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Monitoring, predicting, and controlling the air quality in urban areas is one of the effective

solutions for tackling the climate change problem. Leveraging the availability of big data in

different domains like pollutant concentration, urban traffic, aerial imagery of terrains and

vegetation, and weather conditions can aid in understanding the interactions between

these factors and building a reliable air quality prediction model. This research proposes a

novel cost-effective and efficient air quality modeling framework including all these factors

employing state-of-the-art artificial intelligence techniques. The framework also includes

a novel deep learning-based vegetation detection system using aerial images. The pilot

study conducted in the UK city of Cambridge using the proposed framework investigates

various predictive models ranging from statistical to machine learning and deep recurrent

neural network models. This framework opens up possibilities of broadening air quality

modeling and prediction to other domains like vegetation or green space planning or

green traffic routing for sustainable urban cities. The research is mainly focused on

extracting strong pieces of evidence which could be useful in proposing better policies

around climate change.

Keywords: urban air quality, climate change mitigation, urban vegetation detection, regression based prediction

algorithms, machine learning and deep learning algorithms, aerial view image recognition, cost effective modeling

1. INTRODUCTION

The quality of air that we breathe is an important factor for a healthy human life and is a
major concern throughout the world in both, developed and developing countries. The ever-
growing urban population and increased volume of industries and motorised vehicles in cities
resulted in air pollution, affecting the environment and posing significant threats to human health.
Maintaining clean air is essential for our well-being and sustaining life on our planet. To address
these concerns, researchers have designed and developed several solutions for air quality analysis
and evaluation. Early air quality evaluation methods relied on conventional statistical approaches
and were restricted by limited accuracy and lack of flexibility (Kang et al., 2018). The advent of
modern Artificial Intelligence (AI) techniques such as Artificial Neural Networks (ANN) opened
up new possibilities for researchers around the world to find solutions to various problems affecting
air quality and climate change (Rybarczyk and Zalakeviciute, 2018; Rolnick et al., 2019).

One of the domains that have gathered a lot of attention in recent years is air quality monitoring
and urban city planning. Availability of Big data in domains like traffic management and air
pollutants concentrationmonitoring systems can directly help us to plan our cities and traffic routes
or even come upwith policies and regulations to keep our carbon footprint under control. Themain
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sources of air pollution in cities are emissions from different
sources including traffic, industrial and household sources. But,
in fact, there are other factors like vegetation and weather
conditions that dictates the concentration of these pollutants
in the air mainly through dispersion and absorption (Guan
et al., 2016). To this end, it is important to understand
the relationship of these factors with respect to pollutant
concentration. Understanding these relationships can help in
urban vegetation or traffic route planning to control this
pollutant concentration.

One of the major factors affecting the air quality and
concentration of pollutants in the atmosphere is the
vegetation (Bealey et al., 2007). Impact of tree plantations in the
urban area including highway borders have been investigated
as an effort to improve urban air quality (Benjamin and Winer,
1998; Al-Dabbous and Kumar, 2014; Fares et al., 2016; Waters
et al., 2021). Researchers have studied the influence of vegetation
on both particulate and gaseous pollutants. Detailed reports have
been generated by experts in the field to aid authorities in urban
green space development (Bealey et al., 2007; Baldauf et al.,
2013). There have been efforts in recent years toward sustainable
urban transportation planning which in turn has also influenced
the vegetation planted around the cities and highways (Baldauf
et al., 2013).

Building on our initial studies (Babu Saheer et al., 2020;
Babu Saheer and Shahawy, 2021), this research aims to
generate a framework for monitoring and modeling the
air quality for urban cities by understanding the different
factors that influence the concentration of pollutants
in the air. Integrating information from various sources
including measured pollutant concentration, weather, traffic
and other correlated features alongside understanding
vegetation distribution around urban cities can help urban
planners to build sustainable green spaces. Most of the
aforementioned factors are available as public data through
various monitoring services of the government or other non-
profit organisations (Cambridge City Council, 2019; Highway
England, 2019; Transport for London, London Air Quality,
2019). Also, the weather data that is usually monitored by
meteorological societies is available as a live stream (Onal et al.,
2017).

The vegetation itself may be a challenging factor to monitor.
Some of the local authorities such as UK city councils have tried
to maintain a record of tree plantations (London Local Authority
Maintained Trees, 2019). But there are limited incomplete
records of vegetation around the city. It would be easier to
automatically detect this information from remote sensing or
satellite images. Again, remote sensing using light detection and
ranging (LIDAR) and drones would be expensive and not easy
to scale. A cheaper and more convenient option to this end
would be to use the Google Earth satellite images. According
to their official product blog, “Google has collected 36 million
square miles of high definition satellite images from various
providers covering more than 98% of the entire population
to see the world from above" (Lookingbill, 2019). These high
quality aerial view images are aligned and stitched together using
photogrammetry achieved through Machine Learning. Sources

also mention that Google keeps updating these images on a
regular basis. Based on this information, vegetation can be
determined as tree crown recognition on these aerial view images.
The main challenge with the satellite images is that there is
no labeled data available to train tree crown detection models.
Unsupervised or semi-supervised modeling techniques could be
explored for detecting the vegetation from these images. To this
end, the research presented in this paper first looks at detecting
and understanding vegetation as number and species of trees in
and around an urban area from Google Earth satellite images
using different deep learning models. Once both the vegetation
and weather data is aligned and collated, the framework can
be put together to understand how the air quality in terms of
pollutant concentration is being affected by these factors. Further,
such a framework can be extended to predict the air quality in
other regions and even suggest city planning in terms of roadside
vegetation or local green spaces.

The main aim of this research is to come up with a

sustainable and affordable framework for air quality modeling by
integrating pollutant concentrations with the weather conditions

and vegetation information. This scalable framework can be

easily adapted to work for any international location. A prototype
implementation of this framework is validated in this paper for

the city of Cambridge. City of Cambridge has been chosen for this
pilot study as it has other factors mentioned in the framework

publicly available being monitored by local authorities. This
paper makes several contributions to the air quality research as
listed below.

1. The main novelty of the paper is the proposed framework

which aims to bring together different aspects related to
air quality including weather, vegetation, and other factors

to predict air quality in any desired location of the world.
There have been other studies that looked into the influence
of one factor or the other separately on air quality from

historic data. Detailed comparison of other state-of-the-art
research is presented in Section 2. But, this research proposes
a framework to collect all the information simultaneously in a

cost-effective sustainable manner and combine them together

in a model to predict the desired pollutant concentration of a
region.

2. Novelty of the framework includes the innovative approach
to detect the vegetation using self-supervised deep learning
models on aerial view images and incorporated this into the
framework.

3. Apart from the framework, the research novelty includes
a case study implementing the framework on Cambridge
city and testing with multiple machine learning algorithms
compared with traditional mathematical modeling and
advanced deep learning techniques.

4. The novelty includes new features engineered to improve the
performance of the air quality models including information
on seasonal trends, traffic trends (weekend/weekday/working
hours), and vegetation information within multiple radii
(Number of trees within 100 m, 250 m, 500 m).

5. Multiple modeling techniques were investigated including
statistical (ARIMA), linear models (linear regression, support
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vector regression (SVR), and polynomial regression), non-
linear (SVR with polynomial and radial basis function kernels
and its combination) and deep learning (Long Short Term
memory) models.

As the next step of this research, the team is building a
portable cost-effective custom air quality (including different
pollutants like PM, NOx, SO2, O3, CO2, etc.) and weather
(esp. temp, humidity, and wind conditions) monitoring devices
to replace the industrial grade sensor data used in this
study. This will drastically expand locations of the air quality
monitoring/predictions (for e.g., every street rather than just
around the four government established monitoring stations in
Cambridge) and pave way for micro-climate modeling. This
framework should essentially benefit under developed countries
struggling to afford the industrial grade sensor. Novelty of the
work includes determining the vegetation from satellite images
(could be replaced with drone imagery in the future) to be
incorporated into an air quality framework. This is just a first
step toward a long term research which will look into refining the
aspects of the framework and modeling including the vegetation
factors (tree species, difference in vegetation during seasons, etc.),
and other climatic aspects of soil absorption factors, atmospheric
stratification, solar radiation effects.

The rest of this paper is organized as follows. Section 2
discusses the details of earlier work in this domain. The details
of the data set followed by data analysis and pre-processing is
presented in Section 3. The novel methodology for estimation
of the vegetation from aerial imagery is presented in Section 4.
Section 5 discusses different approaches undertaken in this
research along with the results and discussions in Section 6.

2. RELATED WORK

The increasing concentration of greenhouse gas emissions is
considered as the prime cause of climate change and air quality
degradation over the last three decades and many studies focused
on the way in which this can be monitored and mitigated.
Air quality, and in specific, the impact of vegetation on air
quality has been in the spotlight of many researchers for the last
decade. Studies show vegetation and trees can both influence the
atmospheric composition of trace gases and enable dispersion
and deposition of air pollutants, thus affecting the concentrations
of pollutants that populations in urban areas are exposed to.
However, the research outcomes are variable and none of these
studies show any definite outcome on this matter.

There have been recent studies modeling urban Air
quality (Liang and Gong, 2020; Wolf et al., 2020), most of
which do not consider other related factors. A study by
Duarte et al. (2015) investigates the impact of vegetation
on urban micro-climate and the warming effect resulting
from an increase in built density in a subtropical climate.
They have measured air temperature, relative humidity, solar
radiation, soil temperature, wind direction, and speed in Bela
Vista district of São Paulo, Brazil to pre-calibrate ENVI-met
V4 preview prior to parametric simulations. Also, they have
set up a Campbell Scientific meteorological station in the

center of the central and densest block to monitor the micro-
climate effect. The diurnal variation of air temperature and
relative humidity have been measured and monitored on an
hourly basis. They have measured the effect of vegetation
on micro-climates by considering the tree’s shadowing and
physiological process of evapotranspiration. This study showed
that the presence of vegetation can significantly reduce the
surface temperature and mean radiant temperature of the
urban area.

In another study, Holnicki and Nahorski (2015) showed how
emission uncertainty of air pollutants generated by the industry,
traffic, and the municipal sector relates to concentrations
measured at receptor points in the Warsaw metropolitan area
of Poland. This study identified the transportation system as the
main source of adverse environmental impact. Several types of
urban atmospheric pollutants including PM10, PM2.5, NOx, SO2,
and Pb were included in this study and analyzed using theMonte
Carlo technique to identify the key uncertainty factors. Zhu et al.
(2018) attempted to tackle air quality forecasting by predicting
the hourly concentration of air pollutants such as Ozone, PM2.5,
and SO2 on the basis of meteorological data of previous days
by formulating the prediction over 24 h as a multi-task learning
(MTL) problem. This study also proposed a consecutive hour-
related regularization to achieve better performance figures.

A study by Kleine Deters et al. (2017) offers amachine learning
model based on Boosted Trees and Linear Support Vector
Machines to analyse meteorological and pollution data collected
from the city of Quito, Ecuador to predicting the concentrations
of PM2.5 from wind speed and direction and precipitation levels.
This study shows aforementioned machine learning models
are capable of accurately predict concentrations of PM2.5 from
meteorological data. Another study by Zalakeviciute et al.
(2018) investigates the impact of meteorological and topological
conditions on urban air pollution using data collected from the
city of Quito, Ecuador. This study specifically investigates the
impact of the relative humidity (RH) on the daily average PM2.5

concentrations. Results of this study show a positive correlation
between daily average urban PM2.5 concentrations and the RH
in traffic-busy central areas, and a negative correlation in the
industrial city outskirts.

Zhang et al. (2019) aimed for tackling issues such as
the instability of data sources and the variation of pollutant
concentration along time series based for a better air quality
predictive model. This study measured PM2.5 concentration
in over 35 air quality monitoring stations in Beijing and
used the LightGBM model and forecasting data to address
the issue of high-dimensionality. Ameer et al. (2019) proposed
a comparative analysis of four regression machine learning
techniques including decision trees, random forest, gradient
boosting, and multi-layer perceptron for predicting air quality
in specific PM2.5 atmospheric pollution in smart cities. This
study shows that the Random Forest regression model was the
best technique for pollution prediction in urban environments.
A similar study by Aditya et al. (2018) attempted to predict
air quality and PM2.5 atmospheric pollution using logistic
regression. A comprehensive exploratory study by Rybarczyk and
Zalakeviciute (2018) attempted to investigate the efficiency and
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performance of various machine learning techniques for outdoor
air quality and atmospheric pollution modeling.

Rao et al. (2019) proposed an efficient approach for modeling
and prediction of air quality using long short term memory
(LSTM) Recurrent Neural Networks. This study attempt to
capture the dependencies in various pollutants such as PM2.5,
PM10, SO2, NO2, and Ozone to perform air quality prediction.
RNN-LSTM allows modeling of temporal sequence data of each
pollutant for forecasting hourly-based concentrations. Similarly,
Belavadi et al. (2020) proposed an air quality forecasting
architecture that gathers real-time air pollutant concentration
including SOx, PM2.5, CO, and LPG using Wireless Sensor
Networks (WSN) and real-time air quality data API and then
uses LSTM-RNN to forecast future air pollutant concentrations.
Masmoudi et al. (2020) attempted to predict multiple air
pollutants concentrations including NOx, Ozone, and SO2 via
a novel feature ranking method that is based on a combination
of Ensemble of Regressor Chains and the Random Forest
permutation importance measure. Feature selection allowed
the model to obtain the best subset of features. Harishkumar
et al. (2020) proposed an air pollution forecasting model
for PM2.5 atmospheric pollution using a machine learning
regression model.

There are other studies that look at the satellite images to
estimate the pollutants directly from images (Fang et al., 2016;
Chen et al., 2018; Sun et al., 2019; Kalajdjieski et al., 2020; Shin
et al., 2020). All these studies work for only particulate matter
and not for gaseous pollutants. Our proposed research looks
at both gaseous and particulate matter and uses the satellite
imagery for vegetation detection not for pollutant detection. The
pollutants in our proposed framework will be monitored through
reliable sensors. Inclusion of weather parameters in air quality
modeling has shown promising results (Kalajdjieski et al., 2020;
Gonzlez-Enrique et al., 2021). Deep Learning models mainly
LSTM based RNNs are being popularly used for both univariate
and multivariate (with exogenous features) time series pollutant
data. Different configurations of LSTM mainly cross-validation
procedure for time series (LSTM-CVT) were compared with
basic (Artificial neural networks) ANNs by Gonzlez-Enrique
et al. (2021) for NO2 in the Bay of Algeciras (Spain). It
was found that exogenous variables like weather parameters
have shown considerable improvement in performance. LSTMs
have also been used in traffic forecasting (Awan et al., 2020)
and pollution classification (Arsov et al., 2021). Our research
compares different machine learning models ranging from linear
regression to multiple kernel based SVR techniques with both
traditional mathematical models like ARIMA and the popular
LSTM based deep learning models. Also, this work proposes to
use more factors like vegetation and seasonal information on top
of the previously suggested weather-based exogenous features.

A study by Tallis et al. (2011) proposed a predictive model
to understand the role of urban trees in removing PM10 from
urban air in Greater London. The research identified that the
planned 10% increase in tree area within Greater London (from
the current 20–30%) by 2,050 increases the annual PM10 removal
from the current range of 852-2121 tonnes (0.7–1.4%) to 1,109–
2,379 tonnes (1.1–2.6%). It was also identified that the increased

deposition would be greatest if a larger proportion of coniferous
to broad-leaved trees were used around the polluted areas. This
study proposed two different approaches in order to determine
the relationships between the amount and type of tree cover and
PM10 uptake. The first approach measured PM10 downward flux
relative to the urban tree canopy using deposition velocity and
pollutant concentration while the second approach used species
specific deposition velocities to estimate the PM10 uptake. The
main drawback of this study is the lack of in-site validation.
Issues like the sensitivity of selected species to atmospheric
pollution and climate change, aesthetic appeal, biodiversity, soil
factors, maintenance costs, and the land availability for planting
programs have also not been considered.

In another study, Yang et al. (2015) investigated the suitability
of common urban tree species for controlling PM2.5 pollution.
This study developed a ranking approach to evaluate the PM2.5

removal efficiency, impacts on air quality, and the adaptability to
urban environments of commonly occurring urban tree species.
It was suggested to use species with high PM2.5 removal efficiency
in urban greening projects. However, in the real world, PM
removal efficiency is not the most important criterion for urban
planting. The ability of the species to adapt to urban abiotic and
biotic stresses such as compacted soil, water-logging, droughts,
pests and diseases, and air pollutants are the most important
factors in urban planting programs. The results of this study
showed that the most frequently occurring urban tree species
were not the best performers in removing PM2.5. Among the ten
most frequently occurring tree species in the dataset, only three
species namely, London plane, Silver maple, and Honey locust
were ranked above average in capturing particulate matter. This
study suggests conifer species have high PM2.5 removal efficiency
while it is robust to urban abiotic and biotic stresses. A study by
Yang et al. (2005) looked into the impact of the urban forest on
air pollution in the city of Beijing. They relied on satellite image
analyses and field surveys to establish the characteristics of the
current urban forest in the central part of Beijing. Satellite images
were obtained from EROSData Center and captured by Landsat’s
Enhanced ThematicMapper covers the Beijing region. This study
attempted to create a model to quantify the major air pollutants
including SO2, NO2, CO2, PM10, and O3 that are reduced from
the atmosphere by urban forest in the central part of Beijing. This
study also investigated the Biogenic Volatile Organic Compound
(BVOC) emission sourced from the urban forest. The results of
this study showed that 2.4 million trees in Beijing central reduced
over 772 tons of PM10 and over 0.2 million tons of CO2 stored as
biomass in a year.

Wilkes et al. (2018) usedmulti-scale LiDAR imaging including
terrestrial and airborne laser scanning to estimate urban ground
biomass for the London Borough of Camden, UK. An airborne
laser scanning was used in the first instance to create clusters of
feature sets that represented a wide range of tree structures typical
in an urban setting. Then, terrestrial LiDAR measurements were
used to derive allometry that uses structure metrics to identify
individual trees and subsequently estimate the above ground
biomass. This study used two relatively expensive imaging
techniques including terrestrial and airborne laser scanning to
estimate the above ground biomass which is less preferable in
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the real world. A similar study by Li et al. (2020) attempted to
estimate urban vegetation biomass in the east Chinese city of
Xuzhou using a combination of field observations and Sentinel
satellite images. Field measurements were used to identify
the Quadrat biomass using the allometric biomass equations.
Vegetation biomass models were constructed using remote
sensing Sentinel satellite images. This study attempted to identify
the capability of Sentinel-2A data to estimate urban vegetation
biomass and examine whether vegetation type-specific modeling
can improve estimation accuracy. Similar to the earlier study,
this approach is also less preferable in the real world as it
requires labor-intensive and expensive field observations and
manual surveying. Similarly, studies including Reitberger et al.
(2009), Lahivaara et al. (2013), Zhang et al. (2014), and Qin
et al. (2014) used airborne LiDAR or a combination of airborne
and point clouds LiDAR technologies for individual tree crown
detection. There are other types of studies like (Kraft et al., 2019)
who aimed to model vegetation dynamics in conjunction with
climate change impacts. Kraft et al. (2019) used LSTM network
and multivariate predictors to model earth system variables to
create a global model for vegetation dynamic state. The authors
have used 33 years of climate variables in addition to static
soil and land cover characteristics to model daily satellite-based
observations. The proposed LSTM based model was able to
learn the dynamicity of vegetation through temporal and global
spatial variables. However, the focus of the study is not on
air quality.

With an aim to promote urban tree management, Branson
et al. (2018) created up-to-date catalogs of urban tree population
using publicly available TreeMapLA Los Angeles tree inventory
along with aerial and street view images of Google Maps. This
study also aimed to create a change-tracker model that recognizes
changes of individual trees at city-scale, which is essential to
keep an urban tree inventory up-to-date. The study first scraped
available aerial images and street view panoramas of the city
of Pasadena from Google Maps. Then, a tree detector and a
tree species classifier were separately trained using labels from
the TreeMapLA dataset. The trained tree detector predicted all
unseen available tree images and then projected them from the
image space to true geographic positions. Larsen et al. (2011)
conducted a comparison study of six individual tree crown
detection algorithms and evaluated their performance using an
image dataset containing six diverse forest types at different
geographical locations in three European countries. This study
showed that the majority of algorithms were straggling with
individual tree crown detection in non-homogeneous images
of forestry. More related literature on this topic is summarized
in Section 4 which presents our approach of self-supervised
tree crown detection from Google Earth images. Some of the
limitations in the earlier attempts of vegetation or tree crown
detection in urban areas and mapping this information to an
air quality modeling framework have been discussed above.
Furthermore, none of these aforementioned projects consider
the factors of weather and climatic conditions or other factors
for a generic air quality modeling framework. As mentioned
earlier, our research proposes a comprehensive and affordable
framework for urban air quality modeling.

3. DATA MINING AND PROCESSING

In order to build a prototype for the aforementioned framework,
the first step is to acquire different datasets for the selected
region (Cambridge). Three vital features are required to build
this framework: the number of trees, the pollutant concentration,
and the weather data, all of which belong to the bounded
geographical region and with in the same time period. Collecting
these datasets is not a trivial task, especially since the data needs
to be from exactly the same time period and location. Cambridge
city council monitors pollutant concentrations that are published
online and weather data can be acquired from the local weather
station. Deep Learning based techniques on aerial view images
had to be developed in order to properly infer the vegetation data
as tree locations to estimate the count of trees around the points
where the pollutant concentrations are monitored. The following
sub-sections provide the details of the different datasets used in
this framework.

3.1. Pollutant Concentration Data
The pollutants monitored for air quality can be categorized into
two classes–gaseous (CO2, SO2, NOx, and NO2) and particulate
matter (PM10, PM2.5). It could be postulated that the trees help
absorb only gaseous pollutants. But, there have been reports
on certain types or species of trees that could help absorb the
particulate matter as well (Bealey et al., 2007; Chen et al., 2017).
Our initial study (Babu Saheer et al., 2020) performed data
analysis separately on the effects of vegetation on the gaseous and
particulate matter for the London city. Even without looking at
the tree species information, the results were positive as to the
effect of trees with a strong negative correlation to pollutants. The
particulatematter may seem to havemore effect on general health
rather than climate change. But, it is known that the particulate
matter has fractions of elementary carbon (Chernyshev et al.,
2019) which results in global warming and hence affecting
climate change directly. These types of pollutants also need to be
included in such studies.

The current study looks at the pollutant information
collected by Cambridge council for the Cambridge City. The
data is available via the Air Quality England website. There
are monitors at four different locations in the city. These
are Cambridge Gonville Place, Cambridge Montague Road,
CambridgeNewmarket Road, and Cambridge Parker Street. Each
of these locations records both gaseous and particulate matters
at regular intervals (refer to Table 1). This time series data
is available for every hour and could be easily aggregated for
different time intervals if required. As shown in the table, not
all locations are monitoring the same pollutants. This would
make it difficult to build combined models using the parameters
from different locations. In order to keep the prototype of
this modeling framework simple, we currently focus on only a
particulate matter (PM10) and a gaseous pollutant (NO2). Other
pollutant types can be easily plugged into the framework.

Ideally, it might be postulated that the emissions information
also needs to be included in the analysis and modeling of air
quality, rather than just the pollutant concentration. Pollutant
concentration refers to the measured value of the pollutants
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TABLE 1 | Pollutants monitored in Cambridge city.

Sensor location PM10 PM2.5 NO NO2 NOx

Gonville place X X X X X

Montague road X X X X X

Newmarket road X X X X X

Parker street X X X X X

in the air monitored in µg/m3 as frequently as every hour or
half hour while the emissions are estimated from the various
sources in terms of tons/year over a larger period such as
a year. Depending on the types and number of sources at a
location, the accuracy of this estimation might widely vary.
Usually, transport is deemed as the main source of emissions,
but road transportation constitutes roughly 25 to 35% of the total
emissions in the Greater London region (London Atmospheric
Emissions Inventory, 2016). The concentrations of pollutants are
measured regardless of the source. Another limitation with the
current emissions and pollutant concentration datasets is that the
type of pollutants monitored may not be the same. For instance,
the London dataset studied earlier, had the emissions data with
CO2, NOx, PM2.5, and PM10 and the concentration data with
NOx, NO2, PM2.5, and PM10. There were only NOx, PM2.5, and
PM10 that are aligned and could be studied in parallel. Our earlier
research, focused only on these 3 pollutants to study the direct
relations between emissions and concentration. There are no
emissions data included in the current study, as our focus was to
have more accurate modeling and this could be added as a future
improvement to this research.

3.2. Weather Data
The weather data is available from meteorological stations.
Several studies have shown that the weather information in
terms of wind speed, direction, humidity, temperature, dew
point temperature, atmospheric pressure, rain and sun hours
are important factors in determining the concentration of the
pollutants in the air (Jhun et al., 2015). The direction and
speed of wind can effect the concentration of PM particles. A
study observed that the presence of wind in east, south, and
south-east directions can increase the concentration of PM2.5

particles in the UK. A 25–50% of this increase is attributed
to the PM2.5 carried over to the UK from continental Europe.
Low wind speed also increases the PM2.5 concentration (Graham
et al., 2020). Our research looks at the weather information
from the weather stations in Cambridge. This results in only
a single reading for all locations within Cambridge at each
point in time. Ideally, the micro-climate modeling at each
location could help in more accurate modeling. Again, this
is left as a future study. All the locations in Cambridge
are close by and it is reasonable to consider the reading
from the single weather station for the scope of this study.
The weather features used in our research are shown in
Table 2.

TABLE 2 | Weather data variables and their units in the data set.

Weather data variable Unit

Temperature Degree celsius (◦C)

Dew point temperature Degree celsius (◦C)

Pressure Millibar (mBar)

Wind speed Knots (kts)

Wind direction Direction (South-East, East etc)

Sunshine hours Hours (hrs)

Rain Millimeter (mm)

Maximum wind speed Knots (kts)

3.3. Vegetation Data
The vegetation itself may be a tricky factor to measure. Some
of the local authorities such as UK city councils have tried to
maintain a record of tree plantations (London Local Authority
Maintained Trees, 2019). But these are often limited and
incomplete records of vegetation around the city. It would be
easier to automatically detect this information from remote
sensing or satellite images. Remote sensing using LIDAR and
drones would be expensive and not easy to scale.

In order to build a scalable system capable of having global
applications, an easily accessible source of data is required.
Estimating the number of trees manually is not feasible.
This specific obstacle led to the development of one of the
cornerstones of the framework: the estimation of tree data
through aerial images (Babu Saheer and Shahawy, 2021). Aerial
images can be captured by iteratively looping over a bounded
geographical region with Google Maps API using a sliding
window. These aerial images of the region can be automatically
analyzed to gather the vegetation details as tree counts. In
this study, the regions explored were the Camden borough in
London and the entire Cambridge city (CB1 to CB25). The
Section 4 discusses in detail how the vegetation can be estimated
as tree counts through tree crown detection on Aerial Google
Earth images.

4. MINING THE TREE DATA

As mentioned earlier, leveraging the deep learning based image
recognition on aerial view images could provide a good estimate
of the vegetation information. In the absence of methods to
capture these images in a cost-effective fashion, the research
explored the use of Google Earth aerial view images as the
source of data for a specific geographical location. Multiple self-
supervised or semi-supervised or even unsupervised training
techniques are needed to be experimented for this task in the
absence of labels on the Google Earth images. Tree crown
detection or delineation has been a popular domain of research
to estimate the crown of the trees from aerial view remote sensing
images. The technique could detect the tree counts as well as
species or health of the trees. The proposed methodology in
this research is referred to as “tree recognition” or “tree crown
recognition.” The methodology estimates the bounding boxes on
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tree crowns in these images and thus helps to count the number
of trees based on these tree crowns for each RGB image. The
current research is extending this method to species detection as
well (Waters et al., 2021).

Remote sensing is a very popular domain of research.
The traditional mathematical modeling like canopy height
model and image segmentation has been investigated by
Wu et al. (2019). The popular techniques like point cloud
detection (PCS), watershed, polynomial fitting, and individual
tree crown segmentation (ITCS) were investigated and resulted
in comparable scores. Deep learning methodology has gained
momentum and is recognized as the most popular technique
for any image recognition task including vegetation prediction
(Guirado et al., 2017; Ayrey and Hayes, 2018) or scene
classification from high-resolution multi-band images (Zhao
et al., 2017) or RGB images (Hu et al., 2015). Different topologies
of Convolutional Neural Networks (CNNs) based on pre-trained
models like ResNet have shown significant improvement in
precision (12%) and recall (36%) for (Guirado et al., 2017).
The labor behind manual labeling has been the main concern
with the use of supervised training algorithms. Labeling around
50,000 images of coffee scenes data (Hu et al., 2015 or 2,100
images of UC-Merced dataset (Castelluccio et al., 2015) is not
scalable. Hence, unsupervised or semi/self supervised algorithms
are desired (Wallace et al., 2014; Weinstein et al., 2019). The
semi-supervised approach makes hand corrections on an already
estimated initial labels with minimal training on high density
LiDAR tree images (Wallace et al., 2014; Weinstein et al., 2019).

Most of the aforementioned work was modeled on forest or
wooded areas with thickly populated trees of the same species.
Aerial images are mostly from high resolution multi-spectral
view data. The urban vegetation detection is more challenging
due to the fact that the trees are from diverse species and scattered
sparse distribution around the city. There is no labeled data
available to build these models and the available data is a low
resolution RGB images. As mentioned earlier a self-supervised
approach was proposed by Weinstein et al. (2019) used LiDAR
data to initialize the models and iterated on hand corrected noisy
labels to refine the models. The research hand labeled 2,000
images which is claimed to be a decent set to get a reasonable
performance from the model. The final model achieved recall
of 0.69 and precision of 0.61. Labeling 2,000 images still may
not be a feasible option. The vegetation detection is part of the
aforementioned framework of pollutant monitoring and may
not need very accurate counts. The work looks at small radii
around the established pollutant monitors. Our earlier work
(Babu Saheer et al., 2020) on London pollutant study based
on noisy list (not very accurate count) of tree dataset from
council provides further confidence on the relative influence
of vegetation data for this framework. Our proposed approach
is inspired by the earlier work of Weinstein et al. (2019) and
expands it to a fully self-supervised approach without any
hand labeling. This research investigates different approaches to
estimate the vegetation from aerial view Google Earth images.
Existing urban tree detection resources like Pasadena urban trees
dataset and model (RegisTree Wegner et al., 2016) or tree crown
recognition model named DeepForest (Weinstein et al., 2020)

could be explored for building this self-supervised model.
Number of experiments were performed using these two
resources to identify a tree crown recognition model without the
tedious effort of hand-labeling large amounts of aerial images.

Wegner et al. (2016) came up with a model to catalog
public objects using both street and aerial view images in
selected cities. A comprehensive dataset called the Pasadena
dataset includes more than 80,000 trees labeled with species and
corresponding geographic location on more than 100,000 multi-
view Google images (map, street and aerial images). The multi-
view modeling considerably improves the performance to 71%
compared to the 42% detection rate achieved by the single view
processing. The dataset only contains names of trees or species
associated with each image and does not localize the location
of the trees which is what is required in this work. Tree crown
data could be synthesized and led to emergence of DeepForest
model (Weinstein et al., 2020). DeepForest is an open-source
Python package released with one pre-build model trained on
data from the National Ecological Observatory Network (NEON)
using a semi-supervised approach fromWeinstein et al. (2019). It
might be feasible to leverage this model to train a tree detection
model using Google Earth images of Cambridge city. Millions of
synthesised tree crown images were used to pre-train the model
and may be identified as the baseline for tree detection similar
to VGGNet or InceptionNet for image recognition. Pre-trained
models can be used for building new models using the transfer
learning technique (Shin et al., 2016). The technique leverages
on the existing model using it as either a starting model to
tune the parameters or using the model as a feature extractor
to feed into a new model adapted to the new task. Given huge
efforts in labeling remote sensing data, transfer learning is a
very commonly used technique (Bonet et al., 2020). Identifying
DeepForest and transfer learning as a possible approach for this
task, the next step is to collect all the available data.

4.1. Data Mining and Pre-processing
As mentioned earlier, Google earth images were downloaded
using Google maps API. The images supplied by Google are
a combination of Satellite and Aerial view (Drone-style or
airplane) images of RGB quality (as per sources). The set
has mixed resolution on the images but is good enough to
visually identify trees. The images were downloaded and followed
through a pipeline of data pre-processing, filtering, and finally
tree detection modeling. Square images at zoom level of 20 were
downloaded using the Google map API covering a bounded
geographical region of 70 m2. A sliding window of 70 m was used
to download non-overlapping images. The anchoring point for
each image was the top left corner represented by a pair of latitude
and longitude values. Offsets were applied on these coordinates to
download the image of the next adjacent geographical location. In
order to make this calculation, one could assume that the point
that is r meters away at a bearing of θ degrees east of north is
displaced by r ∗ cos(θ) in the north direction and r ∗ sin(θ) in the
east direction. Now given that the Earth’s ellipsoidal curved shape
needs to be accommodated rather than considering it as a plane
surface, the longitude offset needs to be a function of the latitude
offset. The aforementioned process was applied to downloaded
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FIGURE 1 | The impact of brightness, saturation, and normalization processes on tree detection performance. Normalized images are exhibiting a noticeably better

detection accuracy.

aerial view images for two different locations—Cambridge and
Camden (Borough in London) resulting in more than 500,000
images. Samples of these images are illustrated in Figure 1. The
images represent urban scenery which unlike forest or wooded
regions has multiple objects rather than just trees which are
sparsely distributed and hard to differentiate from bushes.

The downloaded Google images could be further normalized
to improve their quality similar to the images in the Registree
dataset. The image properties mainly saturation, brightness and
contrast could be separately normalized. The perceived values for
these image properties are calculated from the dataset. All the
images are normalized as follows to obtain unified image quality
using pre-defined threshold (Pbφ , Psφ , Pcφ) along with perceived
stats (Pbµ, Psµ, Pcµ).

(Pbφ − Pbµ)/Pbφ

(Psφ − Psµ)/Psφ

(Pcφ − Pcµ)/Pcφ

Here b, s, and c represent the three image properties brightness,
saturation, and contrast, respectively. Figure 1 represents some
sample images with the aforementioned normalization. It can be
seen that the trees are more visible in these normalized images.

4.2. Tree Detection Models
The pre-processed dataset can be now used for building a
tree crown recognition model. As mentioned earlier, several
approaches (including YOLOv3 based generic object recognition
system) were tested and only the best performing model is
presented in this paper. Due to the lack of labels in the dataset,
a pre-trained model is required which could be minimally tuned
to fit the task. The DeepForest model as discussed earlier is able to
predict the bounding boxes of tree crowns on input images. The
model itself was trained using the semi-supervised approach with

synthesized images which are further optimised by retraining
with hand-labeled data.

DeepForest model could be directly used to recognise the tree
locations on the aerial view data downloaded as RGB images. The
DeepForest architecture represents a similar RGB normalization
block as mentioned previously (Section 4.1) for data pre-
processing and image enhancement. The downloaded images
when normalized had considerable improvement in performance
without any retraining or tuning of the DeepForest model. It
can be observed in Figure 1 that the number of bounding boxes
for identified trees have drastically increased for the normalized
images. But the overall performance can still be improved with
self-supervised training. The initial performance of the model on
unseen data downloaded from the Camden Borough in London
has an average confidence score of 31.2%.

In the absence of good quality labeled data, transfer learning
has emerged as one of the popular techniques to adopt (Shin
et al., 2016). There may be data or tasks very close or similar to
the one being addressed. These models or data can be leveraged
to build a base model which can be further tuned or adapted
with the limited data at hand. Transfer learning method has
been very popularly used in image recognition tasks where there
are big datasets like ImageNet rendering exceptionally powerful
models like ResNet, InceptionNet, VGG16, or VGG32 etc. The
convolutional layers in these popular CNN models could act as
feature extractors to extract image specific features which are then
used to train the feedforward fully-connected or softmax layers of
the model. The same fine tuning can be tried on the DeepForest
which addresses a similar task as this research, the tree crown
recognition. Even for fine-tuning the model, there needs to be
some or minimal amount of labeled data. In the absence of this,
an approach similar to Weinstein et al. (2019), self-supervised
learning is being used. But, the main difference for the proposed
novel approach is unlike (Weinstein et al., 2019), this research
will try to completely automate the re-training or tuning process
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FIGURE 2 | Tree recognition framework: self supervised training approach.

by avoiding any hand corrections of the labels. Hence, there is no
human effort or intervention involved in the whole process.

The proposed approach is illustrated in Figure 2. The training
dataset were images fromCamden (Borough in London, UK) and
the unseen test dataset were images from a different city in the
UK, Cambridge. The 150 test set images were hand labeled only to
estimate the performance of the model. The dataset was initially
normalized and enhanced using the pre-processing technique
discussed in section 3. The normalization pipeline was followed
by estimation of the tree crowns using the DeepForest models. It
was seen that the performance was very poor as shown inTable 3.
But even in these results, there were images that had very high
confidence scores. These high confidence results (greater than
a threshold of 70%) were filtered out from the training data.
This generated a new set of around 1,500 automatically labeled
training images which could be used to tune the DeepForest
model. The backbone convolutional layers of the DeepForest
model were frozen (as they act as feature extractors) and only the
final fully connected layers are retrained with this data. The final
results as seen in Table 3 shows considerable improvement in
performance. The mean average precision (mAP) increased from
0.28mAP using un-tuned model to 0.89mAP with the retrained
model for the intersection over union (IoU) threshold of 0.5. It
should be noted that the hand corrected labels byWeinstein et al.
(2019) could only achieve 0.61 for a similar setup and parameters.
This is also presented in the Table 3 as a reference baseline.
The proposed approach in this work did not use any hand
labeling unlike the approach presented inWeinstein et al. (2019).
Hence, could be deemed as successful method for recognizing
tree crowns on any new dataset.

Finally, qualitative analysis of tree recognition shows that
the detection has considerably improved with the image pre-
processing (normalization) as shown in Figure 1. The outputs
on the self-supervised model are also analyzed, and the positive
results recognizes most of the trees in the data even when they
are sparsely or thickly populated as seen in Figure 3. Some very
extreme cases of negative results are shown in Figure 4. It was
hard to locate these negative examples from the test sets. Very few

TABLE 3 | Tree crown recognition results on images from Cambridge city.

Type of model Mean average performance

Untrained DeepForest 0.28mAP

Proposed model (Self-supervised model) 0.89mAP

Weinstein et al. (2019) Baseline (Hand

corrected labels)

0.61mAP

missed detection can be observed on some images. Tree cones
were blurred in these cases which is the main distinguishing
feature extracted by the DeepForest model. False positives may be
triggered very rarely in special image lighting cases when a small
round patch of grass resembles a tree cone as seen in the figure.
But, it should be noted that in general the model does not trigger
on grass and lawns as shown in Figure 3 and could effectively
distinguish tree crowns from bushes and grass which is very
impressive. The performance was acceptable for the proposed
framework and the tree counts were estimated on the aerial view
images at different radii around the pollutant monitoring stations
to be incorporated into the framework.

5. METHODOLOGY

The standard methodology for air quality modeling is very
similar to any other modeling task. The steps include collecting
features from different data sources, pre-processing the data,
analyzing the data, modeling the time series using different
modeling techniques, and finally evaluating the model for
performance. The different features are collected through the
framework presented in Section 5.1 which can be scaled to
any new city. The pre-processing and data analysis steps are
summarized in Section 5.2 and finally modeling and prediction
results are presented in the Section 5.4 followed by discussion of
results in Section 6.
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FIGURE 3 | Positive results with self supervised model (trees in red bounding boxes).

FIGURE 4 | Some examples of undesirable results with self supervised model (trees in red bounding boxes).

5.1. Global Framework Solution
The framework developed for this work is shown in Figure 5. As
explained earlier, it is easier to collect the pollutant concentration
data in a developed urban city where government and other
public organizations collect and publish this data. There is also
a possibility of building cheaper air quality sensors as part of
future improvements of this framework which is the next step
of this research. The weather information is easily available
from meteorological stations, and the vegetation information is
collected based on the proposed tree crown detection presented
earlier. This technique of vegetation detection can work for any
new urban city as Google Earth images have been expanding to
almost all international cities around the globe. There could be
other factors like emissions that could be incorporated into the
framework for future improvements.

5.2. Data Analysis
From the initial analysis of the data sets, few interesting facts
can be deduced. A declining trend is observed for the yearly
mean concentration of both the pollutants. Figure 6 depicts
the yearly concentrations for NO2 and PM10 at four locations
in Cambridge between 2016 and 2020. The trend shows a
steady decline in the pollutant concentration in Cambridge. The
reduced concentrations in the year 2020 can be attributed to the
restricted movements during lock-down due to the COVID-19
pandemic. Even without considering the influence of COVID-19

restrictions, the numbers have been reducing in general and with
the lock-down and limited travel, the overall numbers had a very
steep decline from the previous years.

The daily distribution of NO2 across four different locations
is shown in Figure 7. The common trend observed in all
these figures is that the concentration reaches its peak around
18:00 which aligns with the peak traffic hour and the lowest
concentration is observed in the early morning hours of
04:00 a.m. to 05:00 a.m. The concentration values show a steady
increase throughout the day at all locations to reach their peak.
From the peak at 18:00, it shows a trend of steady decline
throughout the night to reach its lowest at early morning hours.
This pattern can be attributed to the traffic pattern. Emission
from traffic and other combustion are considered as the main
sources of NO2. Figure 7 shows the strong correlation between
traffic and NO2 concentration.

Another interesting observation is the strong negative relation
between Wind Speed and PM10 as shown in Figure 8. This
has also been supported by many studies that the increase
in wind speed blows away the particulate matter. Our earlier
studies (Babu Saheer et al., 2020) using the data from London
city have shown strong correlations between the vegetation and
pollutants. A similar analysis using the tree counts around the
pollutant monitoring stations in the city of Cambridge shows
a good correlation with the pollutants under consideration as
shown in Figure 9. The figure shows a yearly average of both
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FIGURE 5 | AirQuality framework: modeling pollutant concentration with weather and vegetation.

FIGURE 6 | Yearly trends: pollutant concentration trends in the recent years.

gaseous pollutants, NO2 and particulate matter PM10, separately
for the years 2019 and 2020. The tree counts are calculated at
different radii around the pollutant monitoring station at the
distances of 100 m, 250 m, 500 m, and 1 km. It can be seen
from Figure 9 that the trees within a 100 m radius has strong
correlations with both pollutants especially particulate matter.

5.3. Feature Engineering
The air quality and weather data acquired from the Cambridge
City Council was collated to generate a time series data of
hourly intervals. These data points were used for modeling
the gaseous and particulate matter pollutants based on the

meteorological conditions and vegetation information in terms
of the number of trees. Several new features were deduced
from the existing ones as shown in Table 4. The date-time
component in the data set was used to create new features
like the day of the week, month number, and hour of the day.
A Boolean variable indicating weekend or not was added to
the data set. The mean pollutant concentration on weekends
is substantially less than on weekdays. The 10 and 20 day
rolling mean values for pollutant concentration was also added
to the data set. A categorical variable denoting the 4 seasons
were created and added to the data set. The month, hour,
and weekday being cyclical variables, six trigonometric variables
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FIGURE 7 | Daily NO2 trends: concentration trends across four different locations.

FIGURE 8 | Correlation between Wind Speed and PM10.

were created for these. The correlation of these new features
with regards to the gaseous and particulate matter pollutant is
presented in Figure 10. It can be observed that these features
should ideally provide independent complimentary value to
the models.

As shown in the table, the vegetation information is derived
as the number of trees within different radii surrounding the
location where the pollutant concentration was measured. This
includes the number of trees within the radius of 100 m, 250 m,
500 m, and 1 km calculated using the tree recognition model
described in Section 4.

5.4. Modeling and Prediction
This section discusses the results of experiments performed for
modeling the data as described through the framework presented

earlier (Figure 5). Experiments are performed with combinations
of engineered features as mentioned in Section 5.3. Within this
feature list, it can be observed that there are features pertaining
to vegetation which denotes the number of trees within different
distances from the location. Experiments were performed to
compare the effects of vegetation by modeling air quality with
and without these specific features pertaining to the vegetation
information. All other newly engineered features were included
in the different models except for Auto Regressive Integrated
Moving Average (ARIMA) which is a uni-variate time series
model for the specific pollutant concentration.

The pollutant data were collected from multiple locations
within Cambridge between 2016 and 2020 with a value recorded
every hour of the day. The data were divided into training
data (2016–2019) and unseen test data (2019–2020) resulting in
28,000 (74%) data points for training and 9,785 (26%) data points
for testing. The training dataset is further divided into two (at a
ratio 80–20%) to generate training and cross-validation sets for
tuning the hyperparameters. This research looks at multiple time
series prediction models including machine learning regression
models. The same dataset division was used in all models
presented in this research. The final results are estimated on the
same aforementioned held out test data set for all models.

The models investigated in this research range from the
statistical Auto Regressive Integrated Moving Average (ARIMA)
which is heavily used in air quality modeling studies to linear
models like simple linear regression with the ridge, lasso,
elastic-net counterparts alongside the polynomial regression.
Non-linear models including SVR with polynomial and Radial
Basis Function (RBF) Kernels and a combination of both were
also tested. Deep Learning models, such as LSTM, are also
investigated. All the aforementioned machine learning models
were subject to hyperparameter optimization.
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FIGURE 9 | Correlation between vegetation and pollutants (PM10 and NO2).

Similar to the other machine learning models, LSTM model
was trained using the engineered features mentioned in the
Section 5.3. An important factor to consider while training deep
neural networks is the hyperparameter tuning. Hyperparameter
optimization for the LSTM network was conducted using
BayesianOptimization tuner available in the Keras library.
The hyperparameters tuned are summarized in Table 5. The
parameters were the number of neurons, learning rate, the loss
function and the rate used in the dropout layer, and option to use
dropout or not. After conducting 3 trials per set of parameters,
the best set of hyperparameters was used to produce the results
presented in the results table. The optimization resulted in Mean
Squared Error as the identified loss function. The final LSTM
network had four layers including 5 LSTM layers followed by a
dense layer as the output. A dropout layer was added between
these layers to prevent over fitting. The rate of the dropout layer
was found using the tuner to be 0.4. The optimum number of
neurons was calculated as 288, 480, 384, 100, and 50 for the 5
layers in the model and the best learning rate during the trials was

0.0001. Tanh activation function performed better than the others
for the LSTM layers and linear activation function for the dense
output layer. The LSTM model optimization is an ongoing task
that demands a long training time and could be further improved.
The aim of the experiments is to find the optimal model that
could represent all the features in the framework. It could be
identified that some of the common regression models might
perform better than deep learning models like LSTM.

Experiments are performed on gaseous pollutant (NO2) and
particulate matter (PM10) separately. The models are generated
for each location separately. As mentioned earlier, the air
pollutant data is available with a frequency of every hour as
average values for 5 years (from 2016 to 2020). But, there is only a
single sample data value available for vegetation information per
location in this entire time period. More data points are needed
for modeling and understanding the influence of vegetation.
Unfortunately, the air quality is monitored only at four locations.
Initial experiments performed by combining two locations for
training and the resulting model tested on a third location
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did not show promising results. As there are only data from
four locations available currently, combining multiple locations
and building more generic models is left as a future job. This
paper presents results only for a couple of individual locations
in Cambridge.

6. RESULTS AND DISCUSSION

The results are presented as tables of error metrics. Five different
error metrics are used to compare the performance of themodels.
These error metrics include mean average error(MAE), mean
squared error (MSE), root mean squared error (RMSE), mean
absolute percentage error (MAPE), and R2 score. While the
errors (MSE, MAPE, RMSE, and MAE) are better lower, the
R2-score ideally better closer to 1.

As mentioned earlier, readings from 2016 to 2019 are used as
training data and the values from 2019 to mid-2020 are used as
the test data. Tables 6, 7 show results for the different models of

TABLE 4 | Features introduced as a part of feature engineering.

Feature Data type Description

Weekend Float (0/1) Indicates whether the date is weekend or not

Weekday Float (0/1) Indicates whether the date is weekday or not

Season String The name of season derived from the date

HourCos,HourSin Float Since hour is a cyclic variable converted it to

trigonometric functions Cos and Sin

MonthCos,MonthSin Float Since month is a cyclic variable converted it to

trigonometric functions Cos and Sin

NO2MA10 Float 10 day Moving average of the concentration

NO2MA20 Float 20 Day Moving average of the concentration

100mTrees Float Number of trees within 100 m of the sensor

250mTrees Float Number of trees within 200 m of the sensor

500mTrees Float Number of trees within 500 m of the sensor

1000mTrees Float Number of trees within 1,000 m of the sensor

the gaseous pollutant NO2 for two individual locations. Tables 8,
9 present the same for the particulate matter PM10 for the same
locations. The overall best performing models are highlighted
in the tables. ARIMA models in all cases are uni-variate and
use only concentration values and no other features (including
engineered feature or vegetation information) for modeling.
The other models presented in the tables including the LSTM
models uses engineered features. These models are tested with
and without the vegetation information (as explained earlier)
represented by “With Trees” and “Without Trees” in the tables.

As observed from Tables 6, 7, SVR models with polynomial
Kernel performs slightly better than the other counterparts for
the NO2 modeling. The influence of trees on this pollutant
was especially noticed in one of the two locations. But more
experiments with data points combined from multiple locations
need to be performed to understand the influence of vegetation.
The tree feature might be acting just as a prior. The PM10 models
in Tables 8, 9 show similar trends for Support Vector Regression
with the RBF Kernel. Again the effects of vegetation is being
noticed for one of the locations on some error metrics.

The ARIMA models in most cases is showing slightly better
performance on one or two error metrics, but ARIMA is limited
by the fact that it looks at only the time series trend of the

TABLE 5 | Long short term memory (LSTM) Hyperparameters optimized during

model training.

Parameter name Parameter values

Number of LSTM layers 2 to 5

Number of Neurons per layer 32 to 512 with stepsize 32

Learning rate 1e-2, 1e-3 and 1e-4

Rate for dropout between 0 and 0.5

Dropout option True or False

Loss functions MSE, MAE

Activation functions Tanh, Linear, Relu, Sigmoid

FIGURE 10 | Correlation of the engineered features with regards to PM10 and NO2.
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TABLE 6 | Experimental results for NO2, location-1, and Parker Street.

Model Description MAE MSE RMSE R2 MAPE

ARIMA Without trees or extra features 5.4968 64.2431 8.0151 0.7804 29.2145

Linear regression With trees 7.1151 86.9743 9.3260 0.6911 39.0577

Linear regression Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

LinearSVR With trees 7.0114 85.4898 9.2460 0.6963 37.7552

LinearSVR Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

Polynomial regression With Trees 5.7845 59.2095 7.6947 0.7897 30.7340

Polynomial regression Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

Polynomial SVR With Trees 5.7175 59.6007 7.7201 0.7883 28.9278

Polynomial SVR Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

SVR With RBF Kernel With trees 5.8804 62.1121 7.8811 0.7794 32.5764

SVR With RBF Kernel Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

PF-SVR with RBF Kernel With trees 5.8081 61.4881 7.8414 0.7816 31.7735

PF-SVR with RBF Kernel Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

LSTM With trees 6.8184 87.6507 9.3621 0.6822 30.6485

LSTM Without trees 6.2056 71.3269 8.4455 0.7414 28.3280

linearSVR, SVR with linear kernel; polynomial SVR, SVR with polynomial kernel; PF-SVR, SVR using polynomial features; SVR with RBF kernel, SVR with radial basis function (RBF) kernel;

PF-SVR with RBF kernel, SVR using polynomial features and RBF kernel; LSTM, long short term memory; MAE, mean absolute error; MSE, mean squared error; RMSE, root MSE; R2,

R-squared error; MAPE, mean absolute percentage error; SVR, support vector regression. Bold values are indicate the overall best performing models.

TABLE 7 | Experimental results for NO2, location-2, Gonville Place.

Model Description MAE MSE RMSE R2 MAPE

ARIMA Without trees or extra features 4.9797 51.3185 7.1636 0.7516 31.9924

Linear regression With trees 6.8627 77.8650 8.8241 0.6172 40.6186

Linear regression Without trees 6.8627 77.8650 8.8241 0.6172 40.6186

LinearSVR With trees 6.5645 73.6806 8.5837 0.6378 37.8003

LinearSVR Without trees 6.5697 73.7699 8.5889 0.6373 37.8582

Polynomial regression With trees 5.8845 57.6263 7.5912 0.7167 34.9102

Polynomial regression Without trees 5.7924 56.6969 7.5297 0.7213 33.9497

Polynomial SVR Regression With Trees 5.6715 56.1565 7.4938 0.7239 32.4848

Polynomial SVR regression Without trees 5.6841 56.3862 7.5091 0.7228 32.6777

SVR With RBF Kernel With trees 5.8322 56.9608 7.5472 0.7200 36.4192

SVR With RBF Kernel Without trees 5.8322 56.9608 7.5472 0.7200 36.4192

PF-SVR with RBF Kernel With trees 5.7556 55.6738 7.4615 0.7263 36.0017

PF-SVR with RBF Kernel Without trees 5.7361 55.7099 7.4639 0.7261 35.6012

LSTM Without trees 5.0542 51.1251 7.1501 0.7484 23.0866

LSTM With trees 5.2241 52.6281 7.2545 0.7410 25.0298

LinearSVR, SVR with linear kernel; polynomial SVR, SVR with polynomial kernel; PF-SVR, SVR using polynomial features; SVR with RBF kernel, SVR with radial basis function (RBF)

kernel; PF-SVR with RBF kernel, SVR using polynomial features and RBF kernel; LSTM, long short term memory; MAE, mean absolute error; MSE, mean squared error; RMSE, root

MSE; R2, R-squared error; MAPE, mean absolute percentage error; SVR, support vector regression. Bold values are indicate the overall best performing models.

pollutant value alone and more features cannot be included in
this uni variate model. Deep learning models like LSTM at this
point do not show a significant performance improvement, but
has the potential to be tuned further with more data, more
features and better parameter and hyperparameter optimization.

7. CONCLUSION AND FUTURE WORK

This research proposes a novel framework for the air quality
modeling considering the related factors of weather and

vegetation. The prototype framework was validated for the
city of Cambridge using the existing pollutant data monitored
by the city authorities and common weather measurements.
Models were tested for two different locations within the
city. The vegetation information was incorporated into the
framework with our own novel methodology of self-supervised
tree detection system based on Google Earth Satellite images.
Multiple Machine Learning systems were modeled for a gaseous
and a particulate matter pollutant. Models ranged from statistical
ARIMA models to various linear and non-linear regression
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TABLE 8 | Experimental results for PM10, location-1, and Parker Street.

Model Description MAE MSE RMSE R2 MAPE

ARIMA Without Trees or Extra Features 3.8532 40.9184 6.3967 0.6375 59.7081

Linear Regression With Trees 4.6605 40.9548 6.3996 0.4913 29.2084

Linear Regression Without Trees 4.6605 40.9548 6.3996 0.4913 29.2084

LinearSVR With Trees 4.4460 39.5361 6.2878 0.5089 27.0797

LinearSVR Without Trees 4.4407 39.5027 6.2851 0.5093 27.0429

Polynomial Regression With Trees 4.0152 32.2899 5.6824 0.5989 25.1360

Polynomial Regression Without Trees 4.1887 34.1941 5.8476 0.5752 26.5016

Polynomial SVR Regression With Trees 4.0677 33.2232 5.7640 0.5873 25.1261

Polynomial SVR Regression Without Trees 4.0601 33.1445 5.7571 0.5883 25.0372

SVR With RBF Kernel With Trees 3.9584 31.9661 5.6539 0.6029 25.0983

SVR With RBF Kernel Without Trees 3.9584 31.9661 5.6539 0.6029 25.0983

PF-SVR with RBF Kernel With Trees 3.9552 32.2535 5.6792 0.5993 25.0009

PF-SVR with RBF Kernel Without Trees 3.9689 32.6011 5.7097 0.5950 25.0535

LSTM With Trees 6.9262 79.6629 8.9254 0.0852 46.8802

LSTM Without Trees 7.3973 94.0812 9.6995 0.0803 49.0300

LinearSVR, SVR with linear kernel; polynomial SVR, SVR with polynomial kernel; PF-SVR, SVR using polynomial features; SVR with RBF kernel, SVR with radial basis function (RBF)

Kernel; PF-SVR with RBF kernel, SVR using polynomial features and RBF kernel; LSTM, long short term memory; MAE, mean absolute error; MSE, mean squared error; RMSE, root

MSE; R2, R-squared error; MAPE, mean absolute percentage error, SVR, support vector regression. Bold values are indicate the overall best performing models.

TABLE 9 | Experimental results for PM10, location-2, Gonville Place.

Model Description MAE MSE RMSE R2 MAPE

ARIMA Without Trees or Extra Features 3.5494 30.2370 5.4988 0.6762 23.1247

Linear Regression With Trees 4.1726 31.8227 5.6411 0.5735 27.7313

Linear Regression Without Trees 4.1711 31.8322 5.6420 0.5733 27.7040

LinearSVR With Trees 4.1327 32.3228 5.6853 0.5668 26.8300

LinearSVR Without Trees 4.1337 32.3442 5.6871 0.5665 26.8376

Polynomial Regression With Trees 3.7524 26.2176 5.1203 0.6486 24.7285

Polynomial Regression Without Trees 3.7730 26.5354 5.1512 0.6443 24.8110

Polynomial SVR Regression With Trees 3.7695 26.7237 5.1695 0.6418 24.3154

Polynomial SVR Regression Without Trees 3.7736 26.8158 5.1783 0.6406 24.4013

SVR With RBF Kernel With Trees 3.7202 26.5390 5.1516 0.6445 24.2396

SVR With RBF Kernel Without Trees 3.7187 26.5239 5.1501 0.6445 24.0750

PF-SVR with RBF Kernel With Trees 3.7497 27.2717 5.2222 0.6345 24.1598

PF-SVR with RBF Kernel Without Trees 3.7679 27.5793 5.2516 0.6303 24.2984

LSTM With Trees 4.9231 45.8927 6.7744 0.4292 NA

LSTM Without Trees 4.7463 44.2022 6.6484 0.4503 NA

LinearSVR, SVR with linear kernel; Polynomial SVR, SVR with polynomial Kernel; PF-SVR, SVR using Polynomial features; SVR with RBF kernel, SVR with radial basis function (RBF)

kernel; PF-SVR with RBF kernel, SVR using polynomial features and RBF kernel; LSTM, long short term memory; MAE, mean absolute error; MSE, mean squared error; RMSE, root

MSE; R2, R-squared error; MAPE, mean absolute percentage error; SVR, support vector regression. Bold values are indicate the overall best performing models.

techniques including SVRwith different Kernels and an advanced
LSTM based deep learning model. Multiple error metrics were
analyzed to understand the overall performance of the model.
The SVR models show promising results even with the lack
of localized weather conditions and lack of data from multiple
locations for effective use of the vegetation feature. The deep
learning models also show some prospects for improvement with
more appropriate data and optimization.

Our current research is focused on building custom pollutant
monitoring devices to collect data frommultiple locations within

the city to generate more accurate and generic models. We aim
to look at local weather conditions and the effects of micro
climate on the model. The research will also be expanded to
other types of pollutants to understand various features affecting
the pollutant concentrations. Estimates of emissions may also
be incorporated into the framework along with tree species or
vegetation or terrain type information. With more data collected,
the research will focus on improving models including the deep
learning models. The framework can also be scaled to any other
city in the world. Different seasonal variations (currently only
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incorporated as a single feature value as season) will also be
studied. The tree species identification from aerial view images
has already been initiated (Waters et al., 2021) and would also
be incorporated in the framework. Micro climate modeling using
custom monitoring devices measuring local weather conditions
and more pollutants are also pursued as future steps in this
research. There are plans to acquire more aerial view data using
drone imagery to model the variations in seasonality of the
vegetation. The research is underway along these lines with an
aim to continuously improve this framework.
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