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Abstract The kidney is a vital organ for the elimination of therapeutic drugs and their metabolites.
Renal drug transporters, which are primarily located in the renal proximal tubules, play an important role
in tubular secretion and reabsorption of drug molecules in the kidney. Tubular secretion is characterized
by high clearance capacities, broad substrate specificities, and distinct charge selectivity for organic
cations and anions. In the past two decades, substantial progress has been made in understanding the roles
of transporters in drug disposition, efficacy, toxicity and drug–drug interactions (DDIs). In the kidney,
several transporters are involved in renal handling of organic cation (OC) and organic anion (OA) drugs.
These transporters are increasingly recognized as the target for clinically significant DDIs. This review
focuses on the functional characteristics of major human renal drug transporters and their involvement in
clinically significant DDIs.
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1. Introduction

Renal clearance is a major pathway of drug elimination. About
32% of the top 200 prescribed drugs in the U.S. in 2010 are renally
eliminated with more than 25% of the absorbed dose excreted
unchanged in urine1. Renal elimination is the result of three
concurrent processes occurring in the nephron, which include
glomerular filtration, tubular secretion, and tubular reabsorption.
Glomerular filtration is a passive process while tubular secretion,
and sometimes reabsorption, involves a variety of transporters
located on the basolateral and luminal membranes of the tubular
epithelium. These transporters are predominantly expressed in the
proximal tubule and they work in tandem to eliminate drugs from
the blood circulation to the urine1-3. Both basolateral and apical
transporters tend to be charge selective for anionic and cationic
drugs, although recent study suggests that there is some degree of
overlap3,4. In humans, major transporters involved in tubular
secretion of cationic drugs include organic cation transporter 2
(hOCT2) on the basolateral membrane and the multidrug and toxin
extrusion proteins 1 and 2-K (hMATE1 and hMATE2-K) on the
apical membrane1,3. P-glycoprotein (P-gp) is also expressed in the
apical member to facilitate the excretion of larger and more
hydrophobic cations. The major transporters engaged in secretion
of anionic drugs include organic anion transporters 1 and 3
(hOAT1 and hOAT3) on the basolateral membrane and multidrug
resistance-associated proteins 2 and 4 (hMRP2 and hMRP4) on the
apical membrane1,3. In addition, several closely related transpor-
ters are present in the proximal tubules and they may also
contribute to renal handling of drugs and metabolic wastes.

Transporter-mediated drug–drug interactions (DDIs) are
increasingly recognized as an important modifier of the pharma-
cokinetics and pharmacodynamics of drugs2,3,5. Drugs inhibiting
renal drug transporters may cause marked changes in the pharma-
cokinetics of the affected drug, resulting in clinically significant
DDIs1,2,5. Furthermore, expression and inhibition of renal drug
transporters may result in abnormal drug accumulation in renal
tubular cells, leading to drug-induced nephrotoxicity. This review
focuses on renal drug transporters and their significance in DDIs
and drug-induced nephrotoxicity. We first briefly summarize the
current knowledge on major renal drug transporters including their
expression, cellular localization, transport mechanisms, and sub-
strate specificities. We then review the basic principles underlying
renal DDIs and highlight the importance of renal drug transporters
in clinically significant DDIs. The relevant consequences on
pharmacokinetics, pharmacodynamics, and drug-induced nephro-
toxicity are illustrated using several well-studied clinical DDI
examples. Lastly, a brief summary along with current challenges in
the field is presented.
2. Major drug transporters in human kidney

More than 400 membrane transporters are encoded by the human
genome, and generally fall into the following two superfamilies:
the adenosine triphosphate (ATP)-binding cassette (ABC) and the
solute carrier (SLC)1,3. ABC transporters are primary active
transporters that can transport substrates against their electroche-
mical gradients, utilizing energy generated from ATP hydrolysis.
SLC transporters have diverse modes of transport. Facilitative SLC
transporters transport substrates down their electrochemical gra-
dients without coupling to an energy input. On the other hand,
active SLC transporters can mediate uphill transport of a substrate
against its electrochemical gradient by coupling to a co-transported
ion (e.g., Naþ and Hþ) or solute1. The major drug transporters
involved in OC and OA transport in the human kidney are shown
in Fig. 1. The molecular and functional characteristics of these
transporters are described below.

2.1. Cationic drug transporters

2.1.1. hOCTs (SLC22A)
hOCTs belong to the SLC22 family6. Following the first cloning
of rat OCT1 (rOCT1) in 19947, 16 additional OCTs were cloned
from different species6. In human, three OCT isoforms (hOCT1, 2,
and 3) have been identified. hOCT2 is about 70% identical to
hOCT18, and hOCT3 is about 50% identical to hOCT1 and
hOCT29. hOCTs are membrane proteins with 553–556 amino acid
residues8,9 and are predicted to have 12 transmembrane domains
(TMDs)6. In humans, hOCT2 is the major OCT isoform expressed
in the kidney6,8. hOCT1, on the other hand, is predominantly
expressed in the liver; and hOCT3 is broadly expressed in many
tissues including the skeletal muscle, heart, placenta, and salivary
glands6,9,10. hOCT1-3 are polyspecific transporters with a large
overlap in substrate specificity6. They typically translocate rela-
tively small, hydrophilic, and structurally diverse organic
cations2,6. In the kidney, hOCT2 is located in the basolateral
membrane of renal proximal tubule cells1. It mediates the first step
in OC secretion in the kidney by translocating drug molecules
from systemic circulation into the renal tubule cells2,6,11. Transport
by hOCT2 is electrogenic and Naþ-independent, and facilitated by
the inside-negative membrane potential existing in the kidney
tubular cells8. Common substrates for hOCT2 include model cations
tetraethylammonium (TEA) and 1-methyl-4-phenylpyridimium (MPPþ),
endogenous monoamines, the antidiabetic drug metformin, the anti-
hypertensive drug atenolol, the antiviral drug lamivudine, and the
cytostatic drug oxaliplatin1,2,12,13. Most hOCT2 inhibitors are larger,
more hydrophobic cations that may or may not be transported by the
transporter1,2,6. Several clinically used drugs, including cimetidine,
quinidine and dolutegravir, are known hOCT2 inhibitors2,14. The mRNA
of hOCT3 is also detectable in the kidney but at a much lower level15,16.
The membrane localization of hOCT3 in human kidney is unclear.
Further investigation is needed to elucidate the role of hOCT3 in renal
excretion of drug molecules.

2.1.2. hMATEs (SLC47A)
hMATEs belong to SLC47 family. Two human orthologues of the
bacterial MATE proteins, MATE1 and MATE2 were first cloned
in 200517. Soon after, two splice variants of hMATE2 were
isolated from kidney and brain separately and were designated as
hMATE2-K and hMATE2-B, respectively18. hMATE1 and
hMATE2 are 47.5% identical17. hMATE1, hMATE2 and
hMATE2-K are proteins of 570, 602 and 566 amino acids17,18,
respectively, and are currently predicted to have 13 TMDs19,20.
hMATE2-B is a truncated protein of 220 amino acids and is not
functional with respect to transport18. hMATE1 has the highest
expression level in the kidney and is also strongly expressed in
other tissues including the liver, skeleton muscle and adrenal
gland17,18. Immunohistochemistry of human tissue revealed that in
the kidney, hMATE1 is localized to the apical membrane of renal
proximal tubule cells and distal convoluted tubules; and in the
liver, it is expressed in bile canaliculi17. The full-length hMATE2
and the kidney-specific splice variant hMATE2-K are predomi-
nantly expressed in the kidney17,18,21. Immunostaining showed



Figure 1 Major drug transporters expressed in human renal proximal tubule cells. ADP, adenosine diphosphate; ATP, adenosine triphosphate;
DC, dicarboxylate; OA, organic anion; and OC, organic cation.
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both of them are expressed in the renal proximal tubule and
hMATE2-K is localized to the luminal membrane of the tubule
cells18,21. Different from hMATE1/2-K, hMATE2 was localized in
intracellular vesicular structures upon expression in human
embryonic kidney (HEK) 293 cells and only showed transport
activity when reconstituted into liposomes21. hMATE1 and
hMATE2-K are OC/proton exchangers and need an oppositely
oriented proton gradient to drive the transport17,18,21. In the
nephron, the tubular lumen is more acidic (�pH 6.3) than the
cytosol, providing an inwardly directed proton gradient across the
apical membrane of proximal tubule epithelial cells. hMATE-
mediated influx of protons is coupled with the efflux of OCs into
the urine. hMATE1/2-K share a broad spectrum of substrates and
inhibitors with the hOCT222. In the kidney, hMATE1/2-K mainly
coordinate with hOCT2 to mediate OC secretion. However,
hMATE1/2-K can also transport several anionic compounds and
zwitterions22, which suggests that they may also partner with
hOATs for renal excretion of anionic and zwitterionic drugs.

2.1.3. hOCTN (SLC22A)
Organic zwitterions/cation transporters (OCTNs) belong to the same
SLC22 gene subfamily as OCTs. There are three OCTN isomers
(OCTN1–3) in rodents, but humans only have OCTN1 and OCTN26.
The first human OCTN, hOCTN1, was cloned in 1997 from human
fetal liver23. Soon after, hOCTN2 was cloned by screening a human
kidney cDNA library24. hOCTN1 and hOCTN2 have 75.8% identity
and both have high expression level in the kidney23,24, where they are
located in the apical membrane of renal proximal tubule cells6,25,26.
Both hOCTN1 and hOCTN2 can transport OC and zwitterions, but the
transport mechanisms are substrate-dependent and quite different for
each transporter. hOCTN1 has a high affinity for the zwitterionic
antioxidant ergothioneine, the uptake of which is stimulated by
extracellular sodium27. hOCTN1 also appears to transport OCs such
as TEA by an OC/Hþ exchange mechanism23,28. The exact role of
hOCTN1 in the renal proximal tubules is unclear. It may participate in
Naþ-dependent reabsorption of ergothioneine from the filtrate; alter-
natively, it may contribute to tubular secretion by mediating OC efflux
at the apical membrane driven by the acidic pH in the lumen23,27,28.
hOCTN2 has a high affinity for L-carnitine and functions as a Naþ–L-
carnitine cotransporter24. In addition, hOCTN2 can also transport OCs
in Naþ-independent manner29. Similar to hOCTN1, hOCTN2 may
participate in either renal reabsorption of zwitterions (e.g., L-carnitine)
or secretion of xenobiotic OCs depending on its mode of transport.
While the proton/OC antiporters hMATE1/2-K are apparently the most
important extrusion transporters for OC efflux at the luminal mem-
brane30, hOCTN1/2 have different substrate selectivity and may
contribute to the secretion of certain OC or zwitterion drugs.
Interestingly, a recent pharmacogenomics study suggested that
hOCTN1 is involved in active tubular secretion of gabapentin, an
anticonvulsant widely prescribed for epilepsy and other neuropathic
disorders31.

2.1.4. P-gp (ABCB1)
P-glycoprotein (P-gp) is probably the most well studied ABC
transporter to date. It was first identified in 1976 as a cell surface
glycoprotein from Chinese hamster ovary (CHO) cells resistant to
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colchicine32. Overexpressed in many cancer cells, P-gp decreases
drug accumulation in multidrug-resistant cells and mediates the
development of resistance to anticancer drugs32. As a typical ABC
transporter, it has two membrane-spanning domains (MSDs) and
two cytoplasmic nucleotide-binding domains (NBDs). Using
energy generated from ATP hydrolysis, P-gp actively transports
its substrates out of cells against their concentration gradients. A
vast number of therapeutic drugs, such as anticancer drugs, HIV
protease inhibitors, immunosuppressants, cardioactive drugs and
antifungals, interact with P-gp33-35. Typical P-gp substrates are
lipophilic or amphipathic large molecules (molecular weight 4
400 Da) carrying a positive charge at pH 7.4. However, neutral
drugs with bulky ring structures (steroids and cyclic peptides) are
also transported by P-gp. Interestingly, many of drugs transported
by P-gp are also substrate of drug-metabolizing cytochrome P450
(CYP) enzymes, especially CYP3A4/533.

Besides cancer cells, P-gp is broadly expressed in many normal
tissues including excretory organs and tissue barriers important for
drug disposition. The transporter has been localized to the luminal
membrane of brain endothelial cells forming the blood–brain
barrier (BBB), canalicular membrane of hepatocytes, apical sur-
face of intestinal columnar epithelial cells, the apical membrane of
kidney proximal tubule cells, and the apical membrane of placental
syncytiotrophoblast cells2,34,36. The expression of P-gp in organs
important for drug elimination and distribution is consistent with a
protective role of P-gp in promoting drug elimination from the
body and preventing drug entry into critical organs such as the
brain and the developing fetus33,37–39. In the human intestine, P-gp
and CYP3A are co-localized to the mucosal epithelial cells36,40. It
was suggested that P-gp and CYP3A work together to synergis-
tically limit oral bioavailability of many drugs33. Both P-gp and
CYP3A are inducible by pregnane X receptor ligands (e.g.,
rifampin)41,42. In the kidney, P-gp has been identified in the apical
membrane of human proximal tubule cells by immunostaining,
consistent with a role in facilitating renal drug excretion34. There is
also evidence that expression of P-gp is increased after ischemic
reperfusion injury in kidney43.
2.2. Anionic drug transporters

2.2.1. hOATs (SLC22A)
Despite transporting a largely different group of anionic substrates,
OATs belong to the same SLC22 family that also encodes the
OCTs. OAT was first discovered in 1997 with the cloning of rat
and flounder Oat144–46. The cloned OAT/Oats are proteins of 536–
556 amino acids and are predicted to have 12 TMDs47–49. In
human, 10 OAT isoforms have been identified, including hOAT1–
8, hOAT10, and the urate transporter 1 (hURAT1)47. Among
them, hOAT1–4, hOAT7, hOAT10 and hURAT1 have been
functionally characterized47,50. hOAT1, the first cloned human
OAT51, has 4 splice variants, hOAT1-1, hOAT1-2, hOAT1-3 and
hOAT1-452. hOAT1-1 and hOAT1-2 are longer and showed
similar transport activity while hOAT1-3 and hOAT1-4 are shorter
and lack of transport activity52. Most hOATs have expression in
the renal proximal tubule, except hOAT7, which is restrictedly
expressed in the liver47,53. In the kidney, hOAT1–3 are located on
the basolateral membrane of renal tubule cells whereas hOAT4,
hOAT10 and hURAT1 are expressed on the luminal membrane47.
Basally-expressed hOAT1–3 function as organic anion (OA)/
dicarboxylate exchangers which mediate the first step of OA renal
excretion by transporting OAs into renal tubule cells utilizing the
outward dicarboxylate (e.g., α-ketoglutarate for hOAT1/3, succi-
nate for hOAT2) gradient established by the Naþ–dicarboxylate
cotransporter47. hOAT1 and hOAT3 have substantial overlap in
their substrate specificities, accepting relatively small and hydro-
philic OAs2,50. hOAT3 appears to be more tolerant in size and
charge of its substrates than hOAT1 and can transport bulkier (e.g.,
estrone sulfate) and even positively charged (e.g., cimetidine)
compounds2,50. Numerous drugs have been shown to be substrates
of hOAT1/3, including antibiotics, antivirals, antihypertensive
drugs, diuretics, cytostatics, H2-antagonists, non-steroidal anti-
inflammatory drugs (NSAIDs), statins and uricosurics1,54. The
role of hOAT2 in renal handling of drugs is less clear. Reported
substrates of hOAT2 include some endogenous compounds, such
as glutamate, nucleobases, nucleosides and nucleotides, and some
drug molecules, such as salicylate, bumetanide and
erythromycin50.

Apically-expressed hOATs and hURAT1 may have multiple
transport mechanisms. hOAT4 can transport in both influx and efflux
modes55. As an influx transporter, it can take up estrone sulfate and
urate through OA/dicarboxylate or OA/OH� exchange mode55,56. As
an efflux transporter, it can release PAH into the tubule lumen via
PAH/Cl� exchange55. hOAT10 is an antiporter, taking up p-
aminohippurate (PAH), urate and nicotinate possibly by OA/OH–

exchange57. Although hOAT4 and hOAT10 have both been impli-
cated in drug transport in the kidney, their roles in tubular drug
secretion and/or reabsorption still need to be clarified. hURAT1 is
known to play an important role in urate homeostasis. It reabsorbs
urate from lumen of renal tubule by exchanging extracellular urate
with intracellular OAs such as lactate and nicotinate58.
2.2.2. hMRPs (ABCC)
MRPs are ATP-dependent efflux transporters. They use energy
generated from ATP hydrolysis to export molecules out of cells.
They are part of the C branch of ABC family, which can be further
divided into two subfamilies, “long” (MRP1, 2, 3, 6, and 7) and
“short” (MRP4, 5, 8, 9, and 10)59. The short MRPs have the
typical ABC transporter structure with two MSDs and two
cytoplasmic NBDs, while the long MRPs have an additional
MSD59. Among the 10 identified hMRP genes, 8 (hMRP1–8) have
been confirmed to encode functional proteins59. Several hMRP
isoforms are expressed in the kidney, including hMRP1, hMRP2,
hMRP3, and hMRP460,61–64. In particular, hMRP2 and hMRP4 are
located in the apical membrane domain of renal proximal tubule
cells, suggesting their role in efflux of molecules into the tubule
lumen60,61. In mouse kidney, MRP1 was found in the basolateral
membrane of the distal and collecting tubule cells, but not in
proximal tubule cells65. Similarly, in human kidney, hMRP3 is
located in the basolateral membrane of distal convoluted tubules66.
The role of hMRP1 and hMRP3 in the kidney remains unclear.
The typical substrates of hMRPs are the smaller unconjugated
organic anions, such as PAH, and the larger conjugated organic
anions, including glutathione (GSH) conjugates and glucuronides2.
hMRP2/4 have some substrate overlap with hOAT1/3. Accord-
ingly, hMRP2 and hMRP4 may coordinate with hOAT1/3 to
mediate renal excretion of certain anionic drugs.
2.2.3. hOATPs (SLCO)
Organic anion-transporting peptides (OATPs) are SLC carriers
predicted to have 12 TMDs67. The first OATP was cloned from rat
in 199468. One year later, the first human OATP, OATP1A2, was
isolated from human liver69. Today, OATP superfamily consists of



Figure 2 Hypothesized effects of transporter inhibition on tubular drug secretion and intracellular accumulation. When a basolateral uptake
transporter such as hOCT2 is the main inhibition site, both renal secretion and intracellular drug accumulation are decreased. In contrast, when an
apical efflux transporter such as hMATE1 is the primary inhibition site, tubular secretion is decreased but the intracellular drug level is increased.
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more than 300 members from over 40 species, which form
6 families, OATP1–670. In human, 11 members have been
identified, which are hOATP1A2, hOATP1B1, hOATP1B3,
hOATP1C1, hOATP2A1, hOATP2B1, hOATP3A1, hOATP4A1,
hOATP4C1, hOATP5A1 and hOATP6A170. OATPs can transport
anionic and amphipathic molecules that are relatively large
(4450) and have a high degree of albumin binding under
physiological conditions71. The transport by OATPs is
Naþ-independent, but the exact transport mechanisms are
unclear70. They are believed to act as an OA/OA exchanger,
coupling cellular uptake of organic compounds with efflux of
intracellular bicarbonate, GSH and GSH conjugates70. In addition,
uptake by some OATPs is pH-sensitive and appears to have higher
uptake rate at lower extracellular pH70. Among the 11 hOATPs,
hOATP1B1 and 1B3 are considered to be liver-specific72, while
hOATP4C1 was predicted to be kidney-specific73. hOATP4C1 can
transport cardiac glycoside (digoxin and ouabain) and thyroid
hormone (tri-iodothyronine) with high affinities73. Its rat counter-
part OATP4C1 is localized to the basolateral membrane of rat
kidney proximal tubule cells, suggesting that hOATP4C1 might
mediate the first step in renal excretion of digoxin and other
compounds73.
3. Renal transporter-mediated drug interactions

In the human kidney, elimination of drugs consists of passive
glomerular filtration, active tubular secretion and passive or active
reabsorption. For xenobiotics, reabsorption is believed to occur
mainly through a passive process74. DDIs due to inhibition of
tubular secretion thus represent the most common type of drug
interactions at the renal level. Inhibition at a tubular secretion site
decreases renal secretion clearance, which may result in increased
drug concentrations in the plasma, altered pharmacological and
toxicological responses. Furthermore, renal DDIs may change drug
accumulation in proximal tubule cells, leading to drug-induced
nephrotoxicity and kidney injury1,2. Although renal DDIs are often
unwanted as they may lead to adverse drug reactions, occasionally,
coadministration of an inhibitor (e.g., probenecid) is used delib-
erately to either alter renal clearance or reduce nephrotoxicity of
another drug75,76. Recognizing the important roles of transporters
in drug disposition and interactions, the International Transporter
Consortium (ITC) and the U.S. Food and Drug Administration
(FDA) have recently published a series of papers and recommen-
dations for assessing DDI potentials between a new molecular
entity (NME) and clinically important transporters including the
renal hOCT2 and hOAT1/33,77-80.
Historically, numerous clinically significant DDIs in the kidney
have been reported and attributed to the inhibition of renal organic
cation and anion secretion systems1,2,5. Cimetidine has been
historically used as the classic inhibitor for the OC system whereas
probenecid is considered as the prototypical inhibitor of the OA
system1,2,5. Inhibitors of the renal OC and OA secretion systems
are often non-specific and interact with both apical and basolateral
transporters. While inhibition of a basolateral or an apical
transporter both decreases tubular secretion, the impact on
intrarenal drug accumulation and toxicity is completely different.
As illustrated in Fig. 2, inhibition of a basolateral uptake
transporter reduces drug accumulation within renal tubular cells,
thus is nephron-protective. In contrast, inhibition of apical efflux
transporters diminishes drug exit from renal tubular cells, which
can lead to increased drug accumulation and nephrotoxicity. Such
scenarios are demonstrated in the clinical DDI examples later.
Therefore, knowing the precise site of interaction (i.e., apical vs.
basolateral) is critical to predict whether an inhibitor has a
nephron-toxic or a nephron-protective effect in vivo.

Clinically, several pharmacokinetic conditions must be satisfied
for significant DDIs to occur at the level of renal transporters.
First, the affected drug must be actively secreted in the kidney and
transporter-mediated renal clearance must account for a significant
portion of its total clearance. Second, clinical unbound concentra-
tions of the interacting drug (i.e., the inhibitor) must be high
enough in order to produce a pronounced effect. When plasma
concentrations of the inhibitor are much less than the inhibitory
constant (Ki), the potential for significant drug interactions is
small. However, for drugs with a narrow therapeutic window, even
small changes in their pharmacokinetic profiles may be clinically
relevant. In the following section, we highlight the importance of
renal OC and OA drug transporters in mediating clinically
significant DDIs. The relevant consequences on pharmacokinetics,
pharmacodynamics, and drug-induced nephrotoxicity are illu-
strated using several well-studied clinical DDI examples as
summarized in Table 114,76,81–90.
3.1. Interactions involving hOCT2 and hMATE1/2-K

hOCT2 and hMATE1/2-K form a major pathway for renal
elimination of small hydrophilic drugs carrying a positive charge.
Inhibition of either hOCT2 or hMATE1/2-K has been implicated
in many interactions involving cationic drugs1,2,5. In the current
ITC and FDA recommendations, metformin is suggested as the
in vivo probe for assessing the inhibition potential of a NME
towards hOCT2 and hMATE1/2-K3,77,78. Metformin is the first-



Table 1 Examples of clinically observed DDIs involving renal drug transporters.

Implicated transporters Victim drug Perpetrator drug AUC fold increase CLR decrease (%) References

hOCT2, hMATE1, and hMATE2-K Metformin Cimetidine 1.5 28 81
Metformin Cimetidine 1.5 45 82
Metformin Pyrimethamine 1.4 35 83
Metformin Dolutegravir 2.5 N.D. 14

hOAT1 and hOAT3 Furosemide Probenecid 2.7 66 84
Furosemide Probenecid 3.1 80 85
Cidofovir Probenecid 1.8 52 76
Fexofenadine Probenecid 1.5 73 86
Fexofenadine Probenecid 1.5 70 87

P-gp Digoxin Quinidine N.D. 56 88
Digoxin Quinidine N.D. 33 89
Digoxin Quinidine N.D. 34 90

N.D.: not determined.

Jia Yin, Joanne Wang368
line treatment for type 2 diabetes. The drug is minimally
metabolized in vivo and exclusively eliminated unchanged by
the kidney91,92. Its reported renal clearance (CLR) is about
454 mL/min, which is much larger than its glomerular filtration
clearance92. hOCT2-hMATE1/2-K–mediated active secretion
plays an important role in metformin renal elimination.
To date, some of the well-established DDIs involving
renal OC transport system were observed with metformin. Besides
DDIs, hOCT2-mediated drug uptake and accumulation in renal
proximal tubule cells is known to contribute to drug-induced
kidney injury as demonstrated in the case of cisplatin
nephrotoxicity.

3.1.1. Cimetidine–metformin interaction
Cimetidine, a histamine H2-receptor antagonist, is a classic inhibitor of
renal OC secretion. Cimetidine is 20% protein bound in the plasma
and the reported unbound maximum plasma concentration (Cmax)
after a typical 400 mg oral dose is around 8 mmon/L93,94. There have
been several reports of cimetidine–metformin interaction81,82. The
largest observed area under the plasma concentration curve (AUC)
increase and renal clearance (CLR) decrease is 1.5-fold and 45%,
respectively82. Metformin is a substrate of both hOCT2 and
hMATE1/2-K83, and is eliminated predominantly unchanged by the
kidney. Historically, inhibition of basolateral hOCT2-mediated met-
formin uptake was thought to be the mechanism underlying the
observed interaction2,3. In addition, the inhibitory effect of cimetidine
on metformin renal clearance has been reported to depend on a
genetic polymorphism of hOCT2 in a cohort of Chinese subjects82.
However, Ito et al.95 recently demonstrated that cimetidine has much
greater in vitro inhibition potencies towards the apical hMATE1/2-K
(Ki¼1.1–6.9 mmol/L) than for the basolateral hOCT2 (Ki¼95–
146 μmol/L). These data suggest that cimetidine inhibition of apical
hMATE1/2-K, but not basolateral hOCT2, is the likely mechanism
underlying clinically observed cimetidine–metformin DDIs95.
However, cimetidine is a substrate of hOCT2 and hMATE1/2-K,
and it has been proposed that cimetidine interferes with hMATE1/2-K
through an intracellular binding site96,97. Therefore, hOCT2-mediated
uptake into kidney cells could have an impact on cimetidine's
inhibitory effect towards hMATE1/2-K, which may explain
the hOCT2 genotype-dependent effect on cimetidine–metformin
interaction82.
3.1.2. Pyrimethamine–metformin interaction
Pyrimethamine is an antiparasitic commonly used for malarial
infection. Co-administration of pyrimethamine and metformin has
been reported to result in clinically significant DDIs, leading to a
1.4-fold increase of AUC and a 35% decrease of CLR of
metformin83. Pyrimethamine is a selective inhibitor of hMATE1/
2-K, and its potency toward hMATE1/2-K is about 100-fold
higher than that of hOCT283. Thus inhibition of apical hMATE1/
2-K has been proposed to be the underlying mechanism of
pyrimethamine–metformin interaction83. However, pyrimethamine
is highly protein bound, the unbound concentration of the drug in
the plasma is low at clinically used doses. This may explain the
relative small magnitudes of changes in metformin AUC and CLR

when co-administrated with pyrimethamine83. Whether pyrimetha-
mine is actively transported into renal tubule cells is still unknown,
but its lipophilic nature (logP ¼ 2.7) and small molecular weight
(MW¼248.7) may allow passive diffusion into the renal cells,
leading to significant inhibition of the apical hMATE1/2-K.

3.1.3. Dolutegravir–metformin interaction
Dolutegravir is a newly approved anti-HIV drug and also an
inhibitor of hOCT2 and hMATE1/2-K. In vitro, dolutegravir is a
more potent inhibitor for hOCT2 (half maximal inhibitory
concentration (IC50) is �1.9 mmol/L) than for hMATE1/2-K
(IC50 �6.3–25 mmol/L)14. Co-administration of dolutegravir
increased metformin AUC by 2.5-fold14, a magnitude well
exceeded what has been observed for cimetidine and pyrimetha-
mine. The observed metformin AUC change in the presence of
dolutegravir is higher than anticipated. Based on its IC50 values
and its unbound Cmax, dolutegravir is predicted to be an irrelevant
in vivo inhibitor of hMATE1/2-K but a moderate in vivo inhibitor
of hOCT214,98. Therefore, inhibition of hOCT2 only partially
explains the observed AUC change of metformin. Evaluation of
the effect of dolutegravir on putative transporters involved in
absorption and distribution of metformin also showed negative
results14,99,100. Thus, it is possible that other unidentified mechan-
ism(s) may be involved in dolutegravir–metformin interaction.
Nevertheless, based on the significant metformin AUC change
caused by dolutegravir, it is recommended that dose adjustments
of metformin be considered when patients are starting or stopping
dolutegravir while on metformin therapy.
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3.1.4. Cisplatin nephrotoxicity
Cisplatin is a chemotherapeutic agent used in the treatment of lung,
bladder, colon, testis, and brain cancer101–103. However, nephrotoxi-
city, primarily in proximal tubules, is a major dose limiting toxicity of
cisplatin104,105. In vitro, cisplatin is an excellent OCT2 substrate;
however, it is a poor substrate of either MATE1 or MATE2-K106-108.
In animal studies, Oct1/Oct2-deficient mice exhibited impaired urinary
excretion of cisplatin and were protected from severe cisplatin-
induced renal tubular necrosis109,110. In addition, a nonsynonymous
single-nucleotide polymorphism (SNP) 808 G4T in hOCT2 gene
was associated with reduced cisplatin-induced nephrotoxicity in
cancer patients109. All these evidence supports a significant role of
hOCT2 in renal handling and nephrotoxicity of cisplatin. The
discovery of the critical role of OCT2 in cisplatin toxicity provided
a rationale for using OCT2-selective inhibitors to mitigate the
debilitating side effect of cisplatin109,111,112. In fact, co-
administration of cisplatin and high dose cimetidine has been reported
to lead to partial protection against cisplatin-induced nephrotoxi-
city113. These findings collectively support future exploration of
hOCT2 inhibitors as potential therapeutic agents to prevent
cisplatin-induced nephrotoxicity. However, as stated earlier, many
OCT inhibitors also inhibit MATEs, which may increase intracellular
cisplatin accumulation and toxicity. In needed, selective inhibition of
MATE transporters with pyrimethamine or ondansetron was shown to
increase the nephrotoxicity of cisplatin in mice114,115. Therefore the
risk of using chemical inhibitors as a cisplatin nephroprotectant should
be carefully addressed given the opposing effect of hOCT2 and
hMATEs in cisplatin intrarenal accumulation and toxicity (Fig. 2).

3.2. Interactions involving hOATs

Probenecid is the prototype inhibitor for the renal organic anion
secretion system2,3,77. During World War II, probenecid was first
developed as a penicillin-sparing agent to prevent the rapid urinary
loss of the antibiotic. Numerous interactions between probenecid
and penicillin-derivatives, or other anionic drugs, have been
reported1,2,5. Clinically, inhibition of renal anion secretion by
probenecid has also been employed to produce beneficial drug
interactions to either enhance activity of antibiotics or reduce renal
accumulation and nephrotoxicity of certain antiviral drugs1,2.
Probenecid exhibits similar inhibition potencies towards hOAT1
and hOAT3 with Ki values around 4–12 mmol/L1,2. Less inhibitory
effects were reported with apical hMRP2, hMRP4 and hOAT4 (Ki

of 44.6, 2300, and 54.9 mmol/L, respectively)2,116–118. At typical
oral doses (e.g., 0.5–2 g), probenecid produces unbound plasma
concentrations in the range of 3–50 mmol/L119, suggesting that
both hOAT1 and hOAT3 are likely to be the site of drug
interactions with probenecid in vivo. Nevertheless, as probenecid
at higher doses also inhibits other transporters and some phase II
drug metabolizing enzymes, cautions should be taken when
interpreting in vivo DDI data with probenecid.

3.2.1. Probenecid–furosemide interaction
Furosemide is a loop diuretic, which exerts its pharmacological effects
by inhibiting Naþ-Kþ-2Cl– cotransporter located in the luminal
membrane of loop of Henle120. Renal excretion is the major
elimination pathway for furosemide with fraction of the absorbed
dose excreted unchanged in urine (fe) 71%

121. Due to high protein
binding, glomerular filtration of furosemide is very limited121. Thus,
active tubular secretion may represent the major route for both
furosemide renal elimination and delivery of the diuretic to its
effective site. In vitro, furosemide has been shown to be a substrate
of hOAT1 and hOAT3120. Oat1-knockout mice also showed impaired
furosemide renal excretion and diuretic responsiveness122, further
supporting involvement of OATs in furosemide renal excretion. In
humans, probenecid markedly reduces furosemide CLR and urinary
excretion while increases its system exposure and half-life84,85

(Table 1). Intriguingly, mixed results were reported regarding the
effect of probenecid on the diuretic effect of furosemide85,123–125. In
some studies, pretreatment with probenecid even increased the overall
response to furosemide124,125. A detailed analysis of the time-course
of the increased diuresis and natriuresis showed that probenecid
decreased the response for the first 60–90 min after furosemide but
increased the subsequent response sufficiently to result in a greater
overall effect124. Thus, the effect of probenecid on the pharmacody-
namics of furosemide in humans is complex and may not be simply
predicted from changes in plasma or urinary drug levels.

3.2.2. Probenecid–cidofovir interaction
Cidofovir is an acyclic nucleotide analog used in the treatment of
cytomegalovirus infection of the eye. Cidofovir is eliminated
largely through renal excretion with approximately 90% of
intravenous dose recovered in urine unchanged76. Nephrotoxicity,
due to excessive drug accumulation in renal proximal tubule cells,
is the dose-limiting toxicity for cidofovir126. Cidofovir is an
hOAT1 substrate and hOAT1-mediate cytotoxicity was markedly
reduced with probenecid treatment75,127. Co-administration of
high-dose probenecid with cidofovir in HIV patients reduced
cidofovir CLR to a level approaching glomerular filtration,
supporting the clinical use of probenecid as a nephroprotectant
during cidofovir therapy76. Nowadays, co-administration of pro-
benecid with cidofovir is required by FDA to protect patients
against cidofovir-induced nephrotoxicity1.

3.2.3. Probenecid–fexofenadine interaction
Fexofenadine, an active metabolite of terfenadine, is a selective
histamine H1 receptor antagonist used for the treatment of allergic
rhinitis and chronic idiopathic urticaria. After oral administration,
fexofenadine is mainly eliminated through biliary excretion, but
renal clearance also makes a significant contribution to its total
body clearance128. Several reports showed that probenecid could
increase fexofenadine AUC by 1.5-fold and decrease its CLR by
approximately 70%86,87. Although fexofenadine is a known
substrate of P-gp and OATPs, probenecid appears to be a weak
inhibitor for these transporters. In vitro, fexofenadine showed
significant accumulation in hOAT3-expressing HEK cells but not
in hOAT1- and hOAT2-expressing HEK cells128. Probenecid also
showed high inhibition potency toward fexofenadine uptake in
hOAT3 cells with Ki value of 1.3 mmol/L128, which is much lower
than the maximum unbound concentration of probenecid at typical
clinical dosages119. It is likely that inhibition of hOAT3-mediated
renal uptake of fexofenadine contributes to the observed probene-
cid–fexofenadine interactions.

3.3. Interaction involving P-gp

As an efflux pump with broad substrate specificity, P-gp plays an
important role in drug disposition1. In the kidney, P-gp is located
in the apical membrane of proximal tubule cells where it can
actively export hydrophobic drug molecules into the urine36. There
have been many reports of P-gp-mediated DDIs, but the most well
studied interaction is probably P-gp-mediated interaction with
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digoxin2,3, a well-established P-gp substrate. Digoxin, a commonly
used cardiac glycoside, is metabolically stable and primarily
eliminated through renal excretion129. Because digoxin has a
narrow therapeutic window, even small changes in serum levels
of digoxin may lead to clinically significant toxicities that can
affect multiple organ systems130. Thus cautions must be taken
when using other co-medications with digoxin.

Quinidine is a substrate and inhibitor of P-gp131. There have
been several reports of quinidine–digoxin interactions with the
largest reported plasma clearance (CL) decrease of digoxin being
64%132. Serum digoxin levels can reach dangerously high
concentrations when co-administered with quinidine. In Caco-2
monolayers, basal-to-apical transport of digoxin was strongly
inhibited by quinidine133. In addition, quinidine at same in vivo
concentration markedly increased digoxin plasma concentration in
wild-type mice, but not in P-gp knockout mice133. Both in vitro
and in vivo data strong support that inhibition of P-gp–mediated
digoxin efflux is the major underlying mechanism of quinidine–
digoxin interaction. Similar digoxin–drug interactions with
reduced renal clearance and have also been observed with other
P-gp inhibitors such as verapamil and clarithromycin134,135.
4. Conclusions

In conclusion, renal drug transporters play an important role in drug
disposition, efficacy and toxicity. Like drug-metabolizing enzymes,
they are also the target sites for DDIs. Despite the significant
progresses made in our understanding on drug transporters, our
knowledge of renal drug transporters and our comprehension of their
roles in the kidney and the mechanisms of renal transporter-mediated
DDIs are still limited. There are still significant challenges to predict
and understand DDIs mediated by renal drug transporters. For
example, it is still difficult to precisely locate the actual sites (apical
vs. basal membranes) of renal DDIs in vivo. While the plasma
concentrations of the inhibitor drug are used for DDI prediction, the
actual concentrations of inhibitor that the transporter encounters at the
site of inhibition may be significantly different and difficult to
measure. Lastly, substrate-dependent and time-dependent inhibitions
have been recently reported136–139, which further complicates the
assessment and in vitro–to–in vivo prediction of DDIs. Nevertheless,
the field of drug transporters is rapidly evolving. With the conceptual
and technological advancements in drug transport research, we are
now at the forefront to gain a better understanding of renal drug
transporters, predict and ameliorate adverse renal DDIs, and design
beneficial DDIs to improve drug efficacy and minimize drug toxicity.
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