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Abstract. Wounding of tissue induces cellular re- 
sponses that ultimately result in wound repair. Studies 
in tissue culture model systems indicate that these re- 
sponses include induction of AP-1 regulated genes, cell 
migration and mitogenesis which are also characteris- 
tic of cellular responses to growth factors. Investiga- 
tions have identified cellular ras proteins as critical 
components of growth factor-stimulated signal trans- 
duction pathways, however their role in the wounding 
response is less clear. Investigation of the potential in- 

volvement of c-Ras in this process utilized quiescent 
living bovine corneal endothelium cells (BCE) which 
were microinjected with ras dominant interfering mu- 
tant protein (N17) and subsequently stimulated by me- 
chanical wounding. Analysis of these cells demon- 
strated that microinjection of dominant-interfering ras 
protein, but not control proteins, inhibited the wound- 
ing response as evidenced by diminished Fos expres- 
sion, lack of cell migration and a block in DNA syn- 
thesis. 

T 
HE cellular response to wounding is a complex pro- 
cess. Cells change from a contact-inhibited state to 
one of high motility and growth. Cellular responses in 

this process include induced expression of differentiation 
signals (i.e., autocrine factors) and increased expression of 
genes responsible for cell division. Tissue responses to 
wounding can lead to scarring and increased tumorigenesis 
(Bailleul et al., 1990; Schuh et al., 1990). An understanding 
of the wounding process at the molecular level may lead to 
increased knowledge of growth regulation of cells and tissue 
and therefore is an important goal. 

Wound response in an organism occurs in contact- 
inhibited or quiescent cells that are likely in a "Go" phase of 
the cell cycle. Model systems consisting of a monolayer of 
cultured cells amenable to experimental induction of a Go 
state have been widely used to study the molecular basis of 
signal transduction of the wound stimulus. Some of the 
documented cellular responses to wounding in related sys- 
tems include increased expression of fos proteins (Verrier, 
1986), enhanced cell motility, and stimulation of DNA syn- 
thesis (Dulbecco and Stoker, 1970; Todaro et al., 1965). 
Previous work in our lab has shown that Fos induction occurs 
primarily at the edges of a linear wound created by a scalpel 
incision across a monolayer of serum-deprived quiescent 
bovine corneal endothelium cells (BCE's) l (Feldman et al., 
1992). 

Several observations suggest the association of Ras func- 
tion with signal transduction pathways responsible for the 
cellular wound response. Tyrosine kinases, which are likely 

1. Abbreviations used in this paper: BCE, bovine corneal endothelium cell; 
bFGF, basic FGF; BrdU, bromodeoxyuridine; ECM, extracellular matrix. 

intracellular initiators of growth signal transduction, can be 
activated by the interaction of the extracellular matrix 
(ECM) with integrins (Guan and Shalloway, 1992). An argu- 
ment supporting Ras involvement in this interaction is plau- 
sible since upstream and downstream modulation of Ras 
function by tyrosine kinases appears likely (Hunter, 1991). 
Additional examples implicating Ras function with the 
wounding response are found in independent studies of a 
wound-related growth factor, basic FGF (bFGF) (Sato and 
Rifkin, 1988), where evidence supports ras (Chiao et al., 
1991) or ECM protein (Ruoslahti and Yamaguchi, 1991) in- 
volvement in bFGF-mediated cellular stimulation. Also, 
changes in cell shape and enhanced motility observed in 
wounded cells (Thurston et al., 1988; Dulbecco and Stoker, 
1970) may be ras protein regulated (Trahey et al., 1987; Bar- 
Sagi and Feramisco, 1986) and thereby provide an additional 
potential connection between Ras and wounding responses. 
Further, the observation that fibronectin fragments (likely 
produced by wounding) induce collagenase I expression 
through a potentially Ras-regulated AP-l-dependent tran- 
scription event (Werb et al., 1989) implies a link between Ras 
and the wounding response. In the present studies, we have 
tested the possible role of ras protein function in regulating 
cellular responses to wounding and the results provide direct 
evidence for such a role. 

Materials and Methods 

Cell Culture and Microinjection 

Passages of primary cells derived from BCE as described (Feldman et al., 
1992) were grown to ",,80% confluency on etched coverslips (Bellco 
Vineland, NJ). Coverslips were pretreated in a 2 #g/rrd solution of laminin 
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Figure 1. Inhibition of wound- 
induced Fos expression by 
dominant negative ras N17 
protein. Immunofluorescent 
micrographs of BCE cells 
stained for Fos (A and C) or 
marker protein (B and D). 
Starved ceils were injected 
with either rat IgG (A and B) 
or N17 plus marker rat IgG (C 
and D). Cells were wounded 
along a line indicated by ar- 
rows (,4 and C).  Cells were 
fixed and stained 2 h after 
wounding. Bar, 40 Itm. 

in F99 medium for several hours. F99 medium is a 1:1 mixture of Ham's 
F12 and Medium 199. Cells were grown in F99 supplemented with 10% 
FCS, penicillin, and streptomycin. Ceils were starved in F99 containing 
0.05% serum for 24 h before treatment. Microinjections were carried out 
using a Zeiss Axiovert microscope (Carl Zeiss, Inc., Thornwood, NY) and 
Eppendorf 5170 micromanipulator and 5242 microinjector (Eppendorf 
North America, Inc., Madison, Wis.). Cells were injected in the cytoplasm 
with either rat IgG (7 mg/ml) or purified N17 protein (3 mg/ml) plus rat 
IgG (4 mg/ml). Lower concentrations of N17 (0.5 mg/ml) were biologically 
active, however due to the extended temporal aspect of these assays (cells 
were fixed up to 40 h after injection) and to insure reliable inhibition of ras 
in different experiments, the higher concentration of NI7 was used in this 
work. No additional phenotypes were observed with the higher concentra- 
tion of N17. Cells were injected along the bottom edge of a labeled box of 
the etched eoverslips. Serum-stimulated cells were treated by changing 
medium from F99 with 0.05% FCS to F99 with 20% FCS. NI7 protein was 
purified from bacterial cultures transfected with N17 expression vectors 
(Gross et al., 1985). N17 protein and marker IgG (Sigma Immunochemi- 
cals, St. Louis, MO) were injected in 20 mM Tris, pH 7.4, 2 mM MgCI2, 
0.1 mM EDTA, 20 mM NaCI. 

Wounding 
Initial experiments indicated that wound responses were limited to 3-4 cell 
diameters from the wound edge, therefore cells were injected only that dis- 
tance from the bottom of the etched box. After 6-16 h cells were wounded 
with a glass needle touching the coverslip and pushed along the etched line 
marking injected cells. This location was easily identified since each etched 
box has a unique alphanumeric designation. For cell motility and DNA syn- 
thesis experiments, a 0.6 ~m z area below the injected cells was denuded in 
addition to wounding. 

Fixing and Staining 
Cells were fixed and stained as previously described (Feldman et al., 1992). 
Briefly, cells were fixed in 3.7 % formaldehyde/PBS, solubilized in 0.3 % Tri- 
ton X-100/PBS, and stained with antibodies diluted in 0.1% Tween 20/PBS. 
Fos antibody was rabbit polyclonal (Oncogene Science Inc., Uniondale, 
NY) diluted 1:100 followed by biotinylated anti-rabbit and Texas red strep- 
tavidin. FITC-conjngated donkey anti-rat was used to stain marker protein. 
To measure DNA synthesis in cells a Cell Proliferation Kit (Amersham, 
UK) was modified by labeling the bromodeoxyuridine (BrdU) antibodies 
with FITC-conjugated anti-mouse (La Morte et al., 1992). Cells were in- 
cubated with BrdU for 24 h before fixation and staining. 

Results 

To establish a tissue culture model for cell wounding suitable 
for microinjection and single cell analysis of responses, we 
used cell monolayers of BCE. Cells were grown to ,,070% 
confluency on etched glass coverslips then serum starved for 
24 h to synchronize the cell population in the Go stage of 
the cell cycle. In this state cells had minimal levels of Fos 
expression and DNA synthesis. A mutant of Ras which acts 
as a dominant-negative inhibitor protein, N17 (Feig and 
Cooper, 1988; Cai et al., 1990) or control proteins (nonrele- 
vant IgG) were microinjected into the BCE cells to inhibit 
the function of the endogenous cellular ras protein. N17 may 
inhibit endogenous ras protein function by binding guanine 
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Figure 3. Inhibition of serum and wound-induced DNA synthesis by ras N17. Immunofluorescent micrographs of BCE cells stained for 
BrdU (A, C, and E) or marker protein (B, D, and F). Starved cells were injected with N17 (A, B, E, and F) or rat IgG (C and D). Cells 
were subsequently wounded (C-F) or stimulated by addition of FCS to 20% (A and B). Bars, 40 #m. 

nucleotide-releasing factor, thereby inhibiting GDP-GTP ex- 
change and activation of endogenous Ras (Farnsworth and 
Feig, 1991). 

Fos Protein Levels 

The role of Ras in wound-induced Fos expression was exam- 
ined by the above protocol. Cells injected with N17 or con- 
trol protein were mechanically wounded and fixed after 
90-120 min. Cells at or near the wound edge, either unin- 
jected or injected with control proteins, responded by ex- 
pressing Fos, as determined by immunofluorescence (Fig. 
1). Cells as distant as 2-3 cell diameters from the wound 

edge responded by expressing fos protein (Fig. 1, A and C). 
Investigation of Fos expression in cells injected with the N17 
protein showed a significant reduction of the percentage of 
cells expressing Fos compared with cells injected with con- 
trol protein (see Fig. 4 A). Injection of N17 ras protein did 
not block serum stimulation of Fos expression however, as 
discussed below. 

Cell Motility 

Increased cell migration is another hallmark of the wound re- 
sponse (Dulbecco and Stoker, 1970). To measure cell motil- 
ity, an area of cells adjacent to a wound edge containing 
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microinjected cells was removed with a glass needle (Fig. 2). 
Visual monitoring of these areas continued for the subse- 
quent 24 h. Uninjected cells or cells + injected with control 
proteins showed migration of up to 300/zm from their origi- 
nal position and had a rounded morphology (Fig. 2, A, B, 
E, and F) while cells injected with the N17 protein did not 
migrate into the cleared space and maintained a flat mor- 
phology (Fig. 2, C, D, G, and H). Numerical evaluation of 
cell migration was obtained by measuring, the distances in- 
jected cells migrated from the wound edge. Fig. 4 C shows 
that cells injected with N17 migrated with lower frequency 
and to lesser distances relative to control injected cells. 

DNA Synthesis 

We also examined increased DNA synthesis, a third cellular 
response to wounding, for potential involvement o f  cellular 
Ras function. For these experiments, cells in a quiescent 
monolayer were microinjected in defined areas of the cover- 
slip and wounded. The addition to the medium of the thymi- 
dine analog, BrdU provided a single cell immunofluores- 
cence based assay for DNA synthesis (La Morte et al., 
1992). Fig. 3 shows cells injected with either control pro- 
teins or the N17 ras protein and their ability to synthesize 
DNA following wounding. Results summarized in Fig. 4 B 
demonstrate that interference with endogenous Ras function 
inhibits wound-induced DNA synthesis. Two independent 
experiments demonstrated that only 1 cell in 124 injected 
with N17 was able to synthesize DNA in response to wound- 
ing while 69 % of cells injected with IgG made DNA in re- 
sponse to wounding. 

Wound Induction versus Growth Factor Induction 

Interesting results obtained in a comparison of the cellular 
growth responses to wounding versus serum stimulation 
prompted further studies. Analysis of the effect of microin- 
jeered N17 protein showed that while the Ras mutant blocked 
DNA synthesis induced by either serum or wounding, it 
could block increased Fos expression in wounded cells but 
not in serum-stimulated cells. These results, consistent with 
those previously reported for N17 and serum induction (Cai 
et al., 1990), indicate a distinction in the pathways regulating 
Fos expression by serum versus wounding. To further exam- 
ine this hypothesis, bFGE a compound thought to be impor- 
tant in the regulation of wounding (Sato and Rifldn, 1988), 
was tested for its ability to induce Fos and stimulate DNA 
synthesis in these cells. Fig. 4, A and B demonstrate that cells 
treated with only bFGF express Fos and incorporate BrdU 
and that injection of N17 significantly blocks these re- 
sponses, supporting the hypothesis that wound induction of 
the Fos expression is less complex than serum induction of 
Fos. 

Discussion 

The data presented here suggest a requirement for ras pro- 
tein function in the signal transduction pathways stimulated 
upon wounding monolayers of cultured BCE cells. This rela- 
tionship has been established via the microinjection of a 
dominant negative ras protein inhibitor, N17, into living cells 
and the subsequent analysis of several cellul~ responses to 
wounding. N17 is well studied and its effects have been 
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Figure 4. Histograms of N17 inhibition of mitogen and wound in- 
duced cellular responses. (A ami B) To determine percentage of 
cells responding, the number of injected cells displaying Fos or 
BrdU staining were divided by the corresponding total number of 
injected cells and multiplied by 100. Error bars indicate a standard 
deviation from the mean. n, Total number of cells analyzed. (C) 
Motility of cells was calculated by measuring the distance cells 
migrated from the bottom of the injection area delineated by the 
etched line. C shows a frequency distribution of cells migrating to 
areas below the etched line at distances ~m) indicated on the 
x-axis. All experiments were repeated 2-4 times. (-) N17; (~) IgG. 

shown to be idemieal to the effects of functionally inhibitory 
p21 Ras antibodies and other mutants of endogenous cellular " 
Ras (Stacey et al., 1991), thus the use of N17 to inhibit en- 
dogenous Ras function and the conclusions drawn from its 
use are likely to be valid. 

The potential involvement of endogenous ras protein func- 
tion in the wounding response provides insight into intracel- 
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lular signaling in this cellular function. Cells attached to an 
ECM (laminin and secreted cellular ECMs) likely incur 
mechanically induced disruption of that attachment when 
wounded. Previous work has shown cellular attachment to 
be mediated by integrins (Hynes, 1992). It has also been es- 
tablished that the wound response includes cellular functions 
typically associated with growth factor responses (i,e., Fos 
expression, motility, and DNA synthesis). A deductive hy- 
pothesis is now emerging which suggests that growth factor 
responses can be affected by the ECM and integrins (Hynes, 
1992; Ruoslahti and Yamaguchi, 1991). As a wealth of litera- 
ture exists associating Ras with growth factor mediated mito- 
genesis (Bourne et al., 1991) the potential involvement of 
Ras in the wounding response appears plausible. Since both 
Ras signaling and the integrins (Werb et al., 1989) stimulate 
AP-1 regulated gone expression, a potential exists for the in- 
tracellular convergence of these signal pathways. 

The control by Ras of multiple responses to wounding sug- 
gests a network of intracellular signaling. At least two mole- 
cules which can interact with Ras, GAP-associated protein 
p190 and guanine nucleotide-releasing factor, have domains 
which could potentially regulate other ras family proteins 
and/or transmit signals to the nucleus (Shou et al., 1992; 
Settlemen et al., 1992). Recent studies have suggested that 
Ras may modulate Rac regulation of actin reorganization as 
it was shown that membrane ruffling and cell morphology 
were affected by interference with Ras function (Ridley et 
al,, 1992). The data presented in this study along with previ- 
ous work (Stacey et al., 1991) indicate that endogenous Ras 
can regulate cytoskeletal structure, however the relationship 
between Ras and Rac in signal transduction remains unclear. 

It has been suggested that breaks in the integrity of the cell 
membrane may allow release of endogenous growth factors 
as bFGF into the wound area (McNeil et al., 1989). The ob- 
servation that cells distant from the wound edge also have in- 
creased Fos expression, motility, and DNA synthesis support 
a mechanism involving a soluble factor in the induction of 
the wound response. The finding that bFGF-stimulated cells 
respond to N17 inhibition of Fos expression and DNA syn- 
thesis in a manner similar to wound stimulated cells (Fig. 4, 
A and B) permits a model incorporating a growth factor in 
the wound response. It is tempting to speculate that pro- 
teoglycans and growth factor complexes interact in response 
to wounding and that signal transduction initiated by this in- 
teraction is channeled through Ras to obtain the effects of 
wounding demonstrated here. Alternatively, Fos induction 
by mechanical loading without membrane rupture has been 
demonstrated and this induction can involve tyrosine kinases 
(Ingber, 1991) and, as suggested by our data potentially in- 
volve Ras. 

The disparity between N17 inhibition of serum-stimulated 
Fos expression and wound or bFGF stimulation of Fos may 
reflect the plethora of stimuli present in serum and the com- 
plexities of the induced signal transduction pathways. This 
further suggests a limit to the complexities of these factors 
in the wound or bFGF-initiated responses. Numerous agents 
induce Fos, apparently through Ras independent pathways, 
without stimulating DNA synthesis (Sheng and Greenberg, 
1990). The ability of N17 Ras to block DNA synthesis in 
serum-stimulated cells suggests that DNA synthesis is more 
dependent on Ras-regulated signal transduction than is Fos 
expression. Additionally, the lack of N17 inhibition of 

serum-stimulated Fos expression indicates that N17 is acting 
in a specific fashion and not disrupting general cell function. 

While the focus of the present work is on wound-induced 
cellular responses, cell motility and mitogenesis appear to 
be related to oncogenic potential and metastasis. Concerning 
oncogenesis, wounding may provide a "second hit" for cells 
already expressing mutant protooncogenes (Bailleul et al., 
1990; Schuh et al., 1990). In relation to metastasis, in cer- 
tain tumor types increased levels of ras protein or activating 
mutations in Ras are present in metastatic tissue but are not 
found in primary tumor tissue of the same individual (Deng 
et al., 1991; Kryprianou and Isaacs, 1990; McKenna et al., 
1990). Numerous studies have suggested a link among inte- 
grins, metastasis and transformation (Hynes, 1992; Plante- 
faber and Hynes, 1989). Other work suggests a correlation 
between metastasis and bFGF (Yayon and Klagsbrun, 1990). 
Our data provide a possible link among these independent 
observations. Deregulation of cellular growth control by ex- 
pression of oncogenic ras proteins may enhance metastasis 
by uncoupling the biochemical link between the ECM and 
signal transduction pathways in cells. Further investigations 
focusing on these interrelationships are in progress. 
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