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Characterizing microorganisms and enzymes involved in lignin biodegradation in thermal ecosystems can identify thermostable
biocatalysts. We integrated stable isotope probing (SIP), genome-resolved metagenomics, and enzyme characterization to
investigate the degradation of high-molecular weight, '*C-ring-labeled synthetic lignin by microbial communities from moderately
thermophilic hot spring sediment (52 °C) and a woody “hog fuel” pile (53 and 62 °C zones). '*C-Lignin degradation was monitored
using IR-GCMS of '3CO,, and isotopic enrichment of DNA was measured with UHLPC-MS/MS. Assembly of 42 metagenomic libraries
(72 Gb) yielded 344 contig bins, from which 125 draft genomes were produced. Fourteen genomes were significantly enriched with
13C from lignin, including genomes of Actinomycetes (Thermoleophilaceae, Solirubrobacteraceae, Rubrobacter sp.), Firmicutes (Kyrpidia
sp., Alicyclobacillus sp.) and Gammaproteobacteria (Steroidobacteraceae). We employed multiple approaches to screen genomes for
genes encoding putative ligninases and pathways for aromatic compound degradation. Our analysis identified several novel
laccase-like multi-copper oxidase (LMCO) genes in '*C-enriched genomes. One of these LMCOs was heterologously expressed and
shown to oxidize lignin model compounds and minimally transformed lignin. This study elucidated bacterial lignin
depolymerization and mineralization in thermal ecosystems, establishing new possibilities for the efficient valorization of lignin at

elevated temperature.
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INTRODUCTION

Lignin is the second most abundant terrestrial biopolymer after
cellulose, and can comprise 10-30% of a plant’s dry weight [1].
While biological conversion of plant biomass to fuels and
chemicals can reduce fossil fuel consumption, few processes exist
to valorize lignin to value-added chemicals [2]. This is due in part
to its recalcitrance and heterogeneity: lignin is a complex
heteropolymer containing diverse ether and carbon-carbon bonds
linking phenylpropanoid aromatic subunits. A promising approach
to divert lignin from waste streams for production of valuable bio-
products is biological lignin valorization, involving lignin depoly-
merization and biocatalysts that funnel lignin-derived aromatic
compounds (LDACs) into commercial chemicals [2]. There is a
need to develop thermotolerant biocatalysts for efficient conver-
sion of lignin derivatives produced by industrial processes [3].

In nature, fungi are thought to be mainly responsible for lignin
depolymerization, with white rot fungi utilizing lignin peroxidases
(EC 1.11. 1.14) and laccases (benzenediol oxygen oxidoreductases,
EC 1.103.2) to do so. However, bacteria are increasingly
recognized for their contributions to this process [4-6]. Investiga-
tion of bacterial lignin depolymerization has focused on two
enzyme classes: dye-depolymerizing peroxidases (DyPs) and
laccase-like multi-copper oxidases (LCMOs). Bacterial LCMOs carry
out myriad reactions. Importantly, LCMOs in two-domain super-
families, including K-type small laccases (SLACs), are capable of

efficient lignin depolymerization [7, 8]. Further, bacteria have
catabolic pathways that funnel diverse LDACs into catabolic
intermediates (e.g., protocatechuate and catechol). These diols are
typically degraded via either meta or ortho ring-cleavage path-
ways [6, 9]. Characterization of novel thermotolerant lignin-
degrading bacteria therefore requires (1) evidence for their
involvement in lignin degradation, (2) identification of enzymes
that depolymerize lignin, and (3) identification of pathways for
catabolic funneling of LDACs.

To facilitate identification of novel lignolytic organisms and
biocatalysts, we undertook genomic bioprospecting in thermal
environments. Massive piles of wood residue, known as “hog fuel,”
can reach temperatures sufficient for spontaneous combustion
due to biological activity. We hypothesized that thermophilic
microbes within hog fuel are adapted to use lignin and LDACs as
carbon sources. Likewise, we hypothesized that geothermal hot
springs with regular inputs of woody biomass harbor thermo-
philies capable of catabolizing lignin. To test these hypotheses,
samples of hog fuel and hot spring microbial communities were
incubated with a synthetic '3C-ring-labeled lignin dehydrogena-
tion polymer (DHP) to facilitate stable-isotope probing (SIP).
3C-Enriched genomes resolved from metagenomic libraries
encoded a variety of enzymes with the potential for depolymer-
ization of lignin and catabolism of LDACs. Subsequently, we
heterologously expressed a two-domain LMCO and characterized
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its ability to transform (-aryl ether lignin model compounds and
Eucalyptus milled wood lignin.

MATERIALS AND METHODS

Sampling thermal environments

Lakelse hot spring (54°21/30.7”N, 128°32/28.0"W), near Terrace, Canada, is a
concrete-enclosed pool 1-5 m deep, fed by geothermally warmed spring
water (53.2°C, pH 7.5) [10, 11]. About 500 ml of the top ~5cm layer of
organic-rich sediment was sampled at four equidistant locations on August
24th, 2017 using a manual pump. Sediment and spring water were placed
in autoclaved 1L Nalgene bottles and placed on ice. Two additional
sediment samples per location for DNA extraction were placed in 5ml
screw-top vials and placed immediately on dry-ice. A 1.93 ha hog fuel pile
in Crofton, Canada (48°52/31.9”N, 123°39/08.1”W) containing sub-boreal
spruce, western redcedar and Douglas-fir reside was sampled on
September 27, 2017. Three 1Tm pits were dug at 40 m intervals along
the perimeter of the pile and ~500 ml samples were removed from 20 and
80cm depths (52.9°C and 58.7 °C, respectively) with an ethanol- and
distilled H,O-washed trowel. Bulk samples were stored on ice and 5ml
aliquots were stored on dry ice.

13C-DHP lignin microcosms

Sediment was separated from spring water using Steritop Filter bottles
(Sigma-Aldrich, St. Louis, U.S.A.). Two sets of three replicate sediments from
Lakelse, and hog fuel samples from 20 and 80 cm equivalent to 1g dry
weight were added to autoclaved 50 ml serum bottles with 0.1 g of 10%
3C-DHP lignin or "2C-DHP lignin plus 5 ml M9 buffer [12], and the bottles
were crimp-sealed. ">C-DHP lignin was synthesized as in [4] and in the
Supplementary Methods. Lakelse sediment and 20cm hog fuel were
incubated at 53°C, while 80cm hog fuel was incubated at 62 °C.
Incubations were in rotary shakers at 150 rpm.

13C-CO, respiration analysis

We monitored '*C-CO, production as an indicator of '>C-DHP lignin
mineralization. In total, 0.5 ml of serum bottle headspace air was manually-
injected into an Isoprime gas chromatograph isotope ratio mass spectro-
meter (GV Instruments, Wythenshave, U.K.) using a 1.0-ml glass syringe.
Headspace CO, concentrations were calculated using a standard curve of
0.05, 0.5, 5, and 10% of '*>C-CO, (~1.2% atom '>C Praxair Inc., Danbury, U.S.
A) in N, and 99.0 atom % '3C CO, (Sigma-Aldrich) in N, to 0.01, 0.05, 0.1
and 0.5% '3C-CO,. Control microcosms without sediment were monitored
to test stability of ">*C-DHP lignin at elevated temperature.

DNA extractions and fractionation

DNA was extracted from 0.5g of three replicate in situ thermal hot
spring sediment and hog fuel samples using NucleoSpin Soil kits
(Macherey-Nagel, Duren, Germany). After 24 days incubation, three
replicate microcosms with each of the three inocula were emptied into
sterile 15-ml Falcon tubes and centrifuged for 10 min at 4000 rpm at 4 °C.
DNA was extracted 4 times from 0.5 g sediment or hog fuel using the
above kit to achieve >5.0 ug recovered DNA. Cesium chloride density
gradient centrifugation and fractionation was conducted according to
published protocols [13, 14]. The level of 'C enrichment in each purified
DNA fraction was quantified using ultrahigh-performance liquid
chromatography-tandem mass spectrometry (UHPLC-MS/MS). Details
are provided in [15] and in the Supplementary Methods.

Fraction selection and shotgun sequencing

Fraction four (F4, ~1.737 gml~") was selected as the “heavy” fraction,
based on density measurement, % atom 3C-DNA, and absence of DNA
recovered in this fraction from "2C-DHP lignin microcosms. Fraction six
(F6, ~1.727 gml~") was used as the heavy fraction for '>C-DHP lignin
samples. Fraction ten (F10, ~1.717gm|’1) was used as the “light”
fraction for both. One ng DNA from light and heavy fractions were used
to generate metagenomic sequencing libraries using the Nextera XT
DNA Library Prep Kit (lllumina, San Diego, U.S.A.). In total, 12 libraries
from hog fuel microcosms and 12 libraries from hot spring microcosms
(Supplementary Table 1) were multiplexed separately on two runs of
NextSeq (lllumina) using 150-bp paired-end sequencing in High Output
mode at the UBC Sequencing and Bioinformatics Consortium
(Vancouver, CAN).
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Metagenome assembly, binning and annotation

Trimmomatic 0.36 [16] was used to quality filter reads and trim lllumina
adapters using default parameters. Reads from hot spring and hog fuel
libraries were assembled separately with metaSPAdes v3.11.1 [17] using
kmers = [21,33,55,77,99,127]. Contigs were binned with MyCC [18],
MetaBAT2 2.12.1 [19], CONCOCT 1.0 [20] and MaxBin2.2.7 [21], and a
dereplicated set of metagenome-assembled-genomes (MAGs) was gener-
ated with DASTool 1.1.2 [22]. MAGs were assessed for completeness and
redundancy using CheckM 1.0.1 [23]. Taxonomic classification used GTDB-
Tk [23] (github.com/Ecogenomics/GTDBTk). Coding sequences in binned
and unbinned contigs were predicted using Prodigal 2.6.3 [24], and
annotated with (1) DIAMOND 0.9.22.123 [25] blastp against the RefSeq 94
non-redundant (nr) database with a cut-off of e<1E—50, (2) hidden
Markov models (HMMs) against the carbohydrate-active enzymes (CAZy)
[26] database with dbCAN2 [27], Pfam/TIGRfam [28, 29], and (3) the KEGG
database using the HMM-based KOFAMSCAN [30].

Statistical analysis

Base-2 logarithmic fold change (L,FC) of MAG abundance (sequencing
depth) between B3¢ heavy (“enriched”) and light fractions, as well as
between 3C heavy and '?C heavy fractions, was determined with DeSeq2
[31] in R 3.5.1 [32]. Phylogenetic trees were visualized using iTol [33] and
ggtree [34].

Laccase preparation and characterization

LacOstsq, identified in an enriched MAG from hog fuel, was produced
heterologously as an N-terminal polyHis-tagged (Ht-) protein using E. coli
BL-21 A (DE3) containing PpET_LacOsts; (details in  Supplementary
Methods). The molecular weight and purity of the protein were analyzed
using SDS-PAGE. The copper content of LacOsys; was quantified using 2,2-
bicinchoninic acid after reduction of copper ions released from the
holoenzyme [35]. Laccase activity was measured spectrophotometrically at
436nm (¢ = 36,000M"cm™") and 468nm (¢ = 49,600M "' cm™") for
assays performed using 3mM 2,2-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS) (20 mM sodium acetate, pH 5) or TmM DMP (20
mM sodium phosphate, pH 8), respectively. One unit of activity (U) is
defined as the amount of enzyme required to transform 1pumol of
substrate to product per minute at 25 °C. The specific activity of sLac from
Amycolatopsis sp. 75iv3, a SLAC (Singh et al. [7]), was determined in parallel
under the same conditions as a positive control. The optimal pH of
LacOsrs, for DMP was evaluated over a range between pH 6 and 9 using
20 mM sodium phosphate (/= 0.1 M, pH 6-8) and 20 mM Tris-HCl (/= 0.1
M, pH 9) buffers. The thermostability of the enzyme was analyzed by
measuring the residual activity on DMP at pH 8, after incubating the
enzyme at 45, 55, 65 and 75 °C for up to 24 h.

The ability of LacOsrs; to transform guaiacylglycerol-B-guaiacyl ether
and veratrylglycerol-B-guaiacyl ether was performed as described else-
where [36]. Briefly, 1 mM of (3-O-4 biaryl ether was incubated with 1 uM
LacOstsq in 20 mM sodium phosphate, pH 8. The reactions were incubated
at 55 °C with stirring, and quenched after 6 h by adding acetic acid to 10%
final concentration. The quenched reaction was centrifuged at 16,000 X g
for 5 min, and the cleared solution was analyzed by reverse-phase HPLC.

To characterize activity with a minimally transformed lignin, enzymatic
mild acidolysis lignin (EMAL) from Eucalyptus wood [37] was dissolved in
DMSO (100 mg ml~") and used at 0.5% (w/v) for assays. Reactions were in
performed in 10 ml 12.5 mM potassium phosphate, pH 8, containing 10%
DMSO, incubated with or without 6 uM laccase at 30 °C and 200 rpm for
6 days. Reactions were performed using either LacOsts; or sLac from
Amycolatopsis sp. 75iv3. To analyze the release of monomers after
incubation, 100 pl of each reaction was quenched by adding acetic acid
to 10% final concentration and analyzed by reverse-phase HPLC. The dried
lignin was further analyzed by HSQC NMR and gel permeation
chromatography (GPC). Full assay details are provided in Supplementary
Methods.

RESULTS

13C-lignin catabolism

In this study, we investigated the ability of thermophilic bacteria
to mineralize synthetic lignin and assimilate lignin derivatives via
stable isotope probing. We first synthesized ~3.5 g '*C-DHP with a
mean molecular weight of 19.3 0.2 kDa, approximately equiva-
lent to 100 aromatic nuclei per DHP polymer. This synthetic lignin

SPRINGER NATURE
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Fig. 1 _Stable isotope probing (SIP) using '>C-DHP lignin polymer. A Detail of DHP lignin structure supported by GPC-MALS, 2D HSQC NMR

and ">C NMR analysis. Mn number average molecular weight (average molecular weight of all the polymer chains), PDI polydispersity index or
Mw/Mn ratio. Mw, Mn and PDI determined by GPC-MALS. Red dots show possible positions of '>C-isotopes in coniferyl subunit rings.
B '3C-CO, measured in the headspace of 50-ml sealed serum bottles containing 1g (dw) of each sample incubated with 100 mg (10%)
13C-DHP lignin, determined by IR-GCMS. *C-CO, evolution for control bottles with no inoculum (NI) or 100 mg unlabeled ">C-DHP lignin (NC)
are provided. Each point is the mean of n=3, and error bars represent standard error. C Post-ultra-centrifugation DNA gradient in a 5 ml
centrifuge tube with *C-Low (F10), "*C-Low (F10), '*C-High (F4) and '>C-High (F6) demarcated with dashed gray lines. Graphs show DNA
concentration vs. fractional density and %'3C-DNA for Hog Fuel 20 cm and Lakelse samples. %'3C-DNA measured using UPLC-MS/MS.

contained 13 -0-4, 20 B-B, and 18 B-5 bonds per 100 guaiacyl
subunits (Fig. 1A).

Approximately 0.75% (w/w) *C-DHP or ">C-DHP (control) was
incubated with 2 g hot spring sediment or ground hog fuel for up
to 24 days. We monitored the mineralization of 'C-DHP to
13C.CO, to determine if the lignin was mineralized (Fig. 1B).
Measuring the incubation headspace using IR-GC-MS showed that,
after 24 days, hog fuel from 20 and 80 cm depths evolved about
473+18 and 681+82pumol '>C-CO, per gram of hot spring
sediment or ground hog fuel, respectively, while Lakelse sediment
evolved about 245+45umol '*C-CO,g~'. For comparison,
13C-DHP incubated without inoculum evolved 12 pmol *C-CO,
g, and sediment incubated without '>C-DHP evolved 36 pmol
13C-CO, g ".Thus, microbial communities from thermal environ-
ments mineralized lignin at in situ temperatures.

Density fractionation was used to isolate DNA from microbes
that incorporated '3C from the labeled synthetic lignin during
incubation. To verify isotopic-labeling of DNA, UPLC-MS/MS was
used to calculate atom% '>C in each of the 12 recovered fractions

SPRINGER NATURE

(Fig. 1C). Fractions 1-4 (F1-4) from '*C-DHP microcosms had a
mean density of 1.738—1.7459m|’1 and contained about 20-60
atom% "C. All fractions from '2C-DHP microcosms had a baseline
of about 6 atom% '3C DNA. Thus, fractions 1-4 were pooled to
recover sufficient '*C-DNA for shotgun metagenome sequencing.
Detectable DNA was not recovered from fractions 1-4 of the
12C-DHP microcosms. Therefore, fraction 6 (F6; 1.72gml™") was
used for the “high-density” fraction for these control microcosms.

Resolution of genomes from '3C-enriched metagenomes

To facilitate the identification and characterization of putatively
lignolytic bacteria in thermal environments, we focused our
investigation on genome assemblies resolved from shotgun
sequencing of fractionated DNA. Fifty-two of these MAGs passing
quality thresholds (>80% completion, <5% contamination) were
assembled from hog fuel and 72 from hot spring sediment.
DESeq2 was used to statistically compare MAG abundance
between high-density fractions from '3C-DHP (F1-4) and
12C-DHP (F6) microcosms (Figs. 2 and 3), as well as between

The ISME Journal (2022) 16:1944 - 1956
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Fig.2 Hog fuel MAG abundance in 13C-High (F1-4) and "2C-High (F6) SIP libraries. Phylogenetic tree MAG placement using GTDB-TK v1.0.2

based on 120 bacterial single-copy genes.

C-enriched genomes shown in bold. Scale shows length equivalent to 0.1 substitutions. Heatmap

shows square-root transformed mean MAG abundance following DeSeq2 normalization in triplicate libraries. Abundance calculated by
mapping quality-filtered reads to MAG nucleotide sequences with bbmap 38.22. Bar plot shows log, fold change (L,FC) between '3>C-High and
2C-High for each genome with >L,FC 0 indicating enrichment in '3C-High libraries. Error bars represent standard error of L,FC. Bar plot
provides cut-off estimates for significance at a,q; = 0.05 (individual p,q; values <005 provided).

high-density and low-density (F10) fractions from '*C-DHP
microcosms (Figs. S2 and S3). MAGs with significantly higher
(Pupr < 0.05) abundance in '>C F1-4 relative to '>C F6 were
considered "*C-enriched. There were four '*C-enriched MAGs in
hog fuel 20 cm libraries, another three in the 80 cm libraries, and
two in libraries from both depths. There were five *C-enriched
MAGs in hot spring sediment libraries. One gammaproteobacterial
MAG enriched in hog fuel (MB2.51) was placed in family
Steroidobacteraceae (Fig. 2). The remainder of enriched MAGs
were Gram-positive bacteria, including the phyla Chloroflexi,
Actinobacteria and Firmicutes. MB2.64 from hog fuel was placed
in the thermophilic actinobacterial family Solirubrobacteraceae,
and was enriched over 300-fold in both 20 and 80 cm libraries.
While we were able to recover 125 MAGs with an average
single-copy gene completeness of 87% (Supplementary Data 2),
the full suite of metabolism-encoding genes was likely not
recovered for all, potentially resulting in incomplete annotation
of aromatic degradation pathways. Of the hog fuel MAGs, MB2.64
(99% completeness), encoded catechol and protocatechuate
ortho-cleavage pathways, and 4-hydroxybenzoate monooxygen-
ase (Fig. 4). A Thermoleophilaceae MAG, MB2.39 was also highly
enriched with '3C in the 80cm hog fuel microcosms, and like
MB2.64, is a member of the thermophilic order Solirubrobacterales.
Other "3C-enriched Actinobacteria include CON22 (Actinomadura
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rubrobrunea), MAX.045 (Frankia sp.), MAX.030 (Micromonospora-
ceae), CON124 (Rubrobacter sp.) and MB2.74 (Rubrobacter sp.)
(Fig. 3). These MAGs all encoded protocatechuate degradation. In
addition, A. rubrobrunea encoded a two-component vanillate O-
demethylase, while the Micromonosporaceae MAG appeared to
encode a LigM-type (aminomethyltransferase) vanillate O-
demethylase based on pHMM results (Fig. 4). To account for
incomplete annotation of our MAGs, their aromatic degradation
pathways were compared with those annotated in closely related
strains (Fig. 4), revealing that vanillate O-demethylation and
protocatechuate ortho-cleavage are encoded widely in thermo-
philic Actinobacteria.

The "3C-enriched Lakelse hot spring MAGs represented a higher
proportion of Firmicutes than the hog fuel MAGs (Figs. 2 and 3).
These included Kyrpidia sp. (CON.60) and Alicyclobacillus sp.
(MB2.88, CON.104). While some Kyrpidia and Alicyclobacillus
reference genomes encode catechol meta-cleavage (Fig. 4), only
CON.60 was found to encode this pathway in our MAG dataset.
Three Alicyclobacillus genomes (MB2.88, CON25, and MB2.97)
encoded LMCOs with high amino acid identity (>85%) to a
homolog in phenolic- and polyphenolic-oxidizing Alicyclobacillus
acidocaldarius DSM 446 [38]. Of these, MB2.88 contained two
L-type 3-domain LCMOs with 100% amino acid identity to those
encoded by DSM 446.
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Identification of putative ligninases

Typically, DyPs and LCMOs are only broadly classified by existing
PHMMs, or in sequence databases. We therefore applied
phylogenetic profiling with TreeSAPP [39] to classify these
enzymes into discrete sub-families (Fig. 5A). Sequences from
MAGs were placed only into A and B DyP types. Few DyPs were
recovered (Fig. 4), none of which contained secretion signals.
Nevertheless, DyP2, a C-type DyP from Amycolatopsis sp. 75iv2
involved in lignin depolymerization has no detectable signal
sequence [36]. In contrast to DyPs, 82 LCMOs were detected in hot
spring MAGs, and 100 were detected in hog fuel MAGs. Of these,
only four were detected in LCCED sub-family 11, corresponding to
SLAC or K-type laccases, all of which contained TAT signal

SPRINGER NATURE

peptides (Fig. 5B). Additionally, an O-type two-domain LCMO was
detected in MB2.51 (Steroidobacteraceae), also containing a
leading secretion signal peptide (Fig. 5C). We named this enzyme
LaCOST51.

The classification of LCMOs into super-families, and comparison
with enzymes of known function, may shed light on their
functional roles. We applied structural alignment to assess the
relationships between sequence, structure and function (Fig. 5D).
Cu- and substrate-binding residues were highly conserved across
K-type LMCOs including those recovered in this study. However, a
15-amino acid sequence hypothesized to act as a “flap” covering
one of the channels leading to the trinuclear cluster [40], which
was present in all known SLACs, was absent in the recovered
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Fig. 4 Predicted aerobic aromatic degradation pathways, dye-depolymerizing peroxidases (Dyps) and laccase-like multi-copper oxidases
(LMCOs) in "*C-DHP lignin enriched MAGs and select reference genomes. Phylogeny of MAGs as in Figs. 2 and 3. Aromatic degradation
pathway genes were annotated using profile HMMs for KEGG orthologs (KO) with e <0.01 and HMM scores above KO-specific thresholds.
Syringate O-demethylase (LigM) orthologs annotated using the TreeSAPP reference package are shown with 50% opacity (i.e., light pink).
Individual orders containing enriched MAGs are highlighted. H4F Tetrahydrofolate, PCA Protocatechuic acid, HB Hydroxybenzoate, BKA beta-

ketoadipate.

thermophilic K-type LMCOs. Based on these sequence differences
and the results of phylogenetic clustering, we categorize the
LMCOs recovered from thermal systems as K2-type LCMOs, in
contrast to the K1-type LCMOs found in mesophilic Actinobacteria
such as Streptomyces coelicolor [40]. The lignin-degradation
potential and thermotolerance of the K2 laccase clade remains
uncharacterized.

Putative tetrahydrofolate-dependent O-demethylases

As our model lignin is comprised of 100% guaiacyl- subunits, we
hypothesized that mineralization of DHP requires O-demethyla-
tion. While we identified a small number of vanillate O-
demethylases (Fig. 4), which are Rieske-type oxygenases, we also
investigated the potential for tetrahydrofolate-dependent O-
demethylation of methoxylated aromatic compounds. To inter-
rogate MAGs for tetrahydrofolate-dependent aryl O-demethylases,
we once again used phylogenetic placement. We categorized
aminomethyltransferases by putative function and taxonomic
identity, with LigM and DesA sequences partitioning into distinct
clusters (Fig. 6A). Assembled sequences placed into the tree
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formed a separate clade emerging from the DesA branch, which
we have labeled “DesA-like aminomethyltransferases” (Fig. 6B).
Specifically, MB2.64 (Solirubrobacterales), MB2.39 (Thermoleophila-
ceae), CON124 (Rubrobacter sp.), and MB2.51 (Steroidobacteraceae)
all contained what appear to be DesA-like aminomethyltrans-
ferases, with conservation of a methyl-transferring tyrosine residue
verified by structure-guided protein alignment (Fig. 6C). While the
metabolic function of these enzymes requires validation, it is
intriguing that they may facilitate the O-demethylation of LDACs
in thermophilic bacteria.

Characterization of LacOgrs,q

A key question that emerged from metabolic reconstruction of
13C-DHP-enriched MAGs following the microcosm study was the
mechanism for the observed lignin depolymerization. In the above
analysis we focused on the LCMOs as a possible answer. To test
this hypothesis, and potentially identify novel biocatalysts, we
selected four two-domain LCMOs (two K2-type, one O-type, one
N-type) for heterologous expression, with the objective of
evaluating their role in depolymerizing lignin (Table 1). Of these
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Fig. 5 Laccase-like multi-copper oxidase (LCMO) phylogeny and classification using TreeSAPP LCMO reference package. A Phylogeny of
reference LCMOs. Protein sequences were aligned using MAFFT using the ginsi setting under 1000 iterations. Phylogeny was reconstructed
using RAXML under the PROTGAMMAPMB model with 1000 iterations. Values beside labels show the number of reference sequences for each
clade. B K-type (2dMCO SLAC) sequences from MAGs placed into reference tree. Presence of 5’ signal peptides shown using a green square.
C Phylogenetic placement of LCMO sequences from MAGs in the O-type (2dMCO) clade. D Multiple alignment of reference and MAG LMCO
sequences. Blue denotes 2dMCOs and red denotes 3dMCOs. Length of 5’ signal peptides shown in green. Yellow markings denote conserved
copper-binding residues. Blue markings denote substrate-binding residues. Gray denotes strength of conservation. Yellow region shows

possible active-site protecting fold in Type-K1 SLACs.

only “LacOstsq,” the O-type LCMO from MB2.51, proved soluble
when expressed in E. coli (Table 1). Expression in Rhodococcus jostii
RHA1 did not improve the solubility of the other proteins. SDS-
PAGE indicated that the LacOsys; protein was purified to >99%
apparent homogeneity and had a molecular mass of ~36 kDa.
Purified LacOsts; exhibited the blue color typical of laccases, and
had an absorption band at 620 nm, characteristic of a T1 blue
copper site. The preparation had a molar copper content of 4.0 +
0.2, indicating that the purified LacOsts; was loaded with a full
complement of copper.

LacOsrsy utilized 2,2’-azino-di-(3-ethylbenzthiazoline sulfonate)
(ABTS) and 2,6-dimethoxyphenol (DMP) as reducing substrates
with specific activities of 1.46 and 0.03 Umg ', respectively. The
specific activity of LacOsts; for ABTS was of the same order of
magnitude as that reported for other bacterial laccases (Table 1).
However, specific activity for DMP was lower than the value for
most other reported laccases. The oxidation of DMP was optimal
at pH 8, and the enzyme retained ~90% activity at pH 9. These
values are higher than the average reported for other bacterial
laccases [41], and match the optimal values described for alkaline
laccases (e.g. [42, 43]). LacOsts; retained >50% of its activity after
12 h when incubated at 55 °C. However, the half-life of LacOgrs,
dropped significantly at 65 °C. Generally, the high pH preference
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and the thermal stability indicate that the enzyme is suitable for
industrial applications.

To evaluate the ability of LacOsts; to transform lignin, we
initially tested the reactivity of LacOsys; toward guaiacylglycerol-f3-
guaiacyl ether (GGE) and veratrylglycerol-B-guaiacyl ether (VGE),
phenolic and non-phenolic compounds, respectively, that contain
the B-O-4 linkage prevalent in lignin. GGE was depleted upon
incubation with LacOsrs; for 6h, and several products were
detected by HPLC (Fig. 7A). The retention times of these
compounds suggest that they are oligomerization products [44].
In contrast, the enzyme did not detectably transform VGE. These
results indicate that LacOsts; can react with phenolic substrates in
the absence of mediators.

Transformation of enzymatic mild acidolysis lignin by
LacOsrs,

We tested the ability of LacOsrs; to transform EMAL, a minimally
altered form of lignin that contains little residual cellulose or
hemicellulose from Eucalyptus wood [45]. A solution of EMAL
incubated without enzyme for 6 days contained a significant
quantity of vanillin (tg=10.6 min) and oligomeric material that
eluted as a broad band (tg = 13-22 min) (Fig. 7B). Incubation with
6 UM LacOsys; additionally resulted in the production of
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Fig. 6 Aminomethyltransferase family protein phylogeny using TreeSAPP reference package. A Reference tree produced by TreeSAPP with
50 amino acid sequences using RAXML under the PROTGAMMALG model and 1000 iterations. Tree includes experimentally-validated
vanillate/3-O-methylgalate O-demethylase (LigM) and syringate O-demethylase (DesA) proteins. B Placement of predicted MAG-encoded
aminomethyltransferases into the reference tree. C Multiple sequence alignment with MAFFT using the ginsi setting under 1000 iterations for
select sequences. Aromatic-binding residues derived from LigM structural model are shown in pink, folate-binding residues are shown in
green, and the primary methyl-transferring catalytic tyrosine residue shown in orange. D Pathway diagram of tetahydrofolate-dependent O-

demethylation of methoxylated aromatic compounds.

syringaldehyde and 2,6-dimethoxy benzoquinone (DMBQ) as well
as a reduction in the amount of oligomeric material. To provide
insight into how LacOsys; modified the lignin, the transformed
lignin was isolated and characterized using NMR and GPC-MALS
spectrometry. In these experiments, sLac was used as a positive
control as it had previously been shown to transform lignin [7].
HSQC NMR spectra from laccase-treated lignin samples differed
significantly from those of the no-enzyme controls (Fig. 7Q).
Specifically, in samples treated with either LacOsys; or slLac, the
secondary aliphatic hydroxyl groups of the lignin were oxidized to
their benzylic ketone, as reflected by the increased in signals S', G,
A’, and A”. This oxidization process leads to the ability to cleave
the propyl side chain with oxidative reagents resulting in rupture
of native linkages (3-O-4, A) as illustrated with model compounds
[46]. The slightly modified reaction on the C-C linkages including
-5 (B) and B-B (Q) in our study and elsewhere [47] require more
investigation. Based on the amount of linkages modified, sLac
modified the lignin more efficiently than LacOsts;.

GPC analysis indicated that treatment of EMAL with either
LacOsts; or sLac yielded lignin with a higher apparent molar mass
(M,y and M) and increased the range of fragment size (Fig. 7B).
However, sLac treatment resulted in a significant amount of
insoluble material that was not included in this analysis. The
higher molecular weight for both treated materials is presumably
due to condensation reactions between the aromatic radicals [48].
The observed polymerization activity of LacOsts; and sLac is
consistent with studies of other laccases (e.g. [49]) and depends
on the reaction conditions, particularly the relative concentrations
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of lignin species of different molecular weight. Indeed, sLac
catalyzes the depolymerization of lignin in steam-pretreated
poplar in the presence of natural mediators [7]. Overall, these
data demonstrate that LacOsts; oxidatively transforms lignin in
the same manner as other laccases.

DISCUSSION

We hypothesized that lignin-degrading microorganisms occur in
thermal environments that receive woody biomass inputs and
would assimilate carbon from a synthetic lignin. The synthesis of
3C-DHP lignin in our laboratory was essential for accurate
assessment of such assimilation, as *C-labeled lignin of the purity
used in this study is not commercially available. We verified lignin
degradation in microcosms by monitoring '>C-CO, production
and "*C-incoropration into recovered DNA. The incorporation of
3C molecules from labeled, high-molecular-weight synthetic
lignin into bacterial DNA provides direct evidence for bacterial
catabolism of LDACs, and indirect support for bacterial lignin
depolymerization. While it is evident that lignin was degraded, we
cannot completely rule out other mechanisms of lignin depoly-
merization undetected by our methods. For example, a stable pool
of extracellular fungal lignin peroxidases in our inoculum could
have contributed to lignin depolymerization. However, genes
putatively encoding lignin depolymerization were found in the
MAGs of organisms that assimilated lignin in the microcosms,
suggesting that thermophilic bacteria contributed to lignin
depolymerization.
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Table 1. The specific activity of LacOsts; and other bacterial laccases.
Name Strain

LacOsrs™P Steroidobacteraceae MB2.51
LacNrgso” Thermogemmatispora MB2.59
LacK27y30° Thermoleophilales MB2.39
LacK2spes” Solirubrobacterales MB2.64
sLac® Amycolatopsis sp. 75iv3
SLACS Streptomyces coelicolor

Ssl1d Streptomyces sviceus

SLAC® Streptomyces coelicolor
Geolacc Geobacter metallireducens
CotA? Bacillus licheniformis

CotA" Bacillus sp. HRO3

LacM' metagenome

ThioLacd Thioalkalivibrio sp. ALRh
“This study.

Small laccase ABTS (U/mg) DMP (U/mg)
1.46 0.03
1.19 0.21
0.98 naX
21.7 na
8 na
6.67 0.04
16 na
0.15 na
24 2.1
0.65 na

Z Z2zZ22Z2 2 < < << << <<

PReactions at 25 °C. For ABTS: 20 mM sodium acetate (/=0.1 M), pH 5.0. For DMP: 20 mM sodium phosphate (/= 0.1 M), pH 8.0.

“Sherif et al. [69]. Reactions at 60 °C. For ABTS: 50 mM sodium acetate, pH 4.0.

9Gunne and Urlacher [70]. Reactions at 25 °C. For ABTS: 50 mM Mcllvaine’s buffer, pH 4.0.

*Dubé et al. [71]. Reactions at 25 °C. For ABTS: 2-(N-morpholino)ethanesulfonic acid (MES)-glycine buffer 0.1 M, pH 4.0.
fBerini et al. [41]. Reactions at 25 °C. For ABTS and DMP: 20 mM HEPES, pH 5.6.
9Koschorreck et al. [72]. Reactions at 25 °C. For ABTS: citrate/phosphate buffer pH 4.0.

"Mohammadian et al. [73]. Reactions at 25 °C. For ABTS: 100 mM phosphate buffer, pH 4.0.

iAusec et al. [74]. Reactions at 25 °C. For ABTS: multi-component buffer (10 mM trizma base, 15 mM sodium carbonate, 15 mM phosphoric acid and 250 mM

potassium chloride, pH 4.0. For DMP: same buffer, pH 5.0.

JAusec et al. [75]. Reactions at 25 °C. For ABTS: 200 mM phosphate-citrate (Mcllvaine), pH 5.0.

Not available.

Several bacterial taxa were enriched with '>C from synthetic
lignin. In hog fuel, these bacteria primarily belong to the proposed
actinobacterial class Thermoleophilia—members of which are
abundant in geothermal environments and soil but have poorly
characterized metabolic potential [50]. Specifically, the genus
Rubrobacter includes known thermophiles [51, 52], and Rubrobac-
ter OTUs were strongly associated with lignocellulose degradation
and tolerance of phenolic lignin metabolites at 55 °C [53]. Related
actinobacterial MAGs, including from an Actinomadura rubrobru-
nea strain (CON22), were also '3C-enriched in hog fuel micro-
cosms. CON22 contained one of few Rieske vanillate O-
demethylases found in this study and encoded complete
protocatechuate ortho-cleavage and partial meta-cleavage path-
ways (Fig. 4). While the lignin-degradation potential of A.
rubrobrunea has yet to be characterized, other Actinomadura
strains have been found to solubilize lignocellulose [54], and
contribute to the degradation of the cellulose [55] or lignin [56].
The Rubrobacter and A. rubrobrunea strains identified in this study
make compelling targets for further investigation. The MB2.64
MAG was placed in the actinobacterial family Solirubrobacteraceae.
We previously identified putatively lignolytic Solirubrobacterales
OTUs in forest soil through a similar stable isotope probing
approach [14], but we were unable to resolve MAGs from lignin-
assimilating Actinobacteria or identify enzymatic mechanisms that
would explain their involvement in lignin degradation. We
propose MB2.64 from hog fuel has robust lignin degradation
potential. In contrast, in hot spring communities, 3C-enriched taxa
were predominantly Firmicutes such as Alicyclobacillus ssp. There-
fore, this study expands the taxonomic range of bacteria
associated with lignin degradation to include other thermophilic
Actinobacteria and Firmicutes.

In addition to incorporation of '*C from synthetic lignin and
presence of putative ligninases, we used the presence of genes
encoding catabolism of aromatic compounds to evaluate each
MAG for its lignin degradation potential. A key difference between

SPRINGER NATURE

MAGs from hog fuel and hot springs was not only taxonomy, but
also the capacity for aromatic catabolism. Hog fuel MAGs encoded
vanillate O-demethylation and the protocatechuate ortho-clea-
vage pathway, suggesting that LDACs liberated from lignin were
funneled into specific degradation pathways. Although several
cultured representatives of Solirubrobacteriales encode a two-
component Rieske vanillate O-demethylase (Fig. 4), none were
found in the genome of MB2.64 from the hot spring. This was at
odds with our hypothesis that O-demethylation is critical to
catabolism of LDACs. However, a methyltransferase with full-
length amino acid identity of 69.5% to syringate O-demethylase
(DesAsyk.e), and with conserved substrate-binding residues, was
identified through phylogenetic placement and sequence align-
ment. Accordingly, the 5,10-methylene-tetrahydrofolate reductase
(metF) and formate-tetrahydrofolate ligase (ligH) genes, encoding
the tetrahydrofolate-mediated C; metabolic pathway [57, 58],
were also found in the MB2.64 genome (Fig. 5D). Genomes of
other Gram-positive bacteria such as Rubrobacter xylanophilus
DSM9941 [57], Acetobacterium dehalogenans and Desulfitobacter-
ium  hafniense  [59] (both Firmicutes) encode vanillate-
demethylating methyltransferases. Thus, the MB2.64 genome
provides strong evidence for lignin degradation mediated by
bacterial thermophiles, facilitated by a novel one-component
actinobacterial O-demethylase.

The "*C-enriched MAG, MB2.51, from hog fuel was placed in the
gammaproteobacterial family, Steroidobacteraceae. As the name
suggests, bacteria in this family can degrade steroidal hormones
[60], but also polyvinyl alcohol [61] and rubber [62]. MB2.51 encoded
full catechol and protocatechuate meta-cleavage pathways, as well
as monooxygenases involved in 4-hydroxybenzoate and phenol
hydroxylation. A methyltransferase from MB2.51 contained all
conserved LigMsyk.e residues involved in methyl-transfer, as well
as aromatic substrate and folate binding, suggesting a role for this
gene in degradation of methoxylated aromatic compounds. No
thermophilic Steroidobacteraceae strains have been previously
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Fig. 7 Transformation of lignin by LacOsysq1. A Reactivity of LacOsys,with 3-O-4 biaryl ethers. LacOsts; (1 pM) was incubated for 6 h with 1
mM guaiacylglycerol-B-guaiacyl ether (left) or veratrylglycerol-p-guaiacyl ether (right) with 20 mM sodium phosphate and pH 8 at 55 °C. HPLC
traces are of reactions with (solid line) and without (dotted) enzyme. B Treatment of EMAL with LacOsts;. LacOsts; (6 pM) was incubated for
6 days with 0.5% (w/v) EMAL (12.5 mM sodium phosphate, pH 8, 10% DMSO, at 30 °C). HPLC traces are of reactions with (solid line) and
without (dotted) enzyme. The identities of the indicated compounds were confirmed using authentic standards. DMBQ: 2,6-Dimethoxy
benzoquinone. Inset: Effect of laccase treatment on molar mass distribution of Eucalyptus EMAL, where EMAL was treated with either
LacOsrs1, sLac or no enzyme (PsLac treatment generated insoluble material that was not analyzed using GPC). € HSQC NMR spectra of laccase-
treated EMAL. EMAL was incubated with no enzyme (a) and (d), LacOsts; (b) and (e), or sLac (c) and (f). The top and the bottom panels show
the aliphatic and aromatic regions, respectively, of the 2D-NMR spectra. Linkages and units are expressed as per 100 aromatic units (100 Ar),

which represented the integration of the G, + 1/2S,. Structures of the regions are shown to the right.

reported. Yet this MAG yielded the only soluble, thermotolerant
laccase found in this study, discussed below.

Lignin degradation mechanisms in '>C-enriched hot spring
MAGs are less clear than in their hog fuel counterparts. One
possible explanation for this is cross-feeding, the catabolism by
one organism of LDACs produced by a different lignin depoly-
merizing organism. However, the two '*C-enriched Alicyclobacillus
sp. MAGs from hot spring sediment encoded a suite of L- and
O-type LCMOs that bore high sequence identity to LCMOs found
in A. acidocaldarius capable of non-specific cleavage of lignin-
derived polyphenols [38]. The catechol meta-cleavage pathway
genes in Alicyclobacillus sp. MAGs are incomplete, although the
complete pathway is encoded in closely related Alicyclobacillus
genomes (Fig. 4). We propose that, similar to A. acidocaldarius, the
Alicyclobacillus sp. MAGs recovered herein encode non-specific
oxidative degradation of lignin-derived polyphenols, which can
serve as a source of carbon in carbon and nutrient limited
oligotrophic ecosystems such as geothermal hot springs. This may
also serve to as a detoxification mechanism.

The ISME Journal (2022) 16:1944-1956

Lignin-degrading organisms can serve as a source of novel
ligninases, including laccases. Laccases are multi-copper oxidases
that oxidize a broad range of compounds including substituted
phenols, arylamines and aromatic thiols [63]. Bacterial laccases are
appealing and versatile catalysts due to their thermal stability [64],
use of molecular oxygen as the final electron acceptor and
production of only water as a by-product [65]. Here, we used
newly published software, TreeSAPP [39], which places novel
sequences into reference phylogenies. We designed a multi-
copper oxidase reference phylogeny based on a model of 16 sub-
families [66]. Specifically, we identified a possible thermophilic
clade of the lignolytic two-domain K-type SLACs found in
3C-enriched Solirubrobacteraceae and Thermoleophilales, which
we refer to as K2-type laccases. We also annotated a number of
two- and three-domain LMCOs in '*C-enriched Steroidobacter-
aceae and Alicyclobacillus MAGs from sub-families O and L, which
contain members capable of phenolic oxidation [67, 68]. Together,
these results suggest that bacterial laccases are involved in lignin
degradation in thermal environments.
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To validate putatively lignin-degrading LCMOs identified with
3C-lignin SIP, we heterologously expressed a selection of these
enzymes. Specifically, we attempted to express two K2-type, one
O-type and one N-type laccase in E. coli. The two K2-type enzymes
were expressed as insoluble forms, and expression of the N-type
was not detected in either soluble or insoluble form. We also
attempted to express the actinobacterial K2-type laccases in
Rhodococcus jostii RHA1, but they were again insoluble—thus, the
lignin degradation potential of the K2- and N-type laccases
remains uncharacterized. The O-type laccase originating from the
gammaproteobacterial MB2.51 MAG was expressed in soluble
form in E. coli and further purified and characterized. This enzyme
(LacOsts1) transformed a minimally transformed Eucalyptus lignin,
liberating LDACGs, including DMBQ and syringaldehyde. We
previously demonstrated that syringaldehyde is a major degrada-
tion product of Eucalyptus lignin, and can be funnelled into the
syringic acid meta-cleavage pathway in thermophilic Alphapro-
teobacteria [37]. Our results herein demonstrate that bacterial
laccases, such as LacOsrs; or the previously-characterized slac,
can generate lignin-derived mono-aromatic compounds at
elevated temperature. We propose that that these thermostable
biocatalysts can be employed for bacterial bio-product
production.

In this paper we characterized 14 genomes from bacteria in
thermal hog fuel and hot spring sediment environments that
incorporated synthetic '*C-labeled lignin. The results supported
our hypothesis that these communities harbor thermophilic,
lignin-degrading bacteria. These bacteria include members of
the actinobacterial families Solirubrobacterales and Thermoleophi-
laceae that have a distinct clade of K2-type SLACs. These bacteria
also included a Gammaproteobacteria (Steroidobacteraceae) from
which we expressed a lignin-transforming O-type laccase. Overall,
this study advanced our knowledge of how thermophilic bacteria
can degrade lignin and LDACs and identifies enzymes potentially
useful in biocatalysts for lignin valorization.
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