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SUMMARY

Alzheimer’s disease (AD) is a multifactorial pathology, with most cases having a sporadic origin. Recently,
knock-in (KI) mousemodels, such as the novel humanized amyloid-b (hAb)-KI, have been developed to bet-
ter resemble sporadic human AD. METHODS: Here, we compared hippocampal publicly available tran-
scriptomic profiles of transgenic (5xFAD and APP/PS1) and KI (hAb-KI) mouse models with early-
(EOAD) and late- (LOAD) onset AD patients. RESULTS: The three mouse models presented more Gene
Ontology biological processes terms and enriched signaling pathways in common with LOAD than with
EOAD individuals. Experimental validation of consistently dysregulated genes revealed five altered in
mice (SLC11A1, S100A6, CD14, CD33, and C1QB) and three in humans (S100A6, SLC11A1, and KCNK).
Finally, we identified 17 transcription factors potentially acting as master regulators of AD. CONCLU-
SION:Our cross-species analyses revealed that the threemousemodels presented a remarkable similarity
to LOAD, with the hAb-KI being the more specific one.

INTRODUCTION

Alzheimer’s disease (AD) is commonly categorized into early- (EOAD; <65 years-old) and late- (LOAD;R65 years-old) onset based on the age

of clinical onset, the latter being the most prevalent form of the disease.1 This broad definition includes the mendelian and non-mendelian

EOAD, which confers an additional degree of heterogeneity to this group. Both forms of EOAD seem to present more prominent brain at-

rophy, glucose hypometabolism, and increased tau positron emission tomography (PET) uptake compared to LOAD.2–6 However, a recent

study demonstrated a similar biomarker profile between autosomal dominant EOAD and LOAD patients, supporting a shared pathobiolog-

ical construct between both forms of the disease.7

Autosomal dominant inheritancemendelian EOADaccounts for less than 1%of AD cases, but genemutations found in these patients have

been used for developing most AD models.1 Specifically, mouse models overexpressing one or more mutations in the amyloid precursor

protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes have dominated the AD experimental research. However, these models

have undergone extensive scrutiny in the past years because they present artifacts introduced by APP overexpression and do not resemble

important aspects of LOAD.8–10 Thus, a major challenge in the field has been the development of animal models that better recapitulate

LOAD. The emergence of a new knock-in (KI) strategy for developing novelmodels expressing humanAPPwith appropriate levels and cellular

specificity seems to provide improved models for investigating sporadic AD.10–12

The investigation of coremolecular programs shared by overexpression and KI models with human pathologymay help determine to what

extent animal models can resemble human disease. Additionally, the ability to recapitulate key molecular pathways activated or repressed in

AD is crucial for model validity. Here, we aimed to ascertain the genes and pathways overlapping gene overexpression (5xFAD and APP/PS1)
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and KI [humanized amyloid-b(Ab)-KI] mouse models with EOAD and LOAD. With this in mind, we compared the hippocampal transcriptomic

profiles of these animal models and AD and established the molecular similarity and specificity of mouse data to the human disease. We

further employed a regulatory network-based approach to infer and investigate common master regulators between animal models and

AD. Finally, we validated our transcriptomic exploratory findings in the hippocampus of APP/PS1 mice and postmortem EOAD and LOAD

individuals.

RESULTS

hAb-KI, 5xFAD, and APP/PS1 models exhibit more differentially expressed genes overlapping with LOAD than EOAD

We first investigated the genes that are differentially expressed between non-AD [wild type (WT, for animal models) and cognitively

unimpaired individuals (CU, for EOAD and LOAD)] and AD conditions. Differential expression analysis of the hippocampus of hAb-KI,

5xFAD, and APP/PS1 mice and WT controls identified 1537, 3231, and 1768 differentially expressed genes (DEGs), respectively (unad-

justed p value <0.05; Figures 1B, 1C, and S1; Table S1). Next, to investigate the discrepancies in gene expression between the three AD

animal models and human AD subtypes, we evaluated the overlap between DEGs. We found that the hAb-KI animals presented more

DEGs overlapping with the 5xFAD mice than with APP/PS1 model [389 (25.3%) versus 235 (15.3%) DEGs, respectively; Chi-square

adjusted p value <0.001; Figure 1D]. In addition, the comparison with AD human data demonstrated that hAb-KI mice exhibited

more DEGs in common with LOAD than with EOAD individuals [381 (24.8%) versus 164 (10.7%), respectively; Figures 1E and 1F]. Despite

being mouse models carrying familial AD-linked mutations, APP/PS1 and 5xFAD mice shared more DEGs with LOAD than with EOAD

patients (Figures 1E and 1F). Moreover, considering the total of DEGs identified in the mouse models as reference (model-disease over-

lap), the intersection of DEGs between 5xFAD and EOAD was significantly higher (14%) than the overlap between both APP/PS1 (10.9%;

Chi-square adjusted p value = 0.0061) or hAb-KI (10.7%; Chi-square adjusted p value = 0.0054) with EOAD (Figure 1E - right). On the

other hand, the overlap of LOAD DEGs with 5xFAD (28%) and with APP/PS1 (25.3%) mice was not significantly different from the overlap

with hAb-KI (24.8%; Figure 1F - right; Chi-square adjusted p value = 0.123 and Chi-square adjusted p value = 0.063, respectively). Inter-

estingly, the hAb-KI model shared 212 DEGs exclusively with LOAD, while only 98 with EOAD (Figures 1B and 1C). Comparing only the

adjusted p value DEGs [Benjamini & Hochberg (BH) < 0.1], we observed a similar profile of gene overlap, especially regarding the

hAb-KI model and LOAD (Figure S2). However, no overlap of DEGs was identified between all animal models and LOAD or EOAD

when considering adjusted p value DEGs <0.05 (Figure S3; Table S2). Thus, we opted for using unadjusted p values <0.05 for subse-

quent functional enrichment analysis, which allows for exploratory cross-species investigation of core molecular programs that can be

further validated. Only seven DEGs were found in common with all the mouse models and human AD. Among them, DEGs related to

innate immune response (C1QB, CD33, CD14, S100A6, and SLC11A1) were consistently upregulated across the groups, while those

related to membrane potential regulation and neuropeptide production (KCNK1 and SST) were mostly downregulated. Additional ma-

terial related to STAR Methods can be found in Tables S6, S7, S8, and S9.

Because functional activity of proteins is highly dependent on their interactions with other proteins, understanding protein interactions is

crucial to uncover their role. The protein-protein interaction (PPI) network of DEGs intersecting the hAb-KI model and LOADpatients revealed

that PTGES3, GNB1, ARIH2, SMURF1, and EIF3A genes are hubs of the four clusters formed (Figure 1G). However, only two genes revealed in

the PPI network – GNB1 andNKTR – were differentially expressed in the hAb-KI model after BH adjustment. Considering theDEGs exclusively

shared with the hAb-KI model and EOAD patients, only 11 remained in the PPI network, and only the PRPF40A gene remained significant in

hAb-KI after multiple comparisons correction (Figure 1H). Next, we compared the DEGs of each mouse model with a database frommultiple

sclerosis (MS) patients to verify their specificity for AD pathology. The threemousemodels presented a greater overlap of DEGs with AD than

withMS individuals (Figures 1I, 1J, S4A, and S4B). Interestingly, no significant differenceswere observed in DEGs shared between hAb-KI mice

and EOAD (10.7%) or MS patients (9.6%; Figures 1K and S4C), while the overlap of hAb-KI DEGs with LOAD was significantly higher than with

both EOAD and MS (24.8%; Chi-square adjusted p value <0.001; Figures 1K and S4C).

To validate our exploratory transcriptomic findings, we performed qRT-PCR analyses of the seven DEGs overlapping between human

AD and animal models (Tables S10 and 11). The validation was performed in APP/PS1, LOAD, and EOAD postmortem hippocampus. Sig-

nificant increases in S100A6, C1QB, CD33, CD14, and SLC11A1 mRNA levels were observed in APP/PS1 mice compared to WT littermates

(Figure 2A). Regarding the human hippocampal tissue validation, S100A6 was significantly increased in LOAD and EOAD compared to CU

individuals (Figure 2B). In addition, SLC11A1 expression increased, while KCNK significantly decreased in LOAD individuals. Although

C1QB, CD33, and CD14 presented decrease/increase trends in AD patients compared to CU individuals, they did not reach statistical

significance.

DEGs found in neurons and oligodendrocytes are the majority among all animal models and AD subtypes

We next explored which brain cell types were more associated with the DEGs observed in each animal model and the AD subtypes. In

the 5xFAD and APP/PS1 models, neuron was the cell type with more DEGs between the transgenic animals and their WT controls (1368

and 636, respectively, Table 1). Oligodendrocytes and neurons were the cell types with the most DEGs for hAb-KI (632 and 540, respec-

tively) and for EOAD (658 and 558, respectively, Table 1). Finally, endothelial cells were associated with most of the DEGs observed in

LOAD (620, Table 1) cases compared to CU individuals. Interestingly, despite these animal models and AD subtypes share a fair amount

of DEGs, the majority of DEGs, derived especially from neurons and oligodendrocytes, are unique for each group (Figure S4).
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hAb-KI mice and LOAD patients present higher similarities in functional changes

We next investigated the larger biological processes in which the DEGs found for each animal model/AD subtype are involved. Functional

enrichment analysis of Gene Ontology for biological processes (GOBPs) revealed that �92% of the GOBPs enriched in hAb-KI mice overlap
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Figure 1. Shared DEGs among EOAD, LOAD, and mouse models of AD

Schematic summary of samples used and analysis workflow to obtain DEGs. (A) Venn diagram showing DEGs overlap between EOAD (B) and LOAD (C) with

5xFAD, APP/PS1, and hAb-KI mice. Mosaic plot of hAb-KI, 5xFAD, and APP/PS1 overlap (D) Mosaic plot of EOAD-model (left) and model-EOAD (right) DEGs

overlap with 5xFAD, APP/PS1, and hAb-KI mice (E) Mosaic plot of LOAD-model (left) and model-LOAD (right) DEGs overlap with 5xFAD, APP/PS1, and

hAb-KI mice (F) PPI network of DEGs exclusively shared between hAb-KI mice and LOAD (G) or EOAD (H) patients. Mosaic plot of EOAD, LOAD, or MS

DEGs overlaps with 5xFAD mice (I) Mosaic plot of EOAD, LOAD, or MS DEGs overlaps with APP/PS1 mice (J) Mosaic plot of EOAD, LOAD, or MS DEGs

overlaps with hAb-KI mice (K) The size of red and yellow boxes reflects the proportion of overlapping and non-overlapping DEGs, respectively. Pearson’s

Chi�squared test with Yates’ continuity correction was applied for the mosaic plot analysis. EOAD, early-onset Alzheimer’s disease; LOAD, late-onset

Alzheimer’s disease; MS, multiple sclerosis; hAb-KI, humanized amyloid-b knock-in. Genes with unadjusted p value <0.05 were considered as DEGs.
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with enriched terms in LOAD patients in the model-disease approach (Figures 3C and 3F - right), while the intersection with EOAD was mark-

edly low (around 32%, Figures 3C and 3F - right). The remaining 8% of GOBP terms not shared between hAb-KI mice and LOAD were related

to RNA splicing and protein phosphorylation (Table S4). Additionally, the hAb-KI mice presented a higher number of enrichedGOBP terms in

joint with 5xFAD (79.2%) than with APP/PS1 (56.1%) model (Figure 3D; Chi-square adjusted p value <0.001). Surprisingly, 5xFAD and APP/PS1

shared more than 75% of their enriched GOBPs with LOAD (Figures 3C and 3F - right) and only�45% with EOAD (Figures 3B and 3E� right).

However, we observed that about 50%of GOBPs overlap between 5xFAD and EOADor LOAD, indicating a lack of disease subtype specificity
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Figure 2. Experimental validation of exploratory transcriptomics findings

The expression of seven genes overlapping between AD and animal models were evaluated by qRT-PCR in the hippocampus from APP/PS1 (n = 14) andWT (n =

14) mice from two independent laboratories (A) and in CU individuals (n = 9), early- (EOAD, n = 7) and late- (LOAD, n = 8) onset AD patients from the Douglas-Bell

Canada Brain Bank.

(B) Standard scores (Z score) of APP/PS1, EOAD, and LOAD were compared for their difference from control using Wilcoxon.
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for this model. The comparison among the GOBPs of the three models with MS demonstrated, however, greater specificity of these mouse

models for AD (Figure S5). Indeed, Figures 2G–2I show that all mouse models evaluated presented less than 5% of enriched GOBP terms in

common with MS.

hAb-KI mice present less GOBP terms intersection with EOAD patients compared to APP/PS1 and 5xFAD mice

As our initial analyses revealed several enrichedGOBP terms, we computed the semantic similarity amongGO terms to understand better the

global processes represented by them. The union of enriched GOBP intersecting terms in the mouse models and human AD was generated

to better visualize the common biological processes altered in each group. ‘‘Regulation of cytokine secretion’’ (13 nodes), ‘‘regulation of cata-

bolic processes’’ (3 nodes), ‘‘NF-kB signaling’’ (9 nodes), and ‘‘intracellular transport and secretion’’ (21 nodes) were among the GOBP terms

enriched in the hippocampus of the three mouse models and EOAD patients (Figures 4 and S6; light gray circles). These terms are mainly

related to cellular response to stressor agents, hormones and cytokines, immune response, and calcium homeostasis and transport. Interest-

ingly, GOBP terms related to oxidative phosphorylation found in EOAD are only enriched in the APP/PS1 model (purple circles).

hAb-KI mice and LOAD patients exhibit greater overlap among the enriched GOBP terms

Similarly, we computed the semantic similarity among GOBP terms and compared the overlap with GOBP present in LOAD. Figure 5 shows

that hAb-KI mice GOBP terms are more represented among the GOBPs in common with LOAD (circles in shades of gray) than with EOAD

(Figure S7). ‘‘PI3K and NFkB signaling pathways’’ (20 nodes), ‘‘regulation of neuronal development’’ (19 nodes), ‘‘regulation of neurotrans-

mitter and hormone secretion’’ (31 nodes), ‘‘regulation of immune response’’ (22 nodes), ‘‘antigen processing and presentation’’ (21 nodes),

and ‘‘phospholipid and ribose phosphate metabolism’’ (10 nodes) are among the enriched biological processes shared between all three

mouse models and LOAD (pink circles). Interestingly, ‘‘glucose, cholesterol, and purine metabolism’’, ‘‘regulation of MAPK cascade’’, and

‘‘calcium homeostasis’’ only appeared enriched in 5xFAD and APP/PS1 mice (gray circles).

Most of the hAb-KI enriched KEGGs are shared with LOAD patients

The most affected pathways related to changes in the transcriptome profile were identified using enrichment analysis of Kyoto Encyclopedia

of Genes and Genomes (KEGG) canonical pathways. Figures 6A and 6B show that among the 10 KEGGs found significantly enriched in the

hAb-KI model, six were also identified in LOAD patients [‘‘glutamatergic and GABAergic synapse’’ (adjusted p value = 0.017), ‘‘calcium

signaling’’ (adjusted p value = 0.040), ‘‘Rap1 and Ras signaling’’ (adjusted p value = 0.040), and ‘‘choline metabolism in cancer’’ (adjusted

p value = 0.041)], while only one was enriched in EOAD patients [‘‘amyotrophic lateral sclerosis’’ (adjusted p value = 0.040); Table S5].

KEGG analysis also revealed that APP/PS1 was the mouse model that presented the highest percentage of pathway overlap with EOAD

(36.7%; Figure 6C) and LOAD (73.3%; Figure 6D). Interestingly, most of the intersection between APP/PS1 and human AD is represented

by KEGGs related to other neurodegenerative diseases [e.g., Parkinson’s disease, Huntington’s disease (HD)] or bacterial infection (e.g., Es-

cherichia coli, Salmonella spp.; Table S5). Despite PI3K pathway-related GOBPs appearing enriched in LOAD, they were only significantly

altered in the hAb-KI model (adjusted p value = 0.040) in the KEGG analysis. ‘‘Rap1 and Ras signaling pathways’’ and ‘‘adhesion and

apoptosis’’ were found consistently altered in the APP/PS1 and hAb-KI models (Figures 6H and 6I; Table S5). In addition, the 5xFAD was

the mouse model that presented more enriched KEGG terms (Figure 6G; Table S5). Similar to the GOBP enrichment analysis, 5xFAD pre-

sented more pathways shared with LOAD (56.9%) than with EOAD (13.8%; Figures 6C and 6D), which were mainly related to synaptic neuro-

transmission and insulin regulation (Table S5). Additionally, alterations in apoptosis- and endocannabinoid system-related pathways were

observed in the 5xFAD model and the human disease (Table S5). Despite an overlap in KEGGs associated with inflammatory diseases and

bacterial infections between 5xFAD and AD, well-studied signaling pathways in the context of inflammation were only observed in the

5xFAD model (e.g., TNF, Toll-like, NF-kB).

EOAD and LOAD patients share two enriched master regulators with overexpressing and knock-in AD mouse models

To identify elements located in higher positions of the biological system hierarchy, we performed a master regulator (MR) analysis to deter-

mine transcription factors potentially driving the biological alterations observed in AD. In addition, we asked if these elements were also

Table 1. Number of differentially expressed genes by each brain cell type

Animal model/AD subtype

Differentially expressed genes (n)

Astrocytes Endothelial cells Microglia Neurons Oligodendrocytes

5xFAD 249 595 157 1368 339

APP/PS1 415 659 918 936 400

hAB-KI 355 459 472 540 632

LOAD 168 620 263 230 226

EOAD 302 223 308 558 658

EOAD, early-onset Alzheimer’s disease; LOAD, late-onset Alzheimer’s disease; MS, multiple sclerosis; hAb-KI, humanized amyloid-b knock-in.
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orchestrating the transcriptional profile changes inmousemodels. Our analysis revealed 95MR enrichedwithin DEGs emerging in at least one

experimental group (Figures 7A and 7B; Table S6). Interestingly, both 5xFADandAPP/PS1mousemodels presentedmoreMR in commonwith

LOAD than with EOAD, while hAb-KI mice exhibited a similar overlap with both subtypes of human AD (Figures 7A and 7B). Among the 17MR

identified inR4 groups, only PARK2 and SOX9were enriched in the threemodels and in the humandisease (Figure 7C). Next, two-tail gene set

enrichment analysis (GSEA) was performed to infer the activation state of each candidate. We observed that, while PARK2 is repressed, SOX9

is activated across the disease/animal model phenotypes evaluated (Figure 7D). In addition, FOXC2 and ZNF461 were identified exclusively in

the hAb-KImice and LOAD individuals (Table S7). The threemousemodels shared eight enrichedMR,most of which involved in regulating cell

cycle and apoptosis (Table S7). A second methodological approach to infer activation of transcription factors was also applied, and similar

results were observed for the 17 master regulators candidates (Figure S8). Finally, a comparison with a previously published study that inves-

tigated MR associated with AD showed that 11 out of 17 MR identified here were also enriched in that dataset (Figure 7E).

DISCUSSION

In the past years, significant efforts of collaborative initiatives generated multiple mouse models with the aim of better recapitulating the

phenotypic spectrum of sporadic LOAD. Unveiling these animal models’ phenotype is a work in progress. Here, we evaluated hippocampal

similarities and differences of three mouse models (APP/PS1, 5xFAD, and the novel hAb-KI) at the transcriptional level. An exploratory

cross-species comparative transcriptomics was also conducted to evaluate shared molecular core programs between these models and

A D

B

C

E

F

G

H

I

Figure 3. GOBP overlap among EOAD, LOAD, and mouse models of AD

Schematic summary of samples used and analysis workflow to obtain GOBPs. (A) Venn diagram of GOBPs intersections in EOAD (B) and LOAD (C) with 5xFAD,

APP/PS1, and hAb-KI mice. Mosaic plot of hAb-KI-5xFAD and -APP/PS1 GOBP overlap (D) Mosaic plot of EOAD-model (left) and model-EOAD (right) GOBP

overlap with 5xFAD, APP/PS1, and hAb-KI mice (E) Mosaic plot of LOAD-model (left) and model-LOAD (right) GOBP overlap with 5xFAD, APP/PS1, and

hAb-KI mice (F) Mosaic plot of EOAD, LOAD, or MS GOBP overlap with 5xFAD mice (G) Mosaic plot of EOAD, LOAD, or MS GOBP overlap with APP/PS1

mice. (H) Mosaic plot of EOAD, LOAD, or MS GOBP overlap with hAb-KI mice. (I) The size of the red and yellow boxes reflects the proportion of overlapping

and non-overlapping GOBPs, respectively. Pearson’s Chi�squared test with Yates’ continuity correction was applied for the mosaic plot analysis. EOAD,

early-onset Alzheimer’s disease; LOAD, late-onset Alzheimer’s disease; MS, multiple sclerosis; hAb-KI, humanized amyloid-b knock-in.
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EOAD/LOAD cases. All mouse models showed more similarities to LOAD than to EOAD patients. The hAb-KI mouse model presented not

only a remarkable transcriptomic similarity but also a specificity for LOAD. Surprisingly, the gene overexpressing models (i.e., APP/PS1 and

5xFAD) also better resembled LOAD than EOAD.

The specificity of the hAb-KI model for LOAD was first observed in the exploratory DEG analysis, as hAb-KI mice presented twice more

DEGs exclusively overlapping with LOAD than with EOAD patients. Further PPI network analysis of these DEGs identified gene products

that interact with each other to accomplish different biological functions. For example, we found clusters involved in ribosomal RNA process-

ing, inflammatory response, and E3-ubiquitin ligase-related immune response, all phenomena well described in AD.14–16 In line with this,

Baglietto-Vargas et al. recently demonstrated that hAb-KI mice presented a decreased production of the anti-inflammatory cytokines IL-2

and IL-10 compared to age-matched WT animals.11 Importantly, a cluster of genes encoding G protein and G protein-coupled receptors

(GPCRs) was also evidenced in our study. G proteins act as modulators or transducers in various transmembrane signaling systems, and

GPCRs are implicated inmultiple stages of ADpathogenesis.17 Specifically, the glycogen synthase kinase 3-b (GSK3-b) is known formediating

tau phosphorylation and, consequently, being an active player in the development of tau pathology in AD.18 Interestingly, this process seems

to depend on the PI3K signaling activation,19 a pathway significantly altered in the hAb-KI mice. The clusters identified in our network analysis

might shed light on the understanding of pathogenic mechanisms of LOAD that can be recapitulated by the novel hAb-KI mouse model,

facilitating the search for therapeutic targets.

Interestingly, only seven (C1QB, CD33, CD14, SLC11A1, S100A6, KCNK1, and SST) out of 7868 DEGs identified in our transcriptomics anal-

ysis were shared among the mouse models, EOAD, and LOAD patients. Multiple studies have already implicated these genes in AD path-

ophysiology. For instance, a decrease in somatostatin (SST) gene expression in AD brains has been previously reported.20 Interestingly, SST

was shown to be the most selectively enriched binder to soluble oligomeric Ab in the human brain, influencing Ab aggregation.21 The consis-

tent findings observed in our study suggest that SST role in AD pathology is conserved cross-species. Additionally, we found that C1QB,

CD33, CD14, and SLC11A1 genes, all associated with immune response, were upregulated in the analyzed mouse models, as well as in

EOAD and LOAD patients. Accordingly, Gjoneska et al. previously pointed a conserved immunological basis for AD by comparing the

CK-p25 mouse model with hippocampal human postmortem tissue.15 Our qRT-PCR analysis in APP/PS1 mice confirmed alterations in these

genes. The analysis in the human brain only reached statistical significance for three of the genes – S100A6, SLC11A1, KCNK1 – but a trend

was observed for SST and C1QB. This validation step indicates that our exploratory analysis provides meaningful biological information

regarding AD pathology in the hippocampus.
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Identifying transcriptomic changes at the pathway level has the potential to offer insights into the biological processes disturbed in AD.We

observed that the hAb-KI hippocampus presented an almost complete overlap of enriched hippocampal GOBP terms with LOAD, while only

about one-third was shared with EOAD. This specificity for LOAD seems to be a unique and important feature of this novel KI model, as the

5xFAD and APP/PS1mice also presented a significant overlap with EOAD. Despite that, the scanty overlap of GOBP terms among ADmouse

models and MS confirmed that these models present transcriptomic features specific to AD rather than general alterations shared among

other neurodegenerative diseases. In addition, this resemblance with AD appears to be a specific feature of rodent models carrying mutated

human genes related to AD-associated amyloid pathology. Burns et al. observed that Tg4510 mice, which express a tau mutation found in

familial frontotemporal dementia, presented the highest enrichment of genes in common with human ALS and HD rather than with AD.22

Early imbalancebetweenexcitatory/inhibitory (E/I) neurotransmission,with lossofneuronal network stability, is awell-attestedphenomenon in

AD.23,24Theaverage incidenceof seizure inADpatients is around15%,which is7-foldhigherwhencompared to individualswithoutdementia.25,26

Ab is able to impair the long-term potentiation, promote depression of synaptic activity, alter the brain network, and affect the E/I balance by

impairing the inhibitory activity of the parvalbumin-expressing and SST-expressingGABAergic interneurons.27,28 In addition, a recentmeta-anal-

ysis showed a global reduction ofGABAergic system components in the humanADpostmortembrain, suggesting that theGABAergic system is

vulnerable toADpathology.30 Interestingly,modulationofGABAergic interneuronactivitymight improvebrain rhythmsandcognitive functions in

AD.27–30 Our study identified ‘‘calcium signaling’’ and ‘‘glutamatergic andGABAergic signaling’’ to be exclusively altered in the hAb-KI mice and

LOAD, pointing to this KI mouse model as an important tool to better understand calcium signaling and the E/I imbalance in AD.

Transcription factors play a key role in orchestrating phenotypic determination by regulating transcriptional targets that coordinate com-

plex cellular processes.13,31 We identified two transcription factors exclusively altered in the hAb-KI model and LOAD individuals’ hippo-

campi: ZNF461 and FOXC2. ZNF461 roles in brain function have still been poorly explored; however, this transcription factor was identified

among genes that represent a polygenic risk for psychiatric disorders, and its alteration might contribute to cortical atrophy and changes in

functional connectivity.32 On the other hand, FOXC2 function in the brain is implicated in cell proliferation and invasion in glioblastoma,33 in

angiogenic processes during fetal brain development,34 and is directly regulated by cyclin-dependent kinase 5 (Cdk5) phosphorylation to

control peripheral lymphatic vase development.35 Interestingly, it has been demonstrated that the deregulation of Cdk5 contributes to

AD pathology preceding tau hyperphosphorylation and loss of synaptic proteins.36 Several studies using organotypic hippocampal slices

and primary neural cells exposed to Ab showed increased p25 generation independently of APP overexpression,37–39 suggesting that exper-

imental validation of FOXC2 and Cdk5 in hAb-KI mice is needed to understand the potential link among FOXC2, Cdk5, and AD pathology.
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In the MR analysis, we identified SOX9 and PARK2 as transcription factors consistently activated in the mouse models and human AD.

SOX9 is a key factor in the nervous system development, especially for astrocyte and oligodendrocyte cell fate specification.40–42 Recently,

Sun et al. identified SOX9 as an astrocyte-specific nuclearmarker in the adult human andmouse brains, presenting a remarkable expression in

themurine hippocampus and cortex compared to the cerebellum.43 However, there are no studies to date linking this transcription factor with

AD, and our results highlight a promising new target for investigation in AD. PARK2 encodes an E3 ubiquitin ligase, and its involvement in

autosomal recessive parkinsonism is well established. Although less explored, its role in AD has already been demonstrated by computa-

tional13,44 and experimental45–47 approaches. Specifically, mitophagy failure, promoted by repression in PARK2 ability to stimulate PS1,

was reported in cellular and animal models.45–47 On the other hand, the overexpression of PARK2 promoted diminished brain accumulation

of ubiquitinylated proteins, improved its targeting to mitochondria, and potentiated autophagic vesicle synthesis.46 Our findings thus high-

light the value of hAb-KI, 5xFAD, and APP/PS1 mouse models to better understand these particularly underexplored aspects in AD.

Decades of use of animalmodels in AD research underline that each of them canmimic a slightly different aspect of the disease. Therefore,

one could argue that animal models of AD should be selected according to the biological aspect aimed for investigation rather than be seen

as a genericmodel. The clusterization by semantic similarity of enrichedGOBP terms performed here allowed highlighting alterations specific

to 5xFAD, APP/PS1, or hAb-KI mouse models. For example, several GOBP terms associated with oxidative phosphorylation, purine meta-

bolism, and the MAPK pathway were altered in 5xFAD and APP/PS1 mice but not in the hAb-KI model. On the other hand, inflammatory-

related processes seem to be a feature of AD pathology present in all three mouse models. Thus, the comparison of altered biological pro-

cesses among mouse models and human AD presented here sheds light on the translational power of each animal model and helps to

improve our mechanistic understanding of AD pathology.

Limitations of the study

This study attempts to unveil core molecular functions in three AD animal models and compare them with AD human pathology transcrip-

tomic profiles. To increase the sensitivity for detecting biological processes and pathways, genes with unadjusted p value <0.05 were
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considered as DEGs.We experimentally validated the consistently altered genes found in our study in the APP/PS1mousemodel and human

brain samples. However, the functional changes inferred from DEGs in our study should be further investigated in future studies.

STAR+METHODS
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Eduardo R. Zimmer

(eduardo.zimmer@ufrgs.br).

Materials availability

Primers used for qRT-PCR and result tables in this study are provided in Tables S3 and S11.

Data and code availability

(1) RNA-seq data are publicly available as of the date of publication. Accession numbers are listed in the key resources table.

(2) Original codes are provided in GitHub [bit.ly/46T7Xx2]. Intermediate data generated are available from the corresponding author

upon request.

(3) Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Section 1: data

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table. All data

reported and not included in this paper will be shared by the lead contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

APPSwe/PS1DE9 mice on a C57BL/6J background The Jackson Laboratories #005864

Hippocampal tissue from LOAD, EOAD, and CU individuals Douglas-Bell Canada Brain Bank N/A

Critical commercial assays

TRIzol Reagent Invitrogen Carlbad N/A

Applied Biosystems� High-Capacity cDNA Reverse Transcription Kit Applied Biosystems N/A

Direct-zolTM RNA Microprep Zymo Research N/A

Deposited data

5xFAD AMP-AD Knowledge Portal syn16798173

hAb-KI AMP-AD Knowledge Portal syn18634479

APP/PS1 Gene Expression Omnibus (GEO) GSE149661

APP/PS1 Gene Expression Omnibus (GEO) GSE145907

Human AD and CU hippocampal processed microarray data Gene Expression Omnibus (GEO) GSE28146

Human AD and CU hippocampal processed microarray data Gene Expression Omnibus (GEO) GSE29378

Human AD and CU hippocampal processed microarray data Gene Expression Omnibus (GEO) GSE36980

Human AD and CU hippocampal processed microarray data Gene Expression Omnibus (GEO) GSE48350

Human AD and CU hippocampal processed microarray data Gene Expression Omnibus (GEO) GSE84422

MS hippocampal RNA-seq data Gene Expression Omnibus (GEO) GSE123496

Experimental models: Organisms/strains

APPSwe/PS1DE9 mice on a C57BL/6J background The Jackson Laboratories #005864

Oligonucleotides

Primers for mouse ACTB, C1QB, SST, CD14, CD33, SLC11A1, S100A6, KCNK1 See Table S11 N/A

Primers for human ACTB, C1QB, SST, CD14, CD33, SLC11A1, S100A6, KCNK1 See Table S11 N/A

Software and algorithms

Original Codes GitHub repository bit.ly/46T7Xx2
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Section 2: code

Original codes are provided in GitHub [bit.ly/46T7Xx2].

Section 3

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mouse animal model

Male and female APPSwe/PS1DE9 mice on a C57BL/6J background were originally obtained from The Jackson Laboratories (#005864) and

bred at our animal facility.WT littermates were used as controls. All genotypeswere confirmedbefore use and reconfirmed after tissue extrac-

tion. Animals were housed in groups of up to five per cage with food and water ad libitum, under a 12 h light–dark cycle, with controlled room

temperature. For qRT-PCR experiments, the whole hippocampus of 14 APP/PS1 (12-16 months-old) and 16WTmice (12-15 months-old) were

used. Institutional Permission (IRC) Information ethical committee was approved under the approval number 37248.

Human postmortem tissue

Globally sampled hippocampal tissue from LOAD (n = 8, meanG SD age = 79.5G 5.6, 2F/6M), EOAD (n = 7, meanG SD age = 51.3G 5.6,

6F/1M), and CU individuals (n = 9, mean G SD age = 74.6 G 8.9, 4F/5M) were obtained from the Douglas-Bell Canada Brain Bank with the

approval of the scientific journal of the Brain Bank and the research ethics boards of the Douglas Institute (approval number: IUSMD20-02).

METHOD DETAILS

Mouse models data acquisition

RNA sequencing (RNA-seq) data from 5xFAD [4, 8, and 12 months-old, n = 23 hemizygous; 26 WT] and hAb-KI (22 months-old, n = 7 homo-

zygous; 8 WT) ADmouse models (Table S7) were obtained from AMP-AD Knowledge Portal (https://adknowledgeportal.synapse.org/) using

synapser (version 0.7.64) and synapserutils (version 0.1.6) packages. Specifically, gene expression information was collected from https://www.

synapse.org/#!Synapse:syn16798173 and https://www.synapse.org/#!Synapse:syn18634479 for 5xFAD and hAb-KI models, respectively.

APP/PS1 (8 and 12 months-old, n = 8 APP/PS1; 8 WT) mouse model RNA-seq data (Table S7) was combined from two Gene Expression

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) datasets [GSE14966148 and GSE145907] and downloaded through NCBI Sequence

Read Archive using SRAToolKit (https://github.com/ncbi/sra-tools). After quality control evaluation, the following samples were removed:

sample ‘‘67-2’’ from hAb-KI and samples ‘‘466’’, ‘‘305’’, ‘‘456’’, and ‘‘497’’ from 5xFAD. Known phenotypic features of the three mouse models

evaluated in this study are depicted in Figure S10A.

Human data acquisition

Human AD hippocampal processed microarray data of five studies were obtained from GEO repository [GSE28146,49 GSE29378,50

GSE36980,51 GSE48350,52 and GSE8442253], downloaded using GEOquery54 package (v2.56.0), and combined under common gene symbol

annotations. Afterward, batch correction was implemented using the sva55 package (v3.36.0) and data was split into EOAD (age at death <65,

n = 4 EOAD; 10 CU) and LOAD (age at death R65, n = 59 LOAD; 63 CU) for further analyses (Table S7; Figure S10). AD diagnosis, control

definition, and exclusion criteria of each GSE study are depicted in Figure S10B. MS (n = 5 MS; 5 control) hippocampal RNA-seq data

(Table S7) was also obtained from GEO under the identifier GSE12349656 and downloaded through NCBI Sequence Read Archive. Sample

demographics from EOAD, LOAD, and MS individuals can be found in Figure S10C.

RNA sequencing processing

Raw data for each RNA-seq dataset was downloaded and transcript alignment was performed using Salmon57 (v1.3.0). Transcripts weremap-

ped to genome using indexes derived from Mus musculus GRCm38 Ensembl build (ftp://ftp.ensembl.org/pub/release-96/fasta/

mus_musculus) and Homo sapiens GRCH38 Ensembl build (ftp://ftp.ensembl.org/pub/release-96/fasta/homo_sapiens) for the mouse

models and human data, respectively. Aligned reads were summarized using tximport58 (v1.12.3) and genes with minimum mean of counts

per million cut-off <2 were filtered out. Importantly, eachmouse dataset was processed and evaluated independently. All expression data for

each dataset used can be found in Table S8.

Differential expression analyses

Differential expression was computed on processedmicroarray data using the limma59 package lmFit function to fit multiple linear models by

generalized least squares. In addition, eBayes function was used to compute moderated t-statistics, moderated F-statistic and log-odds of

differential expression by empirical Bayes moderation of the standard errors toward a common value. For RNA-seq datasets, processed

expression data from each study was submitted to DESeq260 (v1.28.1) method using previously created tximport Summarized Experiment.

Differential expression analysis (DEA) based on the Negative Binomial distribution was computed with the DESeq function followed by

log fold change shrinkage with the lfcShrink function (shrinkage estimator type = ‘‘ashr’’). Genes with unadjusted p value <0.05 were
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considered as DEGs. For information about BH adjusted p values, see Table S1. All metadata and annotation information for the expression

tables can be found in Tables S9 and S10.

Venn diagrams for DEGs were constructed using VennDiagram61 package (v1.6.20). The proportion differences between overlapped

genes betweenmodels and diseaseswere computed by Pearson’s Chi�squared test with Yates’ continuity correction for count data, followed

by post-hoc pairwise Bonferroni adjustment. We compared the overlap of DEGs considering (i) the model-disease, where we obtained the

number/proportion of molecular alterations observed in themodels that are associated with the disease and (ii) the disease-model, where we

explored howmuch of the total transcriptomic alteration of the disease eachmodel captures. Together bothmetrics can give ameasurement

of fitness for modeling the pathology.

Protein-protein interaction network reconstruction

We used the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) Consortium to build PPI networks. STRING is a biological

database and web resource of known and predicted PPI which contains information from numerous sources, including experimental data,

computational prediction methods and public text collections. The construction of the PPI networks was implemented in R using the

STRINGdb (v2.0.2), RedeR (v1.36.0), and igraph (v1.2.6) packages.62–64 For the final networks, we retained only the edges with a combined

interaction score >0.7 from all sources and highly connected nodes for the final networks.

Functional enrichment analyses

DEGs (unadjusted p value <0.05) from human or mouse model studies were submitted to GO and KEGG enrichment analyses using the clus-

terProfiler65 package (v3.16.1) enrichKEGG and enrichGO functions. The GO terms were clustered by semantic similarity using the mgoSim

function from GOSemSim66 (v2.14.2) package (arguments measure = "Wang" and combine = NULL). The resulting similarity matrices were

represented as GO networks using the RedeR (v1.36.0) package for interactive visualization and manipulation of nested networks. Clusters of

GO terms obtained from GOSemSim algorithm were manually named for their biological interpretation. Venn diagrams for enriched GO/

KEGG terms were constructed using VennDiagram (v1.6.20) package. Nested networks were constructed bymaintaining only the intersecting

GOBP terms among themousemodels and each human pathology (either EOADor LOAD). Finally, Jaccard coefficient >0.7 was used to filter

out edges with low gene intersection between terms. The proportion differences between overlapped terms between models and diseases

were computed by Pearson’s Chi�squared test with Yates’ continuity correction for count data, followed by post-hoc pairwise Bonferroni

adjustment.

Reverse engineering of transcriptional network

The transcriptional network (TN) centered on transcription factors (TF) and their predicted target genes were inferred using a large cohort of

neurologically and neuropathologically normal individuals (n = 122) obtained from GEO under the identifier GSE60862.67 Herein, the terms

‘‘regulatory unit’’ or ‘‘regulon’’ are used to describe the groups of inferred genes and their associated TFs. RTN (v2.12.1) package was used to

reconstruct and analyze TNs based on the mutual information (MI) using the Algorithm for the Reconstruction of Accurate Cellular Networks

(ARACNe) method.68–70 In summary, the regulatory structure of the network is derived by mapping significant associations between known

TFs and all potential targets. To create a consensus bootstrap network, the interactions below a minimum MI threshold are eliminated by a

permutation step and unstable interactions are additionally removed by bootstrap. Finally, data processing inequality algorithm is applied

with null tolerance to eliminate interactions that are likely to be mediated by a third TF. The reference hippocampus TN was built using

the package’s default number of 1000 permutations and 100 bootstraps (p value <0.001).

Master regulators inference and two-tailed gene set enrichment analysis

Master regulator analysis (MRA) was employed for the MR inference.31 MRA computes the statistical overrepresentation of DEGs (p value

<0.05) obtained from DEA in the regulatory units of the reference TN. The regulons were considered altered in the disease if they presented

(1) statistical enrichment of DEGs, (2) regulon size >50, and (3) R 80% of the queried case-control studies. Two-tailed Gene Set Enrichment

Analysis (GSEA) was also performedusing the RTNpackage (version 2.4.6, p value<0.05 and 1000 permutations). Briefly, Pearson’s correlation

was used to split the regulatory units into positively (A) and negatively (B) associated targets. Afterward, the phenotype association of each

subgroup was tested using the GSEA71 statistics, resulting in independent enrichment scores for each subgroup. Finally, we tested the dif-

ferential enrichment (ESA – ESB) considering the following desirable criteria for clear association: (1) a maximum deviation from zero near

opposite extremes and (2) a good separation of the two distributions. Thus, a high negative differential score implies that the regulon is

repressed in the disorder phenotype, while a high positive one indicates that the regulon is induced.

Virtual inference of protein activity by enriched regulon analysis

The virtual inference of protein activity by enriched regulon analysis (VIPER) is another regulatory network-based approach to infer protein

activity fromgene expression profiles. Similar toMRA, VIPER systematically analyze the expression of the regulatory units previously identified

by ARACNe algorithm. However, VIPER uses a fully probabilistic, yet efficient enrichment analysis framework based on analytic rank-based

enrichment analysis. The analysis was implemented using the viper72 (v1.22.0) package in R.
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Mice

Male and female APPSwe/PS1DE9 mice on a C57BL/6J background were originally obtained from The Jackson Laboratories (#005864) and

bred at our animal facility.WT littermates were used as controls. All genotypeswere confirmedbefore use and reconfirmed after tissue extrac-

tion. Animals were housed in groups of up to five per cage with food and water ad libitum, under a 12 h light–dark cycle, with controlled room

temperature. For qRT-PCR experiments, the whole hippocampus of 14 APP/PS1 (12-16 months-old) and 16WTmice (12-15 months-old) were

used. Institutional Permission (IRC) Information ethical committee was approved under the approval number 37248.

Human tissue

Globally sampled hippocampal tissue from LOAD (n = 8, meanG SD age = 79.5G 5.6, 2F/6M), EOAD (n = 7, meanG SD age = 51.3G 5.6,

6F/1M), and CU individuals (n = 9, mean G SD age = 74.6 G 8.9, 4F/5M) were obtained from the Douglas-Bell Canada Brain Bank with the

approval of the scientific journal of the Brain Bank and the research ethics boards of the Douglas Institute (approval number: IUSMD20-02).

RNA extraction and qRT-PCR

Total RNA from hippocampus of LOAD, EOAD, and CU individuals as well as APP/PS1 and WT mice were isolated using TRIzol Reagent (In-

vitrogen Carlbad). The concentration and purity of the RNA were determined spectrophotometrically at a ratio of 260/280. Then, 1 mg of total

RNAwas reverse transcribed using Applied Biosystems High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA),

according to manufacturer’s instructions. Real-time quantitative polymerase chain reaction (qRT-PCR) was performed on an Applied Bio-

systems 7900HT system with SYBR green master mix (Applied Biosystems). Target mRNA levels were normalized using b-actin gene

(Actb) as housekeeper and cycle threshold (Ct) values were used to calculate fold changes in gene expression relatively to CU individuals

or WT mice using the 2�DDCt. For the human RNA extraction, Direct-zolTM RNAMicroprep from Zymo Research was used. Gene expression

analysis for human samples was performed at the Institute for Research in Immunology and Cancer (IRIC) Genomics Core Facility, Université

de Montréal. qRT-PCR analysis in APP/PS1 andWTmice was performed independently at Universidade Federal do Rio Grande do Sul and at

Universidade Federal do Rio de Janeiro. Primers used for qRT-PCR and result tables are listed in Tables S3 and S11. Standard scores (Z score)

of APP/PS1, EOAD, and LOAD were compared for their difference from control using Wilcoxon test in R statistical environment.

Population-specific expression analysis

We used Population-Specific Expression Analysis73 (PSEA) to deconvolute tissue heterogeneity and identify cell-specific expression changes

in the context of cell population shifts. This method works by exploiting linear regression modeling of queried expression levels to cell type–

specific reference measures. The brain cell marker reference dataset used for the PSEA method was obtained from the Brain Cell Type Spe-

cific Gene Expression Analysis (BRETIGEA) package.74

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential expression analyses

Differential expressionwas computed on processedmicroarray data using the limmapackage62 lmFit function to fit multiple linearmodels by

generalized least squares. In addition, eBayes function was used to compute moderated t-statistics, moderated F-statistic and log-odds of

differential expression by empirical Bayes moderation of the standard errors toward a common value. For RNA-seq datasets, processed

expression data from each study was submitted to DESeq260 (v1.28.1) method using previously created tximport Summarized Experiment.

Differential expression analysis (DEA) based on the Negative Binomial distribution was computed with the DESeq function followed by

log fold change shrinkage with the lfcShrink function (shrinkage estimator type = ‘‘ashr’’). Genes with unadjusted p value <0.05 were consid-

ered as DEGs. The proportion differences between overlapped genes between models and diseases were computed by Pearson’s

Chi�squared test with Yates’ continuity correction for count data, followed by post-hoc pairwise Bonferroni adjustment.

Functional enrichment analyses

DEGs (unadjusted p value <0.05) from human or mouse model studies were submitted to GO and KEGG enrichment analyses using the clus-

terProfiler package (v3.16.1) enrichKEGG and enrichGO functions. The GO terms were clustered by semantic similarity using the mgoSim

function from GOSemSim66 (v2.14.2) package (arguments measure = "Wang" and combine = NULL). The resulting similarity matrices

were represented as GO networks using the RedeR62 (v1.36.0) package for interactive visualization and manipulation of nested networks.

Clusters of GO terms obtained from GOSemSim algorithm were manually named for their biological interpretation. Venn diagrams for en-

riched GO/KEGG terms were constructed using VennDiagram (v1.6.20) package. The proportion differences between overlapped terms be-

tweenmodels and diseases were computed by Pearson’s Chi�squared test with Yates’ continuity correction for count data, followed by post-

hoc pairwise Bonferroni adjustment.
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Master regulators inference and two-tailed gene set enrichment analysis

Master regulator analysis (MRA) was employed for the MR inference.31 MRA computes the statistical overrepresentation of DEGs (p value

<0.05) obtained from DEA in the regulatory units of the reference TN. Two-tailed Gene Set Enrichment Analysis (GSEA) was also performed

using the RTN package (version 2.4.6, p value <0.05 and 1000 permutations).

qRT-PCR

Standard scores (Z score) of APP/PS1, EOAD, and LOAD were compared for their difference from control using Wilcoxon test in R statistical

environment.
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