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TECHNOLOGICAL INNOVATION AND RESOURCES Special Issue: Immunopeptidomics
Pitfalls in HLA Ligandomics—How to Catch a
Li(e)gand
Jens Fritsche1,‡ , Daniel J. Kowalewski1,‡ , Linus Backert1 , Frederik Gwinner1,
Sonja Dorner1, Martin Priemer1, Chih-Chiang Tsou2, Franziska Hoffgaard1,
Michael Römer1 , Heiko Schuster1, Oliver Schoor1, and Toni Weinschenk1,2,*
Knowledge about the peptide repertoire presented by
human leukocyte antigens (HLA) holds the key to unlock
target-specific cancer immunotherapies such as adoptive
cell therapies or bispecific T cell engaging receptors.
Therefore, comprehensive and accurate characterization
of HLA peptidomes by mass spectrometry (immuno-
peptidomics) across tissues and disease states is essen-
tial. With growing numbers of immunopeptidomics
datasets and the scope of peptide identification strategies
reaching beyond the canonical proteome, the likelihood
for erroneous peptide identification as well as false
annotation of HLA-independent peptides as HLA ligands is
increasing. Such “fake ligands” can lead to selection of
nonexistent targets for immunotherapeutic development
and need to be recognized as such as early as possible in
the preclinical pipeline. Here we present computational
and experimental methods that enable the identification of
“fake ligands” that might be introduced at different steps
of the immunopeptidomics workflow. The statistics pre-
sented herein allow discrimination of true HLA ligands
from coisolated HLA-independent proteolytic fragments.
In addition, we describe necessary steps to ensure system
suitability of the chromatographic system. Furthermore,
we illustrate an algorithm for detection of source frag-
mentation events that are introduced by electrospray
ionization during mass spectrometry. For confirmation of
peptide sequences, we present an experimental pipeline
that enables high-throughput sequence verification
through similarity of fragmentation pattern and coelution
of synthetic isotope-labeled internal standards. Based on
these methods, we show the overall high quality of exist-
ing datasets but point out limitations and pitfalls critical for
individual peptides and how they can be uncovered in
order to identify true ligands.

Immunotherapy has opened new ways to treat cancer.
Knowledge about targets specific for tumor tissue is essential
for successful treatment development (1). The targets relevant
for immunotherapy are peptides presented by human
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leukocyte antigen (HLA) molecules. Therefore, efforts in
determining HLA peptidomes (immunopeptidomics) have
increased over years since its first application in 1991 (2).
Liquid chromatography coupled to mass spectrometry (LC-
MS) has become the method of choice for in-depth analysis of
the immunopeptidome (3). The acquired data was used as
starting point for the development of predictive models
ranging from position-specific scoring matrices (PSSM) (4) to
deep-learning approaches (5). Nevertheless, mass spectrom-
etry remains the crucial factor for confirming presentation of
peptides by HLA for a given tissue (6, 7).
Due to this growing importance, ensuring quality control

throughout the entire immunopeptidomics workflow from HLA
peptide isolation over LC-MS to sequence identification and
HLA annotation is essential. Because of various pitfalls, pep-
tide sequences reported from immunopeptidomics experi-
ments can contain peptides that were never actually bound to
HLA. The most prominent reason is that peptides are falsely
identified. Immunopeptidomics is particularly prone to false
discovery for multiple reasons: While the search space in
proteomics contains about 330,000 tryptic peptides (8),
immunopeptidomics database searching covers approxi-
mately 60 million theoretical class I peptides encoded by the
proteome with lengths between 8 and 12 amino acids. While
stringent control for false discovery rate (FDR) will reduce the
problem, it will also substantially limit the sensitivity of iden-
tifying veritable HLA ligands. In addition, while proteomics
operates under the hypothesis that the top-ranking peptide–
spectrum match (PSM) is correct, this may not be true for
immunopeptidomics where the much larger search space re-
sults in more mass ambiguities. Thus, low FDR alone does not
sufficiently control for false positives. This problem becomes
even more severe if proteogenomics approaches are applied.
Biased inflation of the search space, e.g., inclusion of hypo-
thetical mutation events in neoantigen searches can lead to
confirmation bias.
mmatics US, Inc, Houston, Texas, USA
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Quality Control for Identification of True HLA Ligands
Another reason for identifying peptides not derived from
HLA is in-source fragmentation of true HLA ligands. This
phenomenon has also been described for shotgun proteomics
(9) and is an artifact of electrospray ionization generating b-
and y-ions in the MS1 scan that might be selected for
acquisition of MS/MS spectra that may be mistaken for HLA
ligands. N-terminal source fragments are usually not identified
since the water loss at the C-terminus is not a routinely
applied dynamic modification in database searching. Still such
events could lead to false-positive identification. C-terminal
source fragments are more problematic since they generate a
truncated sequence containing proper N- and C-terminus and
will not be recognizable as an artifact directly. If these frag-
ments display an HLA-binding motif by chance, they can
easily be misannotated as HLA ligands.
HLA peptidomics is a fundamentally peptide-centric field,

which requires attributing high relevance even to low-
abundance peptide identifications and single PSMs. For this
reason, highly stringent system suitability testing and quality
controls are required to ensure high data quality. One notable
aspect of this is the implementation of effective LC-cleanup
protocols and monitoring strategies to avoid carryover of ana-
lyte between subsequent samples. Recent developments in LC
may help mitigate carryover and reduce system flush times by
using larger column diameters, higher flow rates (10), or by
implementing disposable trap columns (11). However, these
techniquesweredesigned forproteomicsandmaynotbe ideally
suited for the extremely limited sample amounts typically
encountered inHLApeptidomics. For theprevalent techniqueof
nano-LC in HLA peptidomics, users need to identify their
system-specific extent and sources of carryover and design
cleanup protocols to address these in the most effective order
(e.g., autosampler versus column flush cycles and equilibration).
Furthermore, peptides not related to antigen presentation can

occur as result of proteolytic cleavage by endogenous pro-
teases and peptidases, which has also been shown for prote-
omics (9). These enzymes originate from the sample analyzed
and can be lysosomal endo- and exopeptidases (12) or pepti-
dases specific for the analyzed tissue, for instance, carboxy-
peptidases for pancreas, aminopeptidases for intestine, and
pepsin for stomach tissues. Previously described approaches
for detection of such contaminations used the protein coverage
as metric to exclude problematic proteins (13).
Here we present statistical and experimental methods that

help to avoid these common pitfalls in immunopeptidomics
and illustrate showcases that highlight the importance of
addressing these issues.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

For the statistical method development, one dataset was used to
model the observed peptide properties while validation was performed
on three datasets:
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Modelling Dataset ZH2018–The statistical modeling of peptide
properties was based on a population-scale immunopeptidomics
dataset generated by the target discovery platform XPRESIDENT
as described in Zhang et al. (14). In total, 1514 human tissue
samples were measured in five technical replicates resulting in
7825 label-free LC-MS runs. This dataset was also used to
analyze tissue-specific differences of proteolytic contamination.
Fresh frozen tissues of 35 different organs and 23 tumor types
were included with at least five donors per group and a median
group size of 16 donors. Additionally, LC-MS data from 73 cell
lines were analyzed.

Validation Dataset EC500 (Expert Review)–The dataset was
generated by manual assignment of contaminant peptides by two
immunopeptidomics experts. In total, 500 peptides were randomly
selected from ZH2018. To ensure sufficient representation of
contaminant peptides in the benchmark, a ratio of 1:5 between
peptides with and without evidence for contamination was
enforced.

Validation Dataset AB2017 (External Data)–This dataset is based
on peptides reported in Abelin et al. (15) that were isolated from 16
monoallelic cell lines derived from the human B lymphoblastoid cell
line 721.221. The dataset also included a negative control consisting
of immunoprecipitations with beads lacking an HLA-specific antibody
as well as immunoprecipitations of untransduced cells.

Validation Dataset GlyT98G (Mock Immunoprecipitation)–The
dataset was generated by isolating peptides from the glioblastoma
cell line T98G with a glycine-coupled column lacking an antibody
recognizing HLA molecules, thus reflecting non-HLA-specific precip-
itation. The sample was analyzed by DDA-MS in three technical
replicates.

Peptide Synthesis

Peptides were synthesized in 0.5 μmol scale with a filter tip-based
approach on a Syro II synthesizer (Multisyntech) using solid-phase
standard Fmoc-chemistry. For stable isotope-labeled (SIL-) pep-
tides, C13N15-labeled Fmoc-amino acids were purchased from Eur-
isotop and loaded onto Tritylchloride-Polystyrene resins by Intavis.

Peptide ID Validation

For experimental control of false-positive identifications, we ac-
quired two LC-MS runs, one as direct infusion of a synthesized version
of the identified peptide and one with an SIL internal standard peptide
spiked into a retention vial of the original sample. To control for syn-
thetic contaminations, blank acquisitions of the synthetic standards
were performed. To show the feasibility of this approach, we acquired
data for peptides derived from the muscle isoform of pyruvate kinase
(PKM) and the Kirsten rat sarcoma viral oncogene (KRAS).

Peptide Isolation

HLA peptides were isolated as described in ZH2018. The
control precipitations for the validation dataset GlyT98G were
analogously generated by running the cell lysate of 250 million
T98G cells over CnBr-sepharose columns coupled with glycine
instead of HLA-specific antibody. The HLA peptidome matrix used
for validation of peptide identity of PKM28/3-12 versus PKM2-12

was generated by immunoprecipitation of 25 million cells of the
lymphoblastoid cell line LCL11 using the HLA-DR-specific
monoclonal antibody L243 (Department of Immunology, Univer-
sity of Tübingen, Germany).

Mass Spectrometry

LC-MS analysis of HLA peptide extracts was performed on a
nanoACQUITY UPLC system (Waters) online coupled to an Orbitrap
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Fusion mass spectrometer (Thermo Fisher). A trapping setup using
Waters 25 cm × 75 μm BEH C18 analytical columns was used
employing a stepped gradient ranging from 1 to 34.5 acetonitrile over
70 min for DDA-MS runs and 120 min for targeted MS runs. MS
acquisition in data-dependent mode (DDA) was performed using a
top speed method with a maximum cycle time of 3 s. MS1 scan
range was set to 200–1500 m/z with an AGC target of 1e5 and 120k
resolution. For FT runs, MS2 scans were acquired with an isolation
width of 2 m/z for the topN precursors with an m/z range of
280–720 m/z and charge states of 2+ and 3+ at 30k resolution and an
AGC target of 5e4 in the Orbitrap. Precursor fragmentation was
performed by collision-induced dissociation (CID) at 35% normalized
collision energy (NCE) or higher collisional dissociation (HCD) at 27%
NCE, respectively. For ion trap (IT) runs, identical precursor selection
and isolation were applied with CID at 35% NCE performed at 1e4
AGC target in the IT and scan speed set to normal. Dynamic exclu-
sion was set to 13 s, corresponding to a “3-point-per-peak” acqui-
sition scheme.

Targeted MS measurements in this manuscript correspond to tier 3
analyses as described by the National Cancer Institute's Clinical
Proteomic Tumor Analysis Consortium (CPTAC) Program. The peptide
validation of PKM was performed using scheduled parallel reaction
monitoring (sPRM) with CID FTMS2 acquisition at 35% normalized
collision energy and 30k resolution targeting the 1+ and 2+ precursors
of the native peptide and the two differentially labeled SIL internal
standard peptides (20 fmol each).

Internal standard triggered PRM (IS-PRM) for large-scale coelution
experiments and control of isotopic purity was performed by spiking
100 or 250 fmol of SIL-internal standard peptides and target mass list
driven data-dependent triggering of CID FTMS2 scans (60k resolution)
on the SIL target peptides with dependent offset scans on the cor-
responding unlabeled precursor m/z. Isolation windows were set to
2 m/z for all SIL-peptides except for SIL-Alanine, which was isolated at
1.1 m/z to avoid coisolation of labeled and unlabeled isotopologues.
Additionally, chromatograms were checked specifically for differen-
tially labeled transitions (y-ions for C-terminally labeled SIL-peptides),
to preclude false-positive detection of coisolated unlabeled species.

For quality control of synthetic peptides (KRASG12V2-35, SIL-PKM2-

12, and SIL-PKM28/3-12), direct infusion MS was performed using 1 μl of
1pmol/μl synthetic peptide in 50% methanol/5% formic acid on an
Orbitrap Velos mass spectrometer (Thermo Fisher, Waltham). MS1
scans were acquired with a scan range of 350–2000 m/z at 100k
resolution. Peptide identity was confirmed based on CID- and HCD
MS2 scans.

All data were acquired in profile mode.

Software

Targeted MS data analysis and MS1 filtering of DDA data were
performed using Skyline (v20.2). Statistics and plots were generated in
R v3.6.1 (16). Sequence logos were generated using the “Two Sample
Logos” software v1.23 (17) using 9mer peptides sampled at random
from the ENSEMBL reference proteome as negative dataset to reflect
the background frequencies of amino acids in human samples.

Search Parameters and Acceptance Criteria

MS/MS spectra were first converted into mzXML format using
msconvert.exe from ProteoWizard package (v3.0.20128.317991700)
and then searched by X! Tandem (v2013.06.15.1), Comet (v2016012),
and MSGF+ (v7102) against Ensembl 77 human protein sequences
(99,436 entries) with addition of same number of reverse sequences as
decoys. The MS/MS database search was done using the following
parameters: peptide length of 6–15 AAs, mass range of 600–1500 Da,
nonspecific enzyme cleavage, and oxidation of methionine as variable
modification. By default, X! Tandem also includes N-terminal protein
acetylation. Precursor and the fragment ion mass tolerance were set
to 10 ppm and 15 ppm respectively for FT MS/MS spectra, and
10 ppm and 600 ppm respectively for IT MS/MS spectra. The search
results from the search engines were individually analyzed by Pepti-
deProphet via the Trans-Proteomic Pipeline (TPP) (v5.0), and then the
results were further combined using iProphet, which estimates a
probability score for each PSM with assistance of decoy hit scores.
FDR was estimated by target-decoy approach based on iProphet
probabilities, and all PSMs were filtered by 5% run-level FDR
threshold. For each identified PSM, the precursor MS1 feature was
extracted using the MS1 feature detection algorithm described in (18).
In order to align retention times among all the LC-MS runs, we
empirically selected 1000 peptides, which are commonly identified in
most of runs and established globally aligned retention time (gRT) for
each of them in the range between 0 and 100. Each run was then
aligned to the gRT scale [0–100] by polynomial regression.

RESULTS

Proteolytic Fragments

Proteolytic degradation by endogenous proteases and
peptidases introduces peptides to immunopeptidomics that
are not derived from HLA. This usually affects highly abundant
proteins and creates characteristic peptide ladders, which
results in high coverage of the protein by peptides of various
lengths (Fig. 1A).
To allow detection of such proteins, we defined a protein

coverage ratio for each protein (P) as average number of class
I peptides (p) per amino acid:

protein coverage ratio for protein P= 1
L(P) ∑p∈PL(p);

L(x) =Number of amino acids per protein or peptide x

While protein coverage in proteomics is defined as fraction
of amino acids of a protein covered by at least one peptide,
our proposed metric is closer to the definition of coverage
used in transcriptomics, for instance, fragments-per-kilobase-
per-million. Since the proteomics definition of coverage is
bound between 0 and 100%, it will not reflect repeated
coverage of the protein by distinct peptides and therefore
result in censoring at 100%. In contrast, the proposed metric
incorporates that knowledge and results in a ratio distribution
approximately following a log-normal distribution. Inspecting
the distribution of protein coverage ratios across the ZH2018
dataset showed a subpopulation of genes with high protein
coverage ratio (Fig. 1B) that originated from housekeeping
genes such as hemoglobin and actin (Table 1) indicating
proteolytic cleavage contaminations.
To distinguish real HLA ligands from proteolytic contami-

nations, we deconvoluted the two distributions (ligand and
contamination distribution) using an expectation-
Mol Cell Proteomics (2021) 20 100110 3
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FIG. 1. Protein coverage by class I HLA ligands. A, comparison of coverage for a representative gene (chromobox homolog 6, CBX6)
showing presentation hotspot (anchor amino acids in bold) and potential contaminant (hemoglobin alpha 2, HBA2) with characteristic peptide
ladders due to proteolytic degradation. Contaminations are colored in red while true HLA ligands are colored blue. B, distribution of protein
coverage ratios in ZH2018. Estimated Gaussian mixture model of contamination distribution shown in red and ligand distribution in blue. The
cutoff for assessment of contaminations at 1% false discovery rate is visualized as dashed line. C, distribution for peptide coverage ratio and D,
HLA ligand propensity with analogical modeling as before.

Quality Control for Identification of True HLA Ligands
maximization (EM) algorithm. The EM algorithm was repeated
5000 times to avoid local minima of the optimization. After
model fitting, we determined a cutoff for the protein coverage
ratio that distinguishes HLA ligands from proteolytic con-
taminations with an FDR of 1%. The threshold was deter-
mined as 4.312, which means that for such a protein on
average 4.312 distinct peptides cover each amino acid.
Proteins with a coverage ratio above the threshold are more
likely from the contamination distribution and only 1% of
proteins from the ligand distribution remain. All peptides
4 Mol Cell Proteomics (2021) 20 100110
derived from proteins above this coverage ratio will be flag-
ged as potential contaminations.
Although such a protein-centric approach is appropriate for

proteomics, immunopeptidomics analyses have a peptide-
centric focus, thus requiring additional metrics to further
disambiguate veritable HLA ligands from unspecific peptides.
Thus, in addition to the protein coverage ratio, we calculated
the peptide coverage ratio for each target peptide (p) as the
number of HLA class I peptides (q) that are assigned to the
same protein and overlap in their position with the target



TABLE 1
Top ten genes with highest protein coverage ratio in ZH2018

Gene Gene description
Protein coverage

ratio

HBA2 hemoglobin, alpha 2 52.78
HBA1 hemoglobin, alpha 1 52.78
HBB hemoglobin, beta 43.97
ACTB actin, beta 39.27
ACTG1 actin, gamma 1 39.06
ACTA2 actin, alpha 2, smooth

muscle, aorta
35.09

ACTG2 actin, gamma 2, smooth
muscle, enteric

34.84

ACTC1 actin, alpha, cardiac muscle 1 34.83

Quality Control for Identification of True HLA Ligands
peptide. Based on the assumption that proteolysis will
generate sample-specific peptide sequence ladders, target
and overlapping peptide were required to be identified in the
same sample. For the final ratio, sample-specific ratios were
averaged across all samples (S).

peptide coverage ratio for peptide p

= 1
card(S)∑s∈S

⎛⎜⎝ 1
L(p) ∑

q overlaps with p in s

L(q)
⎞⎟⎠

card(x) =Cardinality of sample set
Proteolytic Contamination Count PCC = { 1 if protein coverage ratio > 4.312

0 otherwise
} + { 1 if peptide coverage ratio > 2.874

0 otherwise
}

+ {1 if HLA ligand propensity > 11.924

0 otherwise
}

The sample-specificity constraint also reduces the effect of
nested HLA ligands derived from presentation hotspots.
Nested peptides might occur naturally due to consecutive
anchor amino acids. For instance, the leucine at second and
third amino acid positions of the A*02:01 ligand SLLDGFLATV
allows for the presentation of the shorter peptide LLDGFLATV
(14). More importantly, different HLA allotypes can generate
overlapping peptides in presentation hotspots (19) that could
be interpreted as potential contamination when considering all
peptides across the dataset for coverage determination
(Fig. 1A).
The peptide coverage ratio distribution from ZH2018 was

comparable to the protein coverage ratio distribution and a
threshold was estimated using mixture modeling as before
(Fig. 1C). The resulting threshold value for 1% FDR was 2.874,
which means that on average each amino acid is covered by
2.874 overlapping peptides averaged across all samples.
While the peptide coverage ratio should work well for
identification of contaminations that are detected
frequently, low-abundant contaminations with fewer de-
tections pose a problem. To extend applicability to this set
of peptides, a third metric was used that was based on
the propensity of being an HLA ligand. This property is
best reflected by models trained on HLA ligand data rather
than on in vitro binding data alone. Thus, we used the
NetMHCpan-4.0 ligand (EL) rank score (20) for assessment
of HLA ligand propensity. This score was calculated as
the minimal score across all six HLA allotypes (H) of each
sample and further averaged across all samples (S) that
present the peptide.

HLA ligand propensity of peptide p

= 1
card(S)∑s∈Sminh∈H(s)Rank(p, h)

Again, distribution and threshold were determined as
described above resulting in a threshold of 11.924 at 1% FDR
(Fig. 1D). This means that all peptides with an average minimal
NetMHCpan rank of 11.924 or higher were marked as po-
tential contaminations.
Taking all three metrics into account, the proteolytic

contamination count (PCC) was computed by counting the
number of passing metrics.
To evaluate an appropriate cutoff for the PCC score, we used
the EC500 benchmark dataset annotated by two immuno-
peptidomics experts and reflecting a ratio of 1:5 between
peptides with and without PCC score (Table S1). These anno-
tations allowed to estimate performance metrics shown in
Table 2. A threshold of 1 (PCC ≥ 1) provided a balanced sensi-
tivity (85.7%) and specificity (93.3%), while a threshold of 2
(PCC ≥ 2) allowed to increase specificity to 99.5% at 51.2%
sensitivity. FordiscoveryofHLApeptide targets, thespecificity is
the primary concern since this metric indicates how many true
ligands could be identified. Sensitivity on the other hand
describes how many proteolytic fragments could be identified,
which is relevant to increase data quality but only a secondary
objective comparedwith the risk of losing relevant targets. Thus,
the threshold of PCC ≥ 2 was set for further investigations.
To experimentally evaluate the sensitivity of the proposed

contamination prediction, we inspected the GlyT98G dataset
Mol Cell Proteomics (2021) 20 100110 5



TABLE 2
Confusion matrices and performance metrics at different proteolytic contamination count scores

Peptide subsets and performance metrics PCC ≥ 0 PCC ≥ 1 PCC ≥ 2 PCC ≥ 3

Contamination marked as contamination (True Positive) 84 72 43 10
Ligand marked as contamination (False Positive) 416 28 2 0
Ligand marked as ligand (True negative) 0 388 414 416
Contamination marked as ligand (False negative) 0 12 41 74
Percentage of detected contaminations (Sensitivity) 100.00% 85.70% 51.20% 11.90%
Percentage of detected ligands (Specificity) 0.00% 93.30% 99.50% 100.00%

Table includes confusion matrices showing the number of peptides in each group (true/false positive and true/false negatives) as well as
performance metrics (sensitivity and specificity) for contamination assignment at different proteolytic contamination count (PCC) scores using
expert review benchmark EC500.

Quality Control for Identification of True HLA Ligands
containing eluting peptides from a T98G cell line using a mock
immunoprecipitation for which 59.6% of all peptides were
derived from keratins, immunoglobulins, or albumin. Deter-
mining the PCC score for each eluted peptide (Table S2)
showed that 62.8% were marked as proteolytic contamina-
tion, which is well in line with the 51.2% sensitivity determined
by the EC500 benchmark.
We further benchmarked the method using the external

AB2017 dataset. The peptides reported from the original
publication were annotated with the PCC score (Table S3).
The dataset included 16 monoallelic cell lines and negative
controls that were generated by immunoprecipitation with
beads lacking an HLA-specific antibody or by use of
untransduced cells. For 79% of these peptides (n = 22,017),
we were able to provide annotation. Inspecting the number of
proteolytic fragments for the negative control dataset showed
a fraction of 46.7%, which is in a similar range to the 62.8%
derived from the GlyT98G dataset. For the monoallelic cell line
samples, the overall fraction of contaminant peptides was
2.7% with values between 0.2% for A*24:02 and 14.5% for
A*68:02 (Fig. 2A).
To investigate if sample input has an effect on the number of

proteolytic fragments, we isolated peptides from one tumor
tissue divided in aliquots of increasing size. This experiment
showed a constant baseline level of proteolytic fragments
independent of sample input (Fig. 2B).
To elucidate if certain tissues were more affected by

proteolysis than others, we determined the number of pro-
teolytic contaminant peptides from pan-class I specific
antibody (W6/32) preparations presented in ZH2018
(Fig. 2C). For cell lines as well as liquid cancers, we
observed around 50 contaminant peptides (1%), which is in
line with the findings in AB2017. For primary solid tissues,
the number was twice as high with about 80 fragments for
cancer and healthy tissues. Elevated levels were observed
for digestive organs such as the stomach, esophagus, and
digestive glands, with 180 and 470 contaminations on
average for cancer and normal tissues, respectively. Non-
digestive normal samples, in particular derived from gran-
ulocytes, also showed an elevated number of proteolytic
fragments with a median of 440 contaminations.
6 Mol Cell Proteomics (2021) 20 100110
Chromatographic Carryover

In order to establish effective LC-cleanup protocols and
monitoring strategies that avoid carryover of analyte be-
tween subsequent samples, we inspected the extent and
sources of carryover in our chromatographic system by
acquiring consecutive blank injections (Fig. 3A). Typically,
the most abundant peptides, such as prevalent house-
keepers, were most prone to carryover in subsequent ex-
periments as demonstrated by the high percentile ranks of
MS1 peak areas shown in Figure 3, B and C. Despite the
fact that this may only marginally affect relative quantifi-
cation among samples of a specific HLA allotype (e.g.,
immunoprecipitations with the A*02-specific mAb BB7.2),
carryover must nevertheless be rigorously minimized to
avoid contamination among samples expressing different
HLA types as well as carryover of sample specific pep-
tides, e.g., tumor-associated peptides carried over into
normal samples. These qualitative and quantitative data
from blank injections after different flushing regimens were
used to guide protocol design (Fig. 3D). The experimental
checks for carryover were routinely conducted as part of
system suitability testing (SST) prior to sample acquisition
using identical LC-MS methods as succeeding analytical
runs.
To illustrate the detrimental effects that the observed

carryover might have, we performed a simulation using
monoallelic cell line data of HLA-A*24:02 and B*44:03 from
AB2017. Following the carryover characteristics that we
observed in our system (Fig. 3A), we computationally added
the 6% most abundant peptides from the A*24:02 to the
B*44:03 data, thus assuming consecutive acquisition of
A*24:02 and B*44:03 cell lines with omission of adequate LC
cleanup protocols in between. We compared the sequence
logos of the original B*44:03 dataset (Fig. 3E) with the
simulated dataset (Fig. 3F). While for B*44:03 glutamate is
the preferred anchor amino acid in the second position, the
simulated dataset shows reduced information content with
tyrosine being wrongly enriched as a secondary anchor due
to the carryover from A*24:02. Thus, without controlling for
carryover, spurious training data might be generated and
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FIG. 2. Contamination analyses-based proteolytic contamination count PCC ≥ 2. A, proteolytic fragments observed in monoallelic cell
lines of AB2017 for different HLA alleles with low frequency of contamination on average but substantial increase in HLA-A*68:02. B, proteolytic
fragments as a function of sample input (tumor tissue weight) for lung cancer adenocarcinoma tissue showing low constant baseline levels of
contaminations. C, number of proteolytic fragments in population-scale immunopeptidome dataset ZH2018 aggregated according to tissue
highlighting three groups of degree of contamination: low (cell lines and uncultured liquid cancers), medium (solid tissue), and high (digestive
organs and healthy liquid tissue).

Quality Control for Identification of True HLA Ligands
misleading conclusions would be drawn from this data with
regard to HLA-binding characteristics. While the observed
effect shown here serves as an example, carryover is
system-specific and needs to be addressed dependent on
the individual system in use.
In-Source Fragmentation

An example of potential misinterpretation of immunopepti-
domics data due to in-source fragmentation during electro-
spray ionization is the peptide TP53189-197 (APPQHLIRV)
Mol Cell Proteomics (2021) 20 100110 7
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FIG. 3. Peptide carryover observed after a single nanoLC-MS run of a representative pan-HLA class I (W6/32) peptidomics sample. A,
carryover peptide IDs identified in database search of blank runs performed subsequently to the sample analysis. B, for 16 carryover peptides
retained until Blank #3 different characteristics are shown including the percentile of MS1 peak area, retention time, prevalence in ZH2018
samples, and HLA allotype. C, MS1 peak areas and their percentile for baseline sample (blue) and the 16 carryover peptides (red). D, reduction of
MS1 signal intensity for carryover peptides across repeated blank runs shown for all 16 peptides and fitted (red line) using an exponential decay
model resulting in log10Area(t) = 5.21 + 4.60e−0.72t. E, sequence logo of HLA-B*44:03 for peptides from AB2017. F, sequence logo for simulated
data assuming carryover from HLA-A*24:02 into B*44:03. The 6%most abundant peptides from the A*24:02 data were computationally admixed
to B*44:03, simulating consecutive LC-MS analysis without intermittent LC cleanup.

Quality Control for Identification of True HLA Ligands
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FIG. 4. In-source fragmentation. A, example of a source fragmentation of the TP53-derived A*02:01 ligand TP53187-197 (GLAPPQHLIRV)
resulting in concomitant detection of the truncated C-terminal source fragment APPQHLIRV on an HLA-A*02 specific immunoprecipitation using
the antibody BB7.2. As the fragment fulfills the consensus motif for B*07 and B*35, it may be misinterpreted as a veritable HLA ligand. B,
example of a peptide that can occur both as a source fragment and as a veritable HLA ligand. Extracted MS1 ion chromatograms are shown for a
pan-HLA class I immunoprecipitation using the antibody W6/32 on a sample expressing two restricting allotypes (A*03:01 & C*04:01). The short
variant LFDHAVSKF was detected as a source fragment of the A*03:01 ligand at experimental RT 31.2 and as a veritable C*04:01 ligand at
experimental RT 35.6. A and B, the main panel summarizes precursor ion intensities of the two peptide species over retention time. The cutouts
provide the underlying MS1 extracted ion chromatograms including precursor m/z. C, frequency distribution of N-terminal amino acid loss by in-
source fragmentation. D, sequence logo of peptides showing loss of one N-terminal amino acid by source fragmentation. E, sequence logo of
peptides with loss of two amino acids.

Quality Control for Identification of True HLA Ligands
derived from tumor protein p53 (Fig. 4A). This peptide is a
source fragment of the HLA-A*02:01 ligand TP53187-197
(GLAPPQHLIRV), which has been described as potential tu-
mor target (21). The proline in position 2 of TP53189-197
suggests that it belongs to the B07 supertype (22), which is
also reflected by the prediction score for members of this
supertype (0.43 NetMHCpan4.0 EL rank for HLA-B*07:02 and
0.51 for HLA-B*35:03). Accordingly, TP53189-197 has been
Mol Cell Proteomics (2021) 20 100110 9
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suggested as an HLA-B*07 target in a study using predictive
approaches and binding affinity assays (23). We identified the
fragment on the glioblastoma cell line T98G (Fig. 4A), which is
positive for HLA-A*02:01 and B*35:03. While this could be
interpreted as proof of peptide presentation, the peptide was
only detected in the immunoprecipitation that used the
HLA-A*02-specific antibody BB7.2 and not the concomitantly
used pan-class I-specific antibody W6/32, thus providing
strong evidence for A*02:01 restriction. This finding is also
supported by the IEDB assignment as HLA-A*02:01 based on
Jensen et al. (24).
Fragmentation of peptides is easily detectable by searching

for peptide pairs where one peptide sequence (source frag-
ment) is a substring of a longer sequence (precursor
sequence) and both peptides are coeluting. We determined
the absolute retention time difference (deltaRT) between the
apexes of the extracted ion chromatograms of the mono-
isotopic peaks of both peptides. To account for slight varia-
tions in apex estimation, peptides with deltaRT below 0.1 were
considered as coeluting.
While this run-wise detection of cases of source fragmen-

tation is relatively straightforward, single occurrences of this
event do not necessarily disqualify a peptide from being a
ligand. Since most gradients are optimized for high and uni-
form identification rates, elution of nested sets of HLA ligands
might occur in close temporal proximity leading to small del-
taRT and thus potentially to false assignment of source frag-
mentation. In other cases, the same peptide sequence might
be a source fragment as well as a genuine HLA ligand,
depending on sample HLA type.
To address such challenges, we determined the source

fragmentation fraction (SFF) for a peptide p as the proportion
of LC-MS acquisitions in which p was detected as source
fragment of any precursor peptide q relative to all experiments
R where p was identified.

Source Fragmentation Fraction of peptide p

= 1
card(R)∑r∈R{

1 if |RT(p, r)−RT(q, r)| < 0.1

0 otherwise

If the peptide was annotated as a source fragment in less
than 26.4% of all identifications, i.e., SFF<0.264, the peptide
was not considered as a contamination in general. This
threshold was derived as described above by mixture
modeling and 1% FDR threshold estimation.
One example of a peptide that can occur as a veritable HLA

ligand as well as a source fragment is ACSL482-90
(LFDHAVSKF) from acyl-CoA synthetase long-chain family
member 4. The source fragment is derived from the ligand
ACSL481-90 (KLFDHAVSKF) that can be presented by HLA-
A*03, HLA-A*32, and HLA-B*15. ACSL482-90 was found as
source fragment in the ZH2018 dataset for two donors at an
average globally aligned retention time (gRT) of 43 (Table S4).
However, ACSL482-90 was in total identified on 53 donors. The
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fact that these donors are predominantly C*04 positive and
the elution at a different gRT of 47 indicated that in these
cases the peptide is not a source fragment but rather a C*04
ligand. This was reflected by a source fragmentation score
below threshold (SFF = 0.002). We even identified one sample
positive for HLA-C*04 and HLA-A*03, which presented both
versions of ACSL482-90, the C*04 ligand at 47 gRT equivalent
to an experimental retention time (eRT) of 35.6 min and the
source fragment of the A*03 ligand at a gRT of 43 (eRT at
31.2 min, see Fig. 4B). Thus, in general the peptide cannot be
considered a contamination.
In order to validate our method using an external dataset,

we used the SFF score to annotate all the identified peptides
from the AB2017 dataset (Table S3) and found 45 identifica-
tions flagged as source fragmentations representing 0.2% of
all IDs. Since in-source fragmentation is dependent on the
particular instrument and its settings, we looked for peptides
coeluting in the original raw data with peptides with N-terminal
extension of one or two amino acids. This returned 43 pep-
tides, and 31 among them were flagged by the SFF score. This
overlap of 72.1% between the datasets underlined the
generalizability of the described approach to other datasets.
Inspecting the characteristics of source fragmented pep-

tides in ZH2018 revealed that the loss of one or two amino
acids was the most prevalent case (Fig. 4C). The sequence
logo of these peptides showed an enrichment of amino acids
with positively charged side chains (Arg, Lys, His) for the
C-terminal part of the peptide with fragmentation sites
enriched most significantly for proline or tyrosine residues
(Fig. 4, D and E). This finding is in line with the established
“proline effect” in CID, which arises due to a particularly low
threshold energy for the cleavage of the amide bond N-ter-
minal to proline and is enhanced by a high proton affinity of
the C-terminal proline-containing fragment and a low proton
affinity of the N-terminal fragment (25). Accordingly, the N-
terminal fragments observed in our data show enrichment of
amino acids with low proton affinity (Gly, Ala, Val), whereas
high proton affinity amino acids (Arg, Lys) are depleted.

False-Positive Identifications

Although false-positive identification might be addressed
computationally, final experimental validation of the peptide
sequence is mandatory for moving such peptides forward into
clinical pipelines, especially if search spaces beyond the
standard reference proteome are considered (26). Spectral
confirmation by acquisition of MS/MS of a synthetic peptide
counterpart and subsequent comparison with the eluted MS/
MS spectra provides a first level of evidence. Yet, due to mass
ambiguities, the likelihood of high spectral similarity for
spectra from different peptides increases the more similar the
peptides are.
One example for this is the peptide EKPHSEAGTAF, a pu-

tative proteasomally spliced peptide, which we aimed to verify
on a lymphoblastoid cell line after initial identification in a



FIG. 5. Peptide sequence verification. Experimental disambiguation of conflicting peptide sequence annotations by spike-in of stable
isotope-labeled internal standard (SIL-) peptides. A, differentially labeled SIL counterparts for two possible spectral annotations were spiked into
an HLA peptidome sample previously found positive for the spectrum in DDA-MS and analyzed by targeted MS (PRM). For the putative pro-
teasomally spliced sequence for which the IS elutes at RT 30.5 min, no endogenous unlabeled signal was detected. For the alternative sequence

Quality Control for Identification of True HLA Ligands
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customized database search containing proteasomally
spliced peptides reported by Liepe et al. (27). While spectral
similarity was supportive, a subsequent coelution experiment
using a SIL internal standard peptide did not confirm coelution
of the natural and labeled isotopologues. However, an
endogenous signal was present at a different retention time.
Since glutamate and acetylated serine have identical mass,
the S-acetylated canonical peptide SacetylKPHSEAGTAF
(PKM2-12) was also a candidate for this signal. Of note, this
peptide was previously described in HLA peptidomics ana-
lyses of U937 (histolytic lymphoma cell line) (28), HCC1143,
and fibroblast cell lines (28), while the acetylation site was
confirmed in proteomics analyses by Jacome et al. (29).
Synthesis of differentially labeled SIL peptides and coelution
confirmed that, in our data, only the S-acetylated canonical
peptide PKM2-12 was detected (Fig. 5A). To control for iso-
topic purity of the labeled internal standard, quality control
analyses were performed by direct infusion MS (Fig. 5, B and
C). While in this particular example omission of a variable
modification from the search space resulted in confirmation
bias, any ultralarge protein database search strategy needs to
carefully address this issue since FDR-controlled database
search is hampered by inclusion of all conceivable mecha-
nisms of peptide biogenesis and modification,
e.g., posttranslational modifications, sequence artifacts,
single-nucleotide polymorphisms, cryptic peptides originating
from small open reading frames or other sources not covered
by the reference proteome. While computational approaches
have been developed to reduce false positives (30), final
confirmation can only be obtained through experimental vali-
dation based on fragment spectrum identity and matching
retention time.
In order to streamline peptide ID confirmation, we estab-

lished a two-step pipeline consisting of in-house synthesis of
SIL-labeled peptides and automated spectral comparison
followed by coelution using internal standard triggered parallel
reaction monitoring LC-MS (IS-PRM) (31). In the first step
synthetic reference spectra acquired for all relevant fragmen-
tation modes and collision energies were shifted in silico to
compensate for the mass offset introduced by SIL labeling
and then compared with the eluted spectra considering
spectra with a spectral correlation of above 0.865 as positive
match. Peptides passing this initial filter for spectral similarity
were subjected to IS-PRM coelution LC-MS using SIL pep-
tides spiked into the sample for final confirmation of peptide
identity. While IS-PRM enables the evaluation of >100 pep-
tides in a single run without requiring time-consuming method
setup and RT scheduling, the initial step of spectral validation
annotation corresponding to an S-acetylated canonical peptide, coelution
as peptide identity confirmation. The lower panel summarizes MS2 fragm
The cutouts provide the underlying MS2 extracted ion chromatograms. B
in direct infusion MS1 QC runs. Labeled peptide was detected at signal in
blue (M), purple (M + 1), brown (M + 2), whereas no discernible signal w
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is an effective means to limit the number of peptides in coe-
lution to the most relevant candidates. This is particularly
relevant in case the initial search was performed on a large
search space and/or using relaxed FDR filtering.
Synthetic peptides are essential for experimental validation;

however, their utilization as internal standards in LC-MS or as
substrates for validation assays, e.g., in vitro proteasomal
digestion can introduce another pitfall in the form of synthetic
artifacts. For SIL internal standard peptides isotopic impurities
can pose a significant problem, which may lead to false-
positive peptide ID validation if no diligent inspection of
negative controls is performed. Highly pure commercially
available SIL amino acids and peptides are typically specified
at >99% isotopic enrichment. However, the high sensitivity
and dynamic range of targeted mass spectrometry (32) can
lead to detection of trace impurities of unlabeled isotopomers
derived from the internal standard and misinterpretation as
endogenous signal. Control runs should be performed using
adequate non-HLA peptidome matrix as carrier to achieve
similar signal intensities of the internal standard as in analytical
runs while precluding the endogenous presence of matrix-
derived unlabeled peptide. In case of detection of isotopic
impurities in control runs (Fig. 6A), peptide validation by
coelution may still be achieved by quantitative evaluation of
the endogenous peptide signals normalized to internal stan-
dard and background subtraction. However, in our experience
trace contamination of SIL peptides with unlabeled iso-
topologue was specific for single lots of SIL amino acids and
was remedied by exchanging the affected lot (Fig. 6B). Follow-
up analysis of one isotopically impure synthetic peptide
product traced the isotopic impurity back to the original SIL-
AA lot as opposed to later contamination during coupling to
resin by a different provider: Isotopomers of the sequence
were synthesized using either SIL lysine coupled to resin by a
second service provider for C-terminal labeling (Fig. 6C, left
panel) or the free SIL lysine directly obtained from the vendor
for internal labeling (Fig. 6C, right panel). The presence of
isotopic impurity in both synthetic products suggests that the
trace impurity was already present on the originally obtained
SIL lysine lot.
For synthetic substrate peptides used in in vitro assays,

truncated synthesis by-products derived from incomplete
couplings may also lead to misinterpretation of artifacts. One
potential example is the peptide KLVVGAVGV suggested as
result of proteasomal splicing of KRAS G12V (33). During our
attempt to reproduce the experiment by synthesizing the
precursor peptide KRAS2-35 G12V used for in vitro proteaso-
mal digestion in Mishto et al. (33), we observed truncated
of SIL internal standard and endogenous signal was observed, serving
ent ion intensities of the different peptide species over retention time.
and C, quality control of spiked SIL-peptides for trace isotopic impurity
tensities >1e7 (arbitrary units) with full isotopic envelopes displayed in
as detected for the unlabeled isotopologues.



FIG. 6. Synthetic artifacts. A–C, isotopic impurities of synthetic stable isotope-labeled (SIL-) peptides. A, MS2 extracted ion chromatograms
of two SIL peptides analyzed by targeted MS. While the SIL peptide with C-terminal labeled valine (V*, 13C5

15N, >99%) does not show any trace
signal in the unlabeled channel (left panel), the peptide with C-terminal labeled phenylalanine (F* 13C9

15N, >99%) shows unlabeled signal at
about 1000-fold lower intensity than in the labeled channel. B, comparison of two batches of SIL-peptide synthesis performed with different lots
of labeled phenylalanine. The first synthesis batch (upper panel) shows prevalent detection of isotopic impurities for SIL-F* peptides. Synthesis
of a new batch of SIL peptides with a new lot of SIL-F* showed no isotopic impurities (lower panel). C, tracing the origin of isotopic impurity for a
SIL-lysine labeled peptide. Two isotopomers of the same sequence were synthesized using either C-terminal labeling (left panel, SIL-K*
13C6

15N2, >99%, loaded to resin at service provider) or internal labeling with the same SIL-K* lot directly obtained from the vendor (right panel).
D, truncated by-products of KRASG12V2-35 peptide synthesis. Shown are MS1 extracted ion chromatograms of quality control direct infusion
MS for the three most abundant synthetic products. The two most prevalent by-products show incomplete coupling in an internal -VVV-
sequence previously described as the site of proteasomal splicing.

Quality Control for Identification of True HLA Ligands
versions of KRASG12V2-35 that contained one (KRASG12V2-6/

9-35) or two (KRASG12V2-6/8-35) instead of three consecutive
valines (TEYKLVVVGAVGVGKSALTIQLIQNHFVDEYDPT) as
the most abundant synthesis by-products (32% and 6% of the
target product intensity, respectively) (Fig. 6D).
This observation can be explained by the decrease in

coupling efficiency with growing length of the peptide (34)
but also by the fact that residues with beta-branched side
chains such as isoleucine, valine, or threonine induce
incomplete coupling due to steric hindrance (35). Further-
more, poly-valine stretches in particular are described to
result in deletion peptides (36). Thus, using this nonpurified
synthesis product for in vitro proteasomal digests would not
allow to discriminate whether the proposed peptide is
Mol Cell Proteomics (2021) 20 100110 13
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derived from the incomplete coupling artifact or from a
splicing mechanism.
DISCUSSION

With the increased importance of immunopeptidomics for
target discovery and as training data for HLA ligand prediction,
the relevance for diligent quality control grows. Here we pre-
sented common pitfalls along the immunopeptidomics pipe-
line that can introduce false ligands and described how we
addressed this computationally and experimentally in our
target discovery platform XPRESIDENT. Sample preparation
might introduce proteolytic fragments mimicking HLA ligands,
which can be assessed by in silico methods. Chromato-
graphic procedures pose the risk of peptide carryover be-
tween samples, which can be monitored by blank runs. In
addition, electrospray ionization MS generates in-source
fragments that can be identified computationally. And finally,
the peptide sequencing is prone to false-positive identifica-
tions that can only be uncovered by experimental sequence
validation through synthetic standards.
The proposed statistical method for determining proteolytic

contaminations is applicable to any larger immunopeptido-
mics dataset and aims to capture the hallmarks of this
particular type of contamination enabling a generalizable
approach for filtering. Although it has to be pointed out that
the thresholds described here should be recalibrated for other
datasets, this method provides a valuable metric for assessing
the quality of the HLA preparation. The method incorporates
three metrics that allow to differentiate peptides of proteolytic
origin from other contaminations. This can guide adjustments
in experimental protocols, for instance, if the underlying cause
is insufficient protease inhibition. While the most predictive
metric of the three is HLA-binding propensity, the method can
also be applied if no ligand prediction model exists for the HLA
dataset under investigation. Novel prediction models for well-
studied HLAs may also benefit from this approach since any
contamination filter solely relying on existing peptide binding
models will limit the ability of the new model to capture pre-
viously undescribed binding characteristics. To evaluate the
method, it was applied to publicly available data of 16 mon-
oallelic cell lines. This data showed a very low number of
proteolytic fragments underlining the overall good quality of
the data. One exception was found for the HLA-A*68:02
transfected cell line, which had a significantly higher number
of proteolytic contaminations. While this will not pose prob-
lems for determination of sequence motifs or simple predic-
tion methods such as PSSMs, other methods might
incorporate the signal of the proteolytic peptide species, in
particular deep-learning networks that allow to capture less
frequent patterns in the data. Yair-Sabag et al. (37) described
HLA-B*27:05 peptides with P2-lysine anchor residues with a
prevalence of 1%. Determination of such rare peptide
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subpopulations will be severely affected by the presence of
contamination, thus removal of these peptides as described
herein is highly relevant. Furthermore, due to the fact that
monoallelic datasets are usually used as benchmarks, the
fraction of contamination will result in substantial underesti-
mation of prediction performance. This effect is even more
pronounced in cases were test sets are depleted for peptides
already used for training. While keeping test and training sets
disjunct is best practice in machine learning, in case of
monoallelic cell lines such filtering will remove most of the
relevant allotypical peptides enriching the test set for
contaminations.
Inspection of the number of proteolytic fragments indicated

a tissue-dependent but otherwise constant baseline of con-
taminations. This means that the impact of contamination
grows with reduction of the presented peptide repertoire, for
instance, due to lower HLA expression or through use of
allotype-specific antibodies in immunoprecipitation. The tis-
sues that showed the largest number of contaminations were
digestive organs and blood cells, in particular granulocytes.
Both cases were expected due to the secreted peptidases
and the expressed granular enzymes, respectively. Thus, for
these samples the measurement sensitivity or downstream
analyses such as normalization could be affected. Search
strategies might try to overcome the limitations of the no-
enzyme search protocol used for immunopeptidomics by
focusing only on the patient-specific HLA allotypes (38). Yet,
in such an approach contaminations might not be identified
and yield false-positive identifications.
Investigation of in-source fragmentation showed that pep-

tides are usually truncated by one or two amino acids if many
positively charged residues exist in the C-terminal end. While
the fraction of thesepeptides is generally very low, annotationof
these particular events is nevertheless essential if immuno-
peptidomics data is used for target discovery. TheHLA-A*02:01
ligand GVYDGREHTV is a known cancer target derived from
MAGE-A4 (39). If the peptide is presented on cell lines with high
HLA expression, the likelihood of in-source fragmentation in-
creases and the fragments VYDGREHTV and YDGREHTV can
be observed. The first fragment is considered a strong binder
based on NetMHCpan (rank=0.389) and therefore could be
mistaken as novel HLA-A*24:02 cancer target. In vitro validation
experiments using T2 peptide loading would likely confirm
binding and T-cell recognition as immunogenicity should
theoretically be high if the peptide is never presented by HLA-
A*24:02 in vivo. Thus, invalidation of the targetwouldmost likely
only happen during efficacy screenings when a lead molecule
has already been developed.
Although the described computational methods are

essential in preclinical target discovery and selection, the final
sequence confirmation before moving forward with peptides
into target validation must be performed experimentally.
Providing such validation as high-throughput method allows
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to work with lower stringency in target selection providing the
means to accurately identify lower abundant or cryptic peptide
species of noncanonical origin that may serve as shared tar-
gets for development of adoptive cell therapies, vaccines, or
bispecific T cell engaging receptors. We described the
necessary procedure and pointed out cases of misidentifica-
tion. Any frequencies reported on novel peptide repertoires
need to go through such a validation scheme in order to
provide reliable estimates because even with standard FDR
estimation at 1%, actual FDRs can be as high as 29% (14).
Immunopeptidomics is a field of central relevance for the

development of target-specific immunotherapies and has
experienced a rapid growth of publicly available datasets
coinciding with an expanding scope of proposed target clas-
ses. We herein outline potential pitfalls that should be kept in
mind when acquiring and analyzing such data. The compu-
tational and experimental approaches described in this
manuscript allow differentiation between false and true HLA
ligands. Identification of true ligands for therapeutic develop-
ment is a critical step toward increasing the chances of clinical
success.
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