGs [143]. Clinical applications revealed the formation of new AB and
periodontal connective tissue attachment [144]. Next, tissue banks provide a variety
of allogeneic BRGs [145], such as demineralized freeze-dried bone allografts (DFDBAs)
and freeze-dried bone allografts (FDBAs). AB fillings of 1.3–2.6 mm were achieved in
clinical studies. DFDBAs produced significantly more vital bone (38.4%) than DFDBAs
(24.6%) [146]. Third, xenografts, such as Bio-Oss [147], have been employed. One study
looked at the results of using titanium mesh with Bio-Oss to augment localized alveolar
ridges. A radiographic study revealed a 3.7 mm buccolabial ridge and 2.9 mm vertical
augmentation, with histomorphometry revealing that 36–37% of the treated area con-
tained novel AB [148]. Finally, synthetic alloplastic biomaterials such as hydroxyapatite
(HA) [149–151], TCP [152], a calcium-layered-polymer of polymethyl methacrylate and
hydroxyethyl methacrylate [153], and bioactive glass [154] have been produced. For bone
regeneration applications, injectable and absorbable scaffolds have been produced [155,156].
Calcium phosphate cements (CPCs) were made from powders combined with a liquid to
make a paste [157,158]. Through a dissolution–precipitation reaction [159], the paste can be
inoculated into the bony lesion and hardened in situ to create a scaffold. Cell implanting
onto the porous CPC scaffold resulted in a low seeding effectiveness and average cell pene-
tration [160]. Because the mixing pressures, ionic exchanges, and pH fluctuations during
the CPC paste setting were damaging to the cells, it was not possible to directly add the cells
to the CPC paste. As a result, a resorbable and injectable alginate-microfibers/microbeads
(Alg-MF/MB) stem cell delivery system was designed to preserve the encapsulated stem
cells throughout CPC paste mixing and injection [161]. Microbeads degraded after 72–96 h,
releasing the encapsulated cells [162,163]. In a recent investigation [164], six different stem
cells were encapsulated in hydrogel MF/MB inside an injectable CPC: (1) human bone
MSCs, (2) DPSCs [165,166], (3) hUCSCs, (4) MSCs-ESCs, and iPSCs-MSCs derived from (5)
bone marrow and (6) foreskin at 1 week; all of the cells above proliferated and osteodiffer-
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entiated well, with strong expressions of osteogenic genes. Cell-synthesized bone matrix
minerals increased with culture period, demonstrating outstanding bone regeneration
potential comparable to gold-standard human bone MSCs [167]. Following that, when
the human bone MSC-encapsulated Alg-MB-CPC paste was implanted into a bony lesion
for regeneration in animals, the construct demonstrated a powerful potential for novel
AB production. At 3 months, an osseous bridge was established in the AB defect, which
was three times more than the control group [163]. As a result, the absorbable, injectable,
load-bearing stem cell-MF/MB-CPC construct appeared favorable for cell delivery to sig-
nificantly improve AB regeneration in periodontal repairs [159]. Other hybrid polyethylene
glycol-co-peptide hydrogels might be tuned to in situ gelation needs, providing a possibility
for injectable usage. This new hydrogel has intriguing uses in endogenous regeneration,
indicating an additional modern treatment method [168].

It was also critical to develop vascularization in periodontal regeneration [16,169,170].
To offer pre-vascularization to CPC scaffold, a tri-culture system containing human um-
bilical vein endothelial cells, iPSCs-MSCs, and pericytes was recently developed [169].
In vitro, vessel-like structures were developed in the co-cultured and tri-cultured groups.
Furthermore, osteogenic and angiogenic marker expression, and bone matrix mineraliza-
tion, were significantly increased. A calvarial defect model in animals was employed, and
following 3 months, the tri-culture group developed more novel bone (45%, 4.5-fold) and
vessel density (2.5-fold, 50%) than the control. The site proportion of newly created bone as
well as blood vessel density in the tri-culture constructions were about 1.2 and 1.7 times
higher than in the co-culture group, respectively [163]. Furthermore, innovative nanomate-
rials have been produced in collaboration with various scaffold materials and biologics to
improve periodontal regeneration [121,170–172]. Bone MSCs were combined with bone
morphogenetic protein (BMP)-7, implanted on nHA/PA porous scaffolds, and subsequently
seeded in a lower jaw deficiency model in vivo [173,174]. BMP-7-transfected MSC scaffolds
revealed a quicker reaction as compared to the MSCs and pure nHA/PA scaffolds. As a
result, this investigation demonstrated the significance of the factors and cells in aiding
bone repair. Gold nanoparticles (GNPs) were added into CPC in different research [175].
On CPC, this enhanced cell adhesion, proliferation, and osteogenic induction. Furthermore,
the released GNPs were internalized by DPSCs, resulting in increased expression of ALP at
1- week (3-fold), osteogenic gene at 2 weeks (2–3-fold), and cell mineral at 2 weeks (5-fold).
As a result, nanoparticles had potential for modifying scaffolds and collaborating with
different bioactive materials to improve the bone regeneration in periodontium.

4. Dental and Non-Dental Stem Cells for Regenerating Periodontal Apparatus
4.1. Stem Cells from Dental Tissues

Dental stem cells (DSCs) are multipotent, self-renewable MSCs [176]. DSCs can be
odontogenic, dentinogenic, cementogenic, osteogenic, chondrogenic, adipogenic, myogenic,
or neurogenic [177] (Figure 4). DSCs (Figure 5) are easy to find as they can be discovered in
the human body at any age. Additionally, cryopreservation has little effect on their char-
acteristics [178]. These traits make them approachable and simple to use [179]. Moreover,
stem cells that can be isolated from various oral tissues have emerged as attractive sources
for bone as well as dental regeneration, primarily due to their ease of accessibility [180].
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Figure 5. DSCs, which include DPSCs, PDLSCs, DFSCs, SHEDs, and SCAPs, are classified into
numerous groups depending on their origin. The dental pulp is used to isolate DPSCs. PDLSCs are a
type of cell found in the PDL. SHEDs are formed when deciduous teeth are exfoliated. DFSCs are
obtained from the dental follicle of a tooth that has not yet erupted. The apical papilla is used to
isolate SCAPs. The figure was adapted from Wang et al. (2019) [181].

DPSCs were among the first DSCs to be discovered. They are widely available since
they may be produced from human dental pulp. DPSCs are particularly appealing for a
variety of reasons. For starters, DPSCs are located in dental pulp and may be harvested
using simply one removed tooth, especially wisdom teeth and periodontally damaged
teeth. It has also been proposed that they may be derived from inflamed tooth pulp [182]
and yet exhibit the ability to develop into osteoblast-like cells. Second, DPSCs are re-
lated to periodontal stem cells in terms of origin, antigenic pattern, and differentiation
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lineages [33,180,183]. Furthermore, they can develop into cardiomyocytes, neuron cells,
adipocytes, melanoma cells, corneal epithelial cells, and insulin secreting Beta cells [184].
Additionally, they interact readily with other bioactive materials [183,185].

PDLSCs have been regarded as an attractive treatment approach for periodontal
regeneration as they may be quickly retrieved by non-invasive techniques following simple
tooth extraction. They may also be cultivated, and have osteogenic, chondrogenic, and
adipogenic capabilities [186], as well as immunosuppressive properties comparable to
BMMSCs and DPSCs. They are capable of forming a RC/PDL complex-like structure.

DFSCs may function as PDLSCs precursor cells. PDLSC proliferation, osteogenic
and adipogenic differentiation are all enhanced to varying degrees by DFSCs. In vitro co-
culture with DFSCs enhances the cell layers and extracellular matrix of PDLSCs sheets [187].
However, there is currently a scarcity of scientific data regarding this cell type.

Because SHEDs are extracted from deciduous exfoliated teeth, they are easier to
access utilizing non-invasive techniques. SHEDs have a greater proliferation rate and
immunomodulatory characteristics, comparable to BMMSCs, that are more challenging to
achieve. They can develop into osteoblasts [188] and have the ability to regulate T cells,
macrophages, and dendritic cells [189]. When a study related the “stemness” of SHEDs to
that of DPSCs and BMMSCs, they discovered that SHEDs had a greater proliferation rate
and greater expression of cell proliferation and extracellular matrix genes than DPSCs and
BMMSCs. As a result, SHEDs is a promising option for periodontal regeneration [190].

SCAPs are associated with root development. Their existence in the apical papilla
of developing roots has been proposed as a probable justification for how juvenile teeth
with necrotic pulps may generate roots. SCAPs are also infection-resistant [191], which
may explain why apexogenesis has been found even in the presence of apical periodontitis.
Despite their difficulty in terms of collection, they are a promising tool for regenerative
operations since they have the potential for multi-lineage differentiation [192].

Dental stem cells have excellent potential for osteogenesis and may be successfully
used to replace usually used BMMSCs. Some sources such as DFSCs, SHED, SCAP, and
others need evaluation beyond animal studies and necessitates human studies for clinical
applications. More randomized clinical trials are advisable to standardize the clinical
procedure and strengthen the claim of dental stem cells as potential replacement of other
non-dental-tissue-based stem cells [177].

4.2. Stem Cells from Non-Dental Tissues

BMMSCs were the first MSCs found and have been extensively studied in animal
models. They have differentiated into osteogenic, adipogenic, chondrogenic, and myogenic
cells. The main limitation of BMMSCs is the discomfort associated with bone marrow
harvesting, as well as the restricted quantity that can be harvested. BMMSCs have the
ability to develop into ameloblast-like cells [193,194] and periodontal tissue cells, as well
as improve periodontal regeneration [195,196]. Interestingly, BMMSCs may be employed
for tooth regeneration in addition to periodontal regeneration since they may upregulate
the expression of odontogenic genes and contribute to new tooth development following
recombination with embryonic oral epithelium [197]. ADSCs are numerous stem cells
produced from adipose tissues. ADSCs may be expanded in vitro and have demonstrated
osteogenic, chondrogenic, adipogenic, and neurogenic differentiation in a variety of ex-
perimental situations. Because ADSCs may be extracted in large numbers from either
liposuction or subcutaneous adipose tissue pieces, the harvesting approach is less inva-
sive than that employed for BMMSCs. As a result, they have been widely employed in
regenerative medicine.

ESCs are discovered in human blastocysts. They have a remarkable ability to differen-
tiate, since they can grow into practically all cell lineages [198]. It has been demonstrated in
the context of periodontal research that ESCs may develop into odontogenic and periodon-
tal cell lineages, particularly when co-cultured with PDLSCs or embryonic oral epithelial
cells [199,200]. Because extracting such cells may result in the killing of human blastocysts,
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ethical issues have limited their use for periodontal regeneration. Furthermore, in addition
to their limitless potential, they have exhibited significant negative consequences such as
tumors and undesired immunological reactions. Since their discovery in 2006, iPSCs have
sparked significant interest in regenerative medicine [201]. They are a form of pluripotent
stem cell which may be created from a somatic cell directly. They have the capacity to
reproduce forever and develop into every other cell type in the body. Dental cells, such
as DPSCs, PDLSCs, SHEDs, and SCAPs, have recently been effectively converted into
iPSCs [202,203], and iPSCs have been studied for periodontal regeneration.

MSCs are thought to be an appealing tool for tissue regeneration because they have
a significant immunomodulatory potential. Numerous in vitro studies suggest that the
influence of dental MSCs on immune cells may be affected by a variety of parameters, in-
cluding the experimental context, MSC tissue source, and type of immune cell preparation.
Most studies have shown that the immunomodulatory activity of dental MSCs is strongly
upregulated by activated immune cells. MSCs exert mostly immunosuppressive effects,
leading to the dampening of immune cell activation. Thus, the reciprocal interaction be-
tween dental MSCs and immune cells provides an elegant mechanism that may contribute
to tissue homeostasis and the evolution of inflammatory diseases. Although dental MSCs’
immunomodulatory capacity has been widely studied in vitro, their effect in vivo remains
unknown. Several investigations have found that MSCs derived from inflammatory dental
tissues have a weakened immunomodulatory potential. Furthermore, the expression of
several immunomodulatory proteins is increased in periodontal disease and has been
linked to disease severity. Immunomodulation based on MSCs may be important in the
regeneration of various dental tissues. As a result, immunomodulation-based techniques
have the potential to be a very promising tool in regenerative dentistry [204].

5. Umbilical Cord Stem Cells

The umbilical cord is made up of a vein and two arteries that are encircled by Whar-
ton’s jelly and coated by a basic epithelial membrane (Figure 6). Wharton’s jelly shields the
blood vessels, keeps them from clogging, and keeps the cord flexible [205].
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Szepesi et al. (2016) [206].

Human umbilical cord stem cells (hUCSCs) were employed in clinical practice for the
first time in 1988, when Eliane Gluckman effectively transplanted cord blood cells into a
6-year-old child with Fanconi anaemia, utilizing hematopoietic stem cells (HSCs) [207].
The world’s first umbilical cord blood (UCB) bank was created in 1992. It is vital to note
that hUCSC grafts are of higher quality in comparison to bone marrow grafts. Furthermore,
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the number of hUCSCs essential for an efficacious transplant is 10 times less than the bone
marrow cells and peripheral blood cells. Indeed, the HSCs concentration of 80–120 mL of
blood from a single umbilical cord is similar to 1200 mL of bone marrow [208,209]. Interest-
ingly, evidence suggests that umbilical cord contains not only hematopoietic progenitors,
but also a variety of other stem/progenitor cells such as MSCs, very small embryonic-like
stem cells (VSELs), endothelial progenitors, unrestricted somatic stem cells (USSCs), and
epithelial stem cells [210].

5.1. Differentiation, Proliferation, Pluripotency, and Senescence Characteristics of Human
UC-MSCs Compared to Other Stem Cells

To maximize the recovery of all stem cell types, it is desirable to retain both UCB
and cord tissue. Umbilical cord can be used to separate hematopoietic, epithelial, and
mesenchymal cells. The UCB arteries, intra- and peri-vascular zones, subamniotic zone,
and amniotic epithelium are all important stem cells sources. Indeed, HSCs are present
in UCB and may be used to generate a variety of blood cells. Furthermore, MSCs were
recovered effectively from Wharton’s jelly, amniotic fluid, and membrane and cord lin-
ing [211], whereas epithelial cells were identified from the interior and exterior umbilical
cord layers [212]. Table 1 illustrates the many cell types extracted from hUCSCs.

Table 1. Various cells extracted from hUCSCs.

Hematopoietic stem cells

Epithelial stem cells

Mesenchymal stem cells

Endothelial progenitors

Induced pluripotent stem cells

An in vitro study by Kim et al. (2017) described and compared MSCs from the PDL,
umbilical cord, and adipose tissue, which were reasonably straightforward to acquire
with few ethical issues regarding their procurement. UC-MSCs grew the fastest among
MSCs extracted from the three distinct tissues. The indoleamine 2,3-dioxygenase and
cyclooxygenase-2 pathways were revealed to suppress the proliferation of activated pe-
ripheral blood mononuclear cells (PBMCs) to a comparable extent in all three types of
MSCs. They were also found to limit PBMC proliferation utilizing HLA-G, which was
most prevalent in UC-MSCs. UC-MSCs, unlike the other two kinds of MSCs, displayed
limited HLA-DR expression after activation, suggesting that they represent little danger
of starting an allogeneic immune reaction when delivered in vivo. These qualities, as well
as the simplicity of collecting and the lack of ethical issues about their usage, imply that
UC-MSCs are potential MSC therapeutic candidates [213].

However, when GMSCs were compared to UC-MSCs, MSCs derived from gingiva
have a higher proliferation rate and population doubling time than UC-MSCs. In contrast
to UC-MSCs, immunofluorescence studies revealed the presence of pluripotency markers
OCT-4 and NANOG in the cytoplasm of GMSCs, which was confirmed by Western blot.
The mechanical properties of GMSCs, such as modulus of elasticity, are comparable to
those of UC-MSCs, but surface roughness was found to be lower in GMSCs, suggesting
that GMSCs have a greater adhesive property to the extracellular matrix. The neuronal
differentiation rate of GMSCs and UC-MSCs differs only marginally; both cells expressed
positivity for several neuronal lineage markers. Immunofluorescent results suggesting Tuj1
and neurofilament (NF) showed significantly higher expression in GMSCs than UC-MSCs
statistically. However, Map-2, TAU, and GFAP (neural lineage) of UC-MSCs showed signif-
icantly higher expression compared to GMSCs. Hence, GMSCs constitute an autogenous
source of MSCs, which are simple to acquire with the least morbidity, multipotent in nature
with acceptable biological and mechanical qualities, presumably a perfect choice for clinical
applications [214].



Cells 2022, 11, 1168 16 of 28

Another laboratory-based study conducted by Wang et al. (2018) assessed and com-
pared the regenerative ability of UC-MSCs and BMMSCs to see if UC-MSCs could be
exploited as a new cell type for bone regeneration. The proliferation and osteogenic poten-
tial of BMMSCs and UC-MSCs were examined in vitro. The bone regeneration potentials of
BMMSCs and UC-MSCs were assessed by studying their ability for ectopic bone formation
in a mouse model as well as their efficiency in a rat model of tibia bone deficiency. Radi-
ological, histological, and immunohistochemical investigations were used to determine
the amount of bone regeneration. The findings demonstrated that UC-MSCs have a strong
osteogenic differentiation capability, similar to BMMSCs, and that UC-MSCs can contribute
to bone and blood vessel regeneration. Furthermore, no significant variations in the bone
regeneration effect were found between BMMSCs and UC-MSCs [215].

A different study, on the other hand, evaluated the baseline osteogenic potential
of UC-MSCs and BMMSCs, and revealed opposite results. Different TGF-1 and BMP-
2 signaling pathway inhibitors/activators, as well as the secretome of differentiating
BMMSCs, were investigated. Cytochemical staining, as well as gene expression and
proteomic analyses, demonstrated that UC-MSC had a low level of osteogenic commitment.
However, stimulating the BMP-2 pathway with BMP-2 plus tanshinone IIA, as well as
adding extracellular vesicles or protein-enriched preparations from developing BMMSCs,
increased UC-MSC osteogenesis [216].

Furthermore, a study by Das et al. (2021) compared the senescence and proliferative
characteristics of MSCs derived from dental pulp and umbilical cord. Their proliferation
capability and replicative senescence at different passage numbers were examined in
this work (i.e., P2 and P6). At P6, intracellular reactive oxygen species generation in
DPSCs was considerably lower than in UC-MSCs (p < 0.001). ß-gal expression was found
considerably lower in DPSCs culture than in UC-MSCs culture at P6 (p < 0.001). According
to the findings, the source of stem cells determines both MSCs proliferative capacity and
replicative senescence. As a result, this work will pave the way for future investigations
into choosing acceptable stem cell sources for regenerative therapeutic applications [217].

5.2. Umbilical Cord Stem Cell Applications

hUCSCs treatment has enormous promise for curing a variety of human ailments.
Table 2 below depicts the many clinical uses of umbilical cord stem cells [205].

Table 2. Clinical applications of hUCSCs.

Clinical Application Main Diseases Type of hUCSCs Applied

Treatment of hematological diseases

Sickle cell anemia [218] HSCs
Aplastic anemia [219] HSCs

Thalassemia [220] HSCs
Leukemia [221] HSCs

Treatment of cardiovascular diseases
Buerger’s disease [222] MSCs

Dilated cardiomyopathy [223] MSCs
Stroke [224] MSCs

Bone regeneration Osteoporosis [225] MSCs
Congenital abnormalities, trauma, tumor resections, fractures as well as

disorders such as arthritis MSCs

Treatment of eyesight diseases Diabetic retinopathy-associated neurodegeneration [226] MSCs
Traumatic optic neuropathy [227] MSCs

Treatment of metabolic disorders
Type 1 diabetes [228,229] MSCs

Type 2 diabetes [230] MSCs

Treatment of neurodegenerative and
neurodevelopmental disorders

Parkinson’s disease [231] MSCs
Huntington’s disease [232] MSCs
Alzheimer’s disease [233] MSCs

Amyotrophic lateral sclerosis [234] MSCs
Autism [235] MSCs

Wound healing Burn injuries [236] MSCs
Chronic ulcers in diabetes [237] MSCs

HSCs (hematopoietic stem cells); MSCs (mesenchymal stem cells)
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6. Role in Periodontal Regeneration and Potential Clinical Applications

A laboratory-based study by Yu et al. (2013) compared the features of MSCs from
the Wharton’s jelly part of the umbilical cord and PDLSCs for periodontal regeneration.
PDLSCs were discovered to have more osteo-/dentinogenic, adipogenic, and chondrogenic
differentiation capacity than Wharton’s jelly MSCs. A microarray study revealed that
when Wharton’s jelly MSCs were compared to PDLSCs, 903 genes were significantly
downregulated and 726 genes were significantly upregulated. They discovered that various
genes may be related to MSCs properties based on microarray data. Further bioinformatic
research revealed that transforming growth factor-ß (TGF-ß) and wingless-type MMTV
integration site family (WNT) signaling pathways, as well as many genes such as signal
transducer and activator of transcription 5B (STAT5B) and integrin α4 (ITGA4), may play
important roles in MSCs. These findings suggest that Wharton’s jelly MSCs have much
lower differentiation capacity than PDLSCs, and therefore unmodified Wharton’s jelly
MSCs may not be effective seeding cells for periodontal regeneration. This also aids in
the understanding of MSC differentiation mechanisms and the identification of essential
variables that promote Wharton’s jelly MSC-mediated periodontal regeneration [238].

Another in vitro study examined the proliferation, development, and adhesion of
cultured UC-MSCs alone or in combination with basic fibroblast growth factor (FGF) on
healthy and periodontally compromised tooth surfaces. A total of four groups were made:
Group 1: healthy; Group 2: periodontally compromised; Group 3: healthy with FGF;
and Group 4: periodontally compromised with FGF. FGF was added to the surface at
a concentration of 8 ng/mL, followed by the incubation of cultured UC-MSCs on the
scaffolds. On the 2nd and 3rd weeks, scanning electron microscopy examinations were
undertaken to analyze the morphology and proliferation of cells adhered to the tooth
surface. Cultured UC-MSCs adhered to the tooth root scaffold. From the 2nd to the 3rd
week, all groups displayed a considerable increase in cell attachments. In comparison to
the groups that did not have FGF, the groups that did had a considerable increase in cell
attachment. The cells in all groups exhibited an increase in flat cells from the 2nd to the
3rd week, suggesting increasing cell maturity. Cell maturity was lower in periodontally
infected groups than in healthy groups. The FGF-added groups had more mature cells as
compared to the non-FGF-added groups. Human UC-MSCs have the ability to develop
into cells that can bind to tooth root surfaces. Incubating UC-MSCs with FGF improved
their proliferation and adhesion to root surfaces. These findings by George et al. (2015)
suggest that involvement of UC-MSCs in periodontal regeneration can be investigated
further [239].

Furthermore, a study explored the pluripotent and proliferative capacity of osteogenic
differentiation of human UC-MSCs in improving periodontal repair. To imitate periodontal
tissue recovery in vivo, dentine and pre-differentiated or undifferentiated cells were im-
planted subcutaneously into immunodeficient animals. The findings revealed that human
UC-MSCs were easily obtained and expressed a variety of MSC markers. During osteogenic
differentiation, the expression of stemness markers reduced significantly. Li et al. (2014)
discovered that the osteogenic process could be initiated and identified at 1 week after
investigating several time periods. In vivo, pre-differentiated UC-MSCs demonstrated an
improved capacity to generate RC-like deposits surrounded by fibroblast-like tissue on
the dentine surface. Finally, the capacity to generate RC-like tissue and the capability for
proliferation and differentiation imply that UC-MSCs are interesting candidates as a source
of MSCs for periodontal repair following auto-transplantation of teeth [240].

A patient with multiple gingival recession (Miller’s Class II) was chosen for therapy
utilizing human UC-MSCs in conjunction with bone regeneration polycaprolactone (PCL)
scaffold in a clinical study by Kadam et al. (2019). Clinical indicators such as gingival
recession, PPD, CAL, and keratinized gingiva width were measured at baseline and 6-
months after surgery. Six months after surgery, there was a considerable decrease in gingival
recession, indicating more than 80% root coverage; thus, demonstrating the efficacy of bone
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regenerating PCL scaffold in conjunction with MSCs from the Wharton’s jelly part of the
human umbilical cord [241].

Shang et al. (2017) compared the regenerative ability of PDLSCs to that of human
UC-MSCs for periodontal regeneration. Comparing UC-MSCs to PDLSCs revealed traits
such as multi-differentiation capacity and anti-inflammatory potential. Cell aggregates
(CA) were created utilizing UC-MSCs and PDLSCs, respectively. The regeneration po-
tentials of PDLSCs-CA and UC-MSCs-CA were then tested in an animal inflammatory
periodontal defect model using ß-tricalcium phosphate bioceramic (ß-TCP). PDLSCs were
shown to have more osteogenic differentiation capability than human UC-MSCs. Mean-
while, UC-MSCs secreted more extracellular matrix-related genes, including fibronectin,
integrin β, and collagen type I, and had better anti-inflammatory properties, i.e., higher
expression of TGF-β than PDLSCs. Both groups demonstrated soft and hard periodontal
tissue regeneration in the presence of inflammatory periodontitis in rats. Additionally, both
groups demonstrated more newly produced AB and PDL in comparison to the non-cell
treated group. Furthermore, insignificant variations in regeneration boosting effects were
detected between PDLSCs and UC-MSCs, suggesting that UC-MSCs had similar stimu-
lating effects on periodontal regeneration and may be applied as novel cell sources for
periodontal regeneration [242].

An animal study by Sun et al. (2020) investigated the effect of UC-MSCs mixed with
bone collagen particles on the healing of AB cleft defects in rabbits. By removing the
anterior teeth of the maxillary jaw, bone collagen particles mixed with UC-MSCs were
placed in the defect site to create an animal model of AB clefts. Following 3 months post-
surgery, blood biochemical analysis was completed. Gross examination and micro-focus
computerized tomography studies of skull tissues were performed. Histological as well as
immunohistochemical staining of tissues was performed. Six months following surgery,
the experiments were repeated. Biocompatibility was observed between bone collagen
particles and UC-MSCs. Bone collagen particles coupled with UC-MSCs were much more
effective than bone collagen particles only in promoting bone repair and regeneration;
thereby providing a simple, quick, and effective strategy for filling a bone defect area and
treating AB alveolar cleft lesions [243].

Moreover, the role of UC-MSCs in regenerating teeth has been investigated in an
animal study by Chen et al. (2015). The study revealed that UC-MSCs may be stimulated
into odontoblast-like cells. Induced UC-MSCs produced dentin-associated proteins such
as dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP-1) at levels comparable to
native pulp tissue cells. Furthermore, DSP- and DMP-1-positive calcifications were found
following UC-MSCs grafting in vivo. These results revealed that UC-MSCs have the ability
to develop into odontoblast-like cells with typical dentin-like matrix deposition in vivo,
indicating the use of UC-MSCs as a therapeutic source of cells for tooth regeneration [244].

7. Challenges and Issues Pertaining to Human UC-MSCs

The use of human UC-MSCs in regenerative clinical treatment holds much merit.
However, it is not without challenges and concerns, especially as UC-MSCs transplantation
is yet to be approved by the US Food and Drug Administration (FDA). It is still not fully
understood whether there is a need for cross-matching where MSCs transplantation is
concerned as trials have reached different conclusions [245,246]. Moreover, the ethical
concern is raised whereby although the umbilical cord is an unemployed organ, both
the donor and the recipient have the right of informed consent. There is little known
regarding MSCs therapy. There is no system in place yet to detect the potential risk in
donors. Additionally, potential long-term associated risks of MSC transplantation have not
been explored fully [247]. Whether the UC-MSCs should be differentiated in vitro into the
desired tissue of choice prior to the transplantation or whether they can be transplanted into
the recipient directly and be allowed to differentiate and graft in vivo remains unanswered.
Whether improvements in functional outcome will be mediated through engraftment of
differentiated tissue or through paracrine effects (as seen in autologous BMMSCs trans-
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plantation) is also unknown. Furthermore, in clinical trials, evaluating whether allogeneic
UC-MSCs will engraft successfully in humans as they have hypoimmunogenic properties
is a significant challenge [248].

8. Conclusion and Future Directions

From the above discussion, it can by summarized that human UC-MSCs possess
a huge potential in therapeutic as well as regenerative applications, as evident by the
literature presenting successful results. Nevertheless, the research on the applications of
UC-MSCs on periodontal regeneration is very scant and still needs more laboratory-based
and clinical studies for further validation. In terms of future perspectives, the application of
human UC-MSCs for periodontal regeneration is very positive as a few studies discussed
above showed beneficial results. Keeping in mind the advantages of human UC-MSCs, in
the next era, they can be successfully used for periodontal regeneration in different hard
tissue (intraosseous and furcation) and soft tissue (gingival recession) defects as used in
other medical-based regenerative applications.
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