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A B S T R A C T

Many data mining methods have been proposed to generate computer-aided diagnostic systems, which may
determine diseases in their early stages by categorizing the data into some proper classes. Considering the
importance of the existence of a suitable classifier, the present study aims to introduce an efficient approach
based on the World Competitive Contests (WCC) algorithm as well as a multi-layer perceptron artificial neural
network (ANN). Unlike the previously introduced methods, which each has developed a universal model for all
different kinds of data classes, our proposed approach generates a single specific model for each individual class
of data. The experimental results show that the proposed method (ANNWCC), which can be applied to both the
balanced and unbalanced datasets, yields more than 76% (without applying feature selection methods) and 90%
(with applying feature selection methods) of the average five-fold cross-validation accuracy on the 13 clinical
and biological datasets. The findings also indicate that under different conditions, our proposed method can
produce better results in comparison to some state-of-art meta-heuristic algorithms and methods in terms of
various statistical and classification measurements. To classify the clinical and biological data, a multi-layer ANN
and the WCC algorithm were combined. It was shown that developing a specific model for each individual class
of data may yield better results compared with creating a universal model for all of the existing data classes.
Besides, some efficient algorithms proved to be essential to generate acceptable biological results, and the
methods' performance was found to be enhanced by fuzzifying or normalizing the biological data.

1. Background

Classification is a process of placing samples in the related groups.
The clinical data classification which is an important step in the clinical
research, can be used to diagnose the seriously life-threatening diseases
such as heart diseases or diabetes [1].

Based on the total number of samples, the clinical datasets are di-
vided into two types [2]: balanced and unbalanced. Each class has an
almost identical number of samples in the balanced datasets in contrast
to the unbalanced datasets, in which the number of samples of every
class is not alike. To deliver better results, a classifier inserts samples
into the class with the largest number of samples. Since the produced
model is unsuitable for classes with a small number of samples, learners
will have problems with classes that have small numbers of samples. To
deal with such limitations, our proposed algorithm, ANNWCC, can not
only generate a specific model for every one of the existing classes but

also apply to both the balanced and unbalanced data with several dif-
ferent class sizes.

There are many methods and algorithms which can be applied to
solve the problem of classification. A learner such as an ANN, for ex-
ample, can be applied to find the connection among samples in a spe-
cific class. Also, the researchers have proposed many new approaches to
training artificial neural networks and have shown the usefulness of
their approach in data classification. Leema et al. used the particle
swarm optimization (PSO) algorithm to train the neural networks. For
this purpose, first they applied their method to three datasets obtained
from the University of California Irvine (UCI), then compared their
acquired results with those delivered by the previously introduced
methods. Although their proposed method seemingly had better per-
formance compared to the other existing methods, it appears that the
state-of-art meta-heuristic optimization algorithms had the ability to
enhance its performance [3] Masoudi-Sobhanzade et al. introduced a
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new optimization algorithm and showed that their optimization algo-
rithms can outperform other algorithms [4].

In the present study, the works related to the clinical data classifi-
cation fall into several main categories, including:

i) The Supervised machine learning approaches: These methods
aim to develop a model based on the machine learning methods
such as ANNs [5], support vector machines [6], Bayesian networks
[7] etc. To generate the model, first the data are divided into two
training and testing sets, then the machine is trained and validated
using the training and testing sets, respectively. Although the
mentioned methods produce remarkable results, the state-of-art
techniques can enhance their performance. Our proposed method,
which is a combination of an ANN and the WCC algorithm, belongs
in this class.

ii) The Unsupervised machine learning approaches: In this class of
related works, unlike the first group, the existing data do not in-
clude any labels; and based on the relationship among data, they
are classified into different categories. In this category, The K-
nearest neighbour (KNN) is one of the most popular techniques used
for clustering [8], Our proposed method is also fall into this class.

iii) The Semi-supervised machine learning approaches: In the third
group of machine learning techniques, some of the existing data
include label whereas others not. A combination of supervised and
unsupervised methods is usually employed for generating a model
[9]. The ensemble techniques may also function properly in this
category [10].

iv) The Heuristic-based approaches: This class of related works
searches for some connections among the existing data and arranges
data in groups using a heuristic algorithm. An efficient algorithm,
proposed based on Gauss-Newton [11], a [12] combination of Ex-
pectation maximization (EM) and principal component analysis
(PCA) [13], and an improved ReliefF algorithm [14], are several
instances of works that belong to the fourth group. Although the
mentioned methods have big advantages over the other ones and
produce acceptable results, they have low performance compared
with the meta-heuristic methods [15].

In order to present a suitable computer-aided diagnostic model, a 3-
layer architecture based on artificial intelligence has been presented
[16]. In this architecture the data received from the sensors, are clas-
sified in two categories of healthy and suspicious and if suspicious, fi-
nally the doctor will be informed for further examinations [16]. The
suggested architecture, requires efficient methods for data classifica-
tion, whose efficiency in suspicious case diagnosis could be enhanced
with ANNWCC.

To ease the Identification of disease-causing genes a tool named GPS
has been introduced, whose main job is to prioritize and detect the
patients genes [17]. To detect the most important disease-causing
genes, this tool implements functional linkage networks. The procedure
first uses HIPPIE datasets and various algorithms to examine different
gens, then the candidate genes are prioritized. Finally, the classification
of prioritized genes is done based on scoring schemes [17].

TRIZ article has also presented a method for choosing promising
genes, which is able to detect the genes that have the most biological
relevance with the disease [18]. For formulation, TRIZ makes use of
optimization search operators along with modified BAT algorithm. In
this method, rMRMR is used as a filter approach, while SVM and MBA
are used for classification approach. Hence, not only does it give a wide
coverage in gene search space, it also finds the interaction between
them [18].

To cure cancer patients, classified studies of cancer subgroups is
required. In article [19], to classify the cancer molecular subtypes, in
addition to SVM algorithms, optimization algorithms have also been
used. The findings show efficient subsets obtained from miRNA and
mRNA which are considered as diagnostic biomarkers and can classify

molecular cancer groups [19].
In order to carefully study the protein structure, which is of most

important biological macromolecules, a step-by-step classification al-
gorithm has been presented [20]. Instead of classes related to the pri-
mary structure of proteins, this algorithm uses spatial configuration of
proteins by predicting the structural classes of the secondary structure
of proteins. Thus, extracting features from secondary structure series
leads to a more accurate classification than previous methods [20].

Since the collected data are of the utmost importance in the field of
biology, and so are the studies which should be conducted based on
these data [21,22], some related works have made efforts to generate
the clinical and biological datasets [23–26]. Despite the existence of
many datasets in the field of biology, the data pre-processing and their
missing values [27–29] remain a challenge [30]. In addition to the cited
literature works, some other works have investigated different methods
from various perspectives [31,32] and discussed their advantages and
disadvantages as well as limitations [33,34]. Such studies give a few
new directions for future reference.

The method suggested in this article is a method to classify the
clinical and biological datasets. Employing the presented classification
method in above-mentioned articles, could lead to detection of prob-
able biomarkers, which is more reliable than other methods.

The biggest weakness of the methods introduced in the above-
mentioned studies is their low performance based on the classification
criteria. To address such a limitation, the current study proposes a
method, named ANNWCC, which is a combination of a multi-layer
perceptron artificial neural network (ANN) and the world competitive
contests (WCC) algorithm ANNWCC incorporates several steps, in-
cluding: (i) the data pre-processing, in which the mentioned biological
data are normalized or fuzzified and then passed to the learner, (ii) the
data separating, in which the data are categorized and put in the cor-
responding groups according to the total number of distinct labels, (iii)
the model generating, in which the proposed approach (ANNWCC),
unlike the other methods that have developed a universal model for all
of the data classes, generates a specific model for every individual
group of data, and (iv) the data classifying, in which a sample is placed
in the group with a minimum value of error between the sample and the
group's model. If the values of error between a sample and three models
are 0.01, 0.002, and 0.03, respectively, the sample will be placed in the
second class.

The proposed method uses a multi-layer artificial neural network to
generate a classifier model. ANNs, inspired by the biological neural
network systems, are computational models that consist of several
neurons connected to other neurons via synapses. The role of the sy-
napses is to transmit signals from a neuron to another. An ANN is a
framework or an algorithm, which can be applied to the machine
learning practices such as the biological data classification [35]. Fig. 1
shows an example of ANN which includes two hidden layers, which are
those between the input and output layers.

As can be seen from Fig. 1 (where B represents bias) there are two
neurons in each hidden layer. The output of a neuron can be calculated
using Eq. (1):

= +
=

Oi j Wk j Bj, ,
k

n

1 (1)

where Oi,j is the output of the jth neuron in the ith hidden layer, B and
W are the bias and edge weights respectively, and Wk,j is the weight of
the edge (synapse) between the kth neuron in the (i-1)th hidden layer
and the jth neuron in the ith hidden layer.

Training of an ANN, in which the values of synapses or edges are
determined, is a non-deterministic polynomial (NP) problem. In the
case of these problems, it is not possible to find an optimal solution in a
polynomial-time order and for this reason, the heuristic and meta-
heuristic methods such as the optimization algorithms are applied to
the train of ANN training [4]. WCC, which has been inspired by the
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rules of human sports, is an optimization algorithm [36] with a meta-
heuristic search strategy and shows a high level of performance com-
pared to other optimization algorithms. The current study formulates
the WCC algorithm to the training of the ANN problem and investigates
and its contribution to classify of clinical and biological data.

The introduced method of ANNWCC can be applied in the third
layer of the above-mentioned architecture.

2. Methods

ANNWCC, whose framework has been depicted in Fig. 2, is being
applied at several stages. In the first step, the data pre-processing is
carried out on a biological dataset. Normalization, in which the data of
the groups are changed in the same range using Eq. (2), and fuzzifi-
cation, which determines the degree to which each datum belongs to a
group (Eq. (2)), are used at the data pre-processing stage.

= + ×nrvi a vi vmin b a
vmax vmin

( ) ( )
(2)

where a and b are the upper and lower bounds of [a, b], in which the
groups' data should be converted, and vi, vmin, vmax, and nrvi are the
current values that should be normalized, the minimum value of the
related group, the maximum value of the related group, and the nor-
malized value, respectively.

In Eq. (3), which is a fuzzification equation, AVG, vmin, vi, and fvi are
the average value of a group, the minimum value of a group, the current
value which should be converted into a fuzzy value, and the fuzzified
value, respectively. A group's data change in the range of [0,1] using
Eq. (3).

=fvi vi AVG
AVG vmin
( )

( ) (3)

In the next step, ANNWCC divides a clinical or biological dataset
into several groups based on the total number of class labels and puts
every sample in its relevant group. After dividing the datasets of each
class into training and testing sets, ANNWCC generates a model for each
class of data using an ANN.

The number of the hidden layers in an ANN and their neurons pose a
design challenge because the computation time will increase as the
number of the hidden layers goes up. Thus, there should be a trade-off
between these factors. Eqs. (4) and (5) show the way the number of the
hidden layers and their neurons are determined in ANNWCC:

=nh Nlog ( ) (4)

= < =nn log nn 1 i nh nn N( ), ,i i 1 1 (5)

Where N, nh, and nni are the number of neurons in the input layer,

the number of the hidden layers, and the number of neurons in the ith
hidden layer, respectively.

2.1. The WCC-based ANN method

The ANNWCC training which is the final step toward generating the
desired model, is an NP problem that cannot be solved within a rea-
sonable period of time. Studies have shown that using optimization
algorithms to train ANNs yields comparatively more acceptable results.
We use WCC for ANN training due to its remarkable performance in the
NP problems. By the approach employed in the present study, each
team is considered a potential model for the clinical data classification.
The number of players are computed using Eq. (6):

= × +
=

np nni nni nni( 1)
i

nh

1 (6)

Where np is the number of players on a team.
The score function which determines the suitability of a potential

answer, is defined using Eq. (7). As shown in this equation, if a parti-
cular model in a relative class assigns the input samples to the closer
output values, it will perform better than others. Eq. (7) is known as the
root mean squared error (RMSE).

=
=

y pi
n

RMSE ( )^2

i

n

1 (7)

where n, y, and pi are the number of samples in a class, the value as-
signed to a group's samples, and the predicted value of a sample, re-
spectively.

ANNWCC generates an individual model for each existing class.
After samples of a dataset are evaluated by every one of the created
models, a test sample is labelled with a class number that reflects the
closeness of its model's output to the mean of its class. Eq. (8) shows the
way a test sample is assigned to a class.

=L k o avg 1 k m{ | ( ) is a minimum for all }i i k k, (8)

where oi,k, avgk, Li, and m are the kth model's output for the ith test
sample, the average value of the training samples obtained from the kth
model in the kth class, the label determined for the ith test sample, and
the number of classes, respectively.

In the proposed method, parameters, including the total number of
teams, groups, and attempts that improve and fulfil the scoring func-
tion, should be defined at the beginning of the algorithm. Like other
optimization algorithms, WCC begins with the first population of the
potential answers named Teams. Every team, which is generated ran-
domly, is considered a candidate solution that determines the weights
of the ANN's edges. Then, the generated teams are randomly placed in
some groups which have equal numbers of teams. Teams compete with
each other and improve their scores (RMSE) through four operations.
The WCC algorithm consists of four operations, including shooting,
attacking, passing, and crossing which change the candidate solution or
the weights of an ANN and introduce some new potential answers. In
this study, shooting, attacking, passing, and crossing operations have
been formulated using Eqs. (9), (10), (11) and (12), respectively.

=
=

(Team (v1) Team (v2))
i 1

k

i j
(9)

Where k and Team are a random integer value between 1 and n (the
total number of the ANN's edges) and a candidate solution that de-
termines the weights of an ANN. v1 and v2 are two integer values be-
tween 1 and n.

=
=

(Team (rand(n)) rand(RNG))
i 1

k

i
(10)

Where RNG determines the range of values assigned to variables or

Fig. 1. An example of an ANN.
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edges of ANN.

= =
=

(Team (v1) Team (v2)&&Team (v2) Team (v1) )
i 1

k

i i i i
(11)

= +
=

(Team (m) Team (m 1))
i m

k

i i
(12)

Where k and m (k > m) are two integer values between 1 and n.
In the proposed algorithm, there is a referee who evaluates the ef-

fect of an action on a team and keeps scores. If an operation enhances
the team's score, the new changes will be accepted by that team;
otherwise, they will be ignored. Matches are held at two stages: 1)
group matches; and 2) elimination matches. At the end of the elim-
ination stage, a champion is selected as an answer to the problem. This
scenario, in which individual iterations are called seasons, will be re-
peated until an acceptable response is produced. The above-mentioned
operations which change a team's values have been illustrated in Fig. 3.
After holding the group competitions, teams with a higher score ascend
to the elimination stage and continue their competition. Like the
grouping stage, the elimination stage is held based on the mentioned
operations. At the end of the elimination phase, the remaining team is
considered to be the answer to the problem [36].

3. Results

We implemented a multi-layer perceptron ANN in the MATLAB
programing language on a system with 12 GB of RAM, corei7 CPU, and
Windows 10.1 operating system. To train an ANN, we used the WCC
algorithm, a discrete symbiotic optimization search (DSOS) [37], and
the PSO algorithms [38]. To carry out this experiment, we used 13
clinical and biological datasets obtained from the UCI Machine
Learning Repository [39]. Table 1 presents the following information
about these datasets: the number of references to each dataset (REF),
the name of the datasets, the number of instances (NOI), the number of
features (NOF) without considering the class labels, the number of
classes (NOC), the data types (DT), and the missing values (MV). The
Cleveland Heart Disease (CHD) dataset was prepared in two ways: as
the CHD with two classes (CHD2) and the CHD with five categories
(CHD5). The CHD2 was generated by merging the risk level of heart
disease and heart disease class labels. The Statlog Heart Disease (SHD)
dataset consists of two classes, indicating the presence and absence of
heart disease. The Pima Indian Diabetes (PID) dataset has been made up
of two groups of people those with diabetes and those without diabetes.
Hepatitis (HEP), Liver Disorders (LIV), Lung Cancer (LUNG), Parkin-
son's Disease (PAR), and the Wisconsin Diagnostic Breast Cancer
(WDBC) datasets are the other ones whose features have been also

Fig. 2. The framework of the proposed method.
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presented in Table 1.
In the first experiment, we investigated the effect of the input data

type on the ANN training stage, and then compared the three algo-
rithms' performance on the CHD2, the normalized CHD2 (NCHD2), and
the fuzzified CHD2 (FCHD2) datasets. It was found that an optimization
algorithm with a faster convergence speed and similar results obtained
from its different executions is the most suitable algorithm.
Convergence means that an optimization algorithm can yield an op-
timal answer as the dedicated time or the number of iterations in-
creases. Since optimization algorithms usually have operators that
change the candidate solutions randomly, the produced answers may
vary to some extent. However, different executions may yield similar
answers. To address such a problem, it is recommended that

optimization algorithms should be executed at least 30 individual times
[52]. The variable behaviour of an optimization algorithm in its dif-
ferent executions should be measured from the stability perspective. An
optimization algorithm with similar output values in its different ex-
ecutions functions better compared to others. For the purpose of clas-
sification, the convergence and stability were examined in terms of
accuracy (ACC), a correlation (COR) between actual and predicted la-
bels, and RMSE [53]. Based on the mentioned criteria, an evaluation of
the WCC, DSOS, and PSO algorithms was made in Figs. 4 & 5 and
Table 2, respectively.

Every algorithm was executed 30 times, with 50 seasons per ex-
ecution. The best-obtained results have been illustrated in Fig. 4, which
shows the convergence of the algorithms on the PID dataset and

Fig. 3. An example of ANN training. The changes are accepted if they reduce RMSE.
(a) An ANN with one hidden layer and 8 edges is considered.
(b) The first population consists of two teams whose players are equal to the number of ANN's edges. Every player determines a weight for the specified edge.
(c) The status of the teams before the attacking operators are shown. Team #2 is the attacker team and selects two players randomly.
(d) The attacker team adds random values to its selected values and sends them toward to randomly selected players in Team #1.
(e) Team #2 is the shooter and selects two players randomly.
(f) The shooter team sends its selected values toward Team #1.
(g) The status of a team before crossing. In this operator, the permutation of values in a specified range is changed.
(h) The status of Team #1 is presented after crossing.
(i) the status of a team before passing. In this operator, two players who are chosen randomly change their values.
(j) The status of Team #1 after passing.
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demonstrates that all the three algorithms converge successfully on the
non-preprocessed, fuzzified, and normalized PID datasets. The lower is
the value of RMSE, the more effective is the algorithm. Although the
model generated by each algorithm is different from the ones produced
by the other two algorithms, every algorithm's performance is re-
markable on the PID datasets their RMSE value is almost zero. As in-
dicated in Fig. 4, when data pre-processing is not carried out, the per-
formance of the algorithms will be low in terms of accuracy and
correlation. The WCC algorithm achieves 100% of accuracy and cor-
relation on both the fuzzified and normalized datasets, whereas the
DSOS and PSO algorithms reach 100% of classification accuracy and
correlation only on the normalized datasets. Fig. 5 shows the stability of
the algorithms in 30 individual executions.

Fig. 5 illustrates the performance of the algorithms from the stabi-
lity perspective in terms of error, accuracy, and correlation on the non-
preprocessed, fuzzified, and normalized PID datasets. Although WCC,
PSO, and DSOS all show acceptable as well as similar results, WCC
outperforms others. Figs. 4 and 5 show that the pre-processing stage is
essential in the ANNWCC's training and improves the performance of
the algorithms. The normalized datasets yield better results on the PID
datasets compared with the other dataset types.

To investigate the performance of the algorithms on all the three
types of PID datasets in detail, an evaluation of the algorithms' per-
formance on the training and testing datasets with different sizes was
made. To this end, the data were divided into various parts, and the
methods were applied to them. The results have been shown in Table 2.
As observed earlier, once again algorithms produced acceptable results
even with a minimum size of the training datasets. In comparison to
PSO and DSOS, the WCC algorithm yielded better results. It was re-
vealed that DSOS and PSO function approximately in a similar way. The
results reported by the current investigation, show that the proposed
method can be a suitable option for a dataset with a small size of
samples. However, the performance of the obtained models can be
enhanced by applying various feature selection approaches.

In the third experiment, we evaluated the algorithms' performance
on all the datasets. For this purpose, the datasets were divided into five
folds. In the 5 iterations, one of the folds was used as the testing set and
the other ones as the training sets. The algorithms were ran in 30 in-
dividual executions on the three types of data: non-pre-processed,
fuzzified, and normalized. The results have been shown in Table 3. This
table presents the name of the algorithms (AN), the type of datasets on
which the algorithms have maximum performance, the elapsed time
(ET) of the algorithms which is presented in seconds, accuracy (ACC),
the confidence interval (CI) which determines the accuracy range with
a specific probability, and the p-value. Since the order of the input has
been changed to calculate the p-value and CI, the cross-validation re-
sults were reported in different runs. Accuracy, specificity (SPC), sen-
sitivity (SEN), and the false-positive rate (FPR) were calculated using
Eqs. (13) through (16), where n is the number of classes, m is the

number of samples, and TPi, TNi, FPi, and FNi are the true positive, true
negative, false positive, and false-negative rates of the ith class, re-
spectively.

=
+= TPi TNi m

n
ACC

(( )/ )i
n

1
(13)

=
+= TNi TNi FPi

n
SPC

(( )/( ))i
n

1
(14)

=
+= TPi TPi FNi

n
SEN

(( )/( ))i
n

1
(15)

=FPR 1–SPC (16)

As indicated in Table 3, the performance of WCC, which is ap-
proximately the same for both the normalized and fuzzified datasets, is
better than the other two algorithms. Besides, PSO and DSOS deliver
better results only on the normalized data sets. Also, as evidenced by
Table 3, algorithms demonstrate distinct performance on different data
types; while DSOS produces the best results on the CDH5 and HEP
datasets, PSO yields the most desirable effects on the PAR dataset. Also,
WCC delivers the most appropriate results on the CHD2, LUND, and
WDBC datasets. In the case of the SHD, PID, and LIV datasets, each
algorithm performs in much the same way as the other two algorithms
do. In general, although all of the algorithms function properly, com-
pared to DSOS and PSO, WCC seems to produce the most desired results
in terms of CI, P-value, and the elapsed time.

Table 4 summarizes and compares the three algorithms based on the
above-mentioned criteria which have been computed using the
“ANOVA 1” function (MATLAB) with the default parameters. As shown
in Table 4, although the results produced by the other two algorithms
are suitable, once again WCC delivers the most favourable results on all
the datasets. In the case of DSOS and PSO, although they produce si-
milar results, DSOS' performance is slightly better than PSO's. Since
feature selection (FS) is one of the primary data pre-processing steps
which may help produce better results, the effects of FS on the per-
formance of the proposed method was also investigated. For this pur-
pose, after the desired features were selected using the FeatureSelect
software application [15], they were applied to the methods and the
final models were generated using the selected features. The obtained
datasets, called the FS-based datasets, together with their average re-
sults, have been shown in Table 4.

The receiving operation characteristic (ROC) curve is a graphical
method for determining the separation ability of the models in the
samples of classes [54]. An algorithm with a curve close to the top left-
hand side of the graph has a high ability to separate the data. Based on
the average of the best 30 individual executions of algorithms on all the
datasets, Fig. 6 is represented. As it is shown in Fig. 6, although the ROC
curves of all the three algorithms show their remarkable separation
ability, WCC outperforms DSOS and PSO in its ability to separate the
data. Moreover, the separation ability of DSOS is better than that of
PSO.

The vertical axis of the ROC curves marks the sensitivity of the al-
gorithms, which is computed using Eq. (16), and the horizontal axis
presents the false positive rate (FPR) which is equal to (1 − SPC) and is
calculated by Eq. (16). The Purple, blue, red, and yellow curves show
the ROC curves of the random guess, WCC, DSOS, and PSO algorithms,
respectively. Although all the three algorithms' ROC curves are ap-
proximately in harmony/agreement, the area under the WCC's curve
(AUC) is larger than the ones under the other two algorithms' curves.

The PID, CHD, and SHD datasets, whose attributes and properties
such as the total number of samples were presented in Table 1, have
been frequently used in various studies. In the final experiment, we
made a comparison between the results of some previously done studies
in the literature works and those of the three algorithms described in
this paper. The research references, publication dates, authors' names,
methods' names, and the best value for the accuracy obtained by each

Table 1
Datasets used.

REF Name NOI NOF NOC DT MV

[40] CHD2 303 13 2 Numerical and binary NO
[40] CHD5 303 13 5 Numerical and binary NO
[41] SHD 270 13 2 Numerical and binary NO
[42] PID 768 8 2 numerical NO
[43] HEP 150 19 2 Numerical and binary YES
[44] LIV 345 6 2 Numerical and binary NO
[45] LUNG 32 56 3 Numerical and binary YES
[46] PAR 197 22 2 Real YES
[47] WDBC 569 31 2 Real NO
[48] ARCENE 900 10,000 2 Numerical NO
[49] ARRYTH 452 279 16 Double YES
[50] PARKINSON 756 754 2 Numerical and binary NO
[51] GENEEXPR 801 20,531 5 Double NO

Z. Arabi Bulaghi, et al. Genomics 113 (2021) 541–552

546



Fig. 4. An evaluation of the algorithms' performance based on the RMSE, accuracy, and correlation. The WCC, PSO and DSOS algorithms are shown by the blue, red
and green curves, respectively. The first, second and third columns show the results obtained for the non- preprocessed PID, fuzzified PID and normalized PID
datasets, respectively. (a) Comparison of convergence based on the RMSE criterion. (b) Comparison of convergence based on the accuracy criterion. (c) Comparison
of convergence based on the correlation criterion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 5. Evaluation of the algorithms based on the RMSE, accuracy and correlation criteria. WCC, PSO, and DSOS are shown by the blue, red and green curves,
respectively. The first, second and third columns show the results obtained for the non-preprocessed, fuzzified and normalized PID datasets, respectively. (a)
Comparison of stability based on the RMSE criterion, (b) Comparison of stability based on the accuracy criterion. (c) Comparison of stability based on the correlation
criterion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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method on the above-mentioned datasets have been listed in Table 5. As
shown in Table 5, the five-fold cross-validation results have been ac-
quired under similar conditions.

The best values for each group have been presented in bold print.
The findings revealed that the FELM method yielded the best results on
the PID and CHD5 datasets as well as the WCC, PSO, and DSOS algo-
rithms. WCC produced the best results on the CHD2 dataset. And fi-
nally, the results delivered by WCC, PSO, and DSOS on the SHD dataset
were identical. In most cases, based on the findings, WCC, PSO, and

DSOS outperformed the other previously proposed approaches.

4. Discussion

In this part, first, we make a comparison between ANNWCC and the
other clinical data classification approaches, then discuss its capabilities
from different perspectives:

1- The Applied method aspect: The proposed method, employed for
classification, is different from the other introduced methods. Unlike
ANNWCC, which is a combination of the designed ANN and the
WCC algorithm, a majority of classification methods are based on
either an ANN, which uses classical or modified training methods
[71–77] or an optimization algorithm which determines a weighting
method for the classification of data [78–81]. In contrast to the
other approaches which introduce a universal model for all the
different kinds of data [82–84], ANNWCC generates a specific model
for each class of data.

2- The Dataset types: In contrast to the previously introduced works,
which have focused on just a specific dataset and based their eva-
luation on a single data type [85–87], ANNWCC's performance /
effect has been investigated on 13 different medical and biological
datasets. ANNWCC is also operable on both the balanced and un-
balanced datasets, while a majority of the other approaches have
focused on just the balanced data [88–90]. In addition to the above-
mentioned findings, it was revealed that there is a connection be-
tween the number of hidden layers and the computational time
enhancing.

3- The Scalability aspect: Unlike the other approaches which have only
one specific application, ANNWCC's results indicate that it can be
used for various practical purposes, [91–94]. ANNWCC can be also
employed as a reference in future studies.

5. Conclusion

In this paper, we proposed a new method based on a combination of
ANN and the WCC algorithm to classify the clinical datasets. For the
purpose of this classification, we employed several real datasets ob-
tained from the UCI Machine Learning Repository and different literary

Table 2
An evaluation of the algorithms' performance on the training and testing datasets with different sizes.

Dataset AL_name ACC ACC ACC ACC

Train = 20%
Test = 80%

Train = 40%
Test = 60%

Train = 60%
Test = 40%

Train = 80%
Test = 20%

No preprocessed PID WCC 62 94 94 94
PSO 60.19 60.19 87.96 83
DSOS 52.31 74.04 79 79

Fuzzified PID WCC 62.96 100 100 100
PSO 62.96 80.56 93 93
DSOS 52.78 76.39 89 89

Normalized PID WCC 80.56 100 100 100
PSO 64.81 93.06 100 100
DSOS 71.76 100 100 100

Table 3
Comparison of algorithms' performance on all of the datasets.

NA Type ET ACC % CI P_value

CHD2 WCC normalized 80.01 93.25 [91 92] 1.6E-15
PSO Normalized 139.91 85.90 [77 81] 0.003
DSOS normalized 238.64 90.10 [72 89] 0.025

CHD5 WCC Normalized
and fuzzified

238 71.5 [68 69] 9.2E-11

PSO fuzzified 412.08 72.5 [69 70] 5.3E-7
DSOS fuzzified 1015.11 73.5 [71 72] 1.7E-15

SHD WCC Normalized
and fuzzified

97.77 96.5 [95 96] 6.1E-65

PSO normalized 63.58 96.5 [94 96] 4.1E-23
DSOS normalized 333.46 96.5 [94 96] 4.5E-29

PID WCC normalized 50.07 97.13 [95 97] 3.64E-92
PSO normalized 119.55 96.84 [95 96] 9.2E-105
DSOS normalized 242.88 96.84 [95 96] 8.8E-109

HEP WCC normalized 409.63 71.83 [70 71] 3.7E-65
PSO normalized 204.76 77.6 [62 65] 3.9E-12
DSOS normalized 866.36 72.55 [70 71] 4.4E-25

LIV WCC Normalized
and fuzzified

305 73.13 [70 72] 1.5E-15

PSO normalized 240.45 71.63 [66 70] 0.00001
DSOS normalized 1337.08 72.13 [65 69] 0.0098

PAR WCC normalized 421.9 68.47 [65 66] 6.8E-71
PSO normalized 156.05 69.12 [62 67] 0.00055
DSOS normalized 504.26 66.62 [63 65] 0.00002

LUNG WCC Normalized
and fuzzified

813.44 71.23 [69 70] 4.8E-93

PSO fuzzified 1497.14 53.66 [52 52] 9.6E-11
DSOS fuzzified 3603.6 63.08 [54 59] 0.0037

WDBC WCC normalized 76.19 86.1 [83 84] 5.9E-33
PSO normalized 57.74 85.6 [78 82] 0.0004
DSOS normalized 196.24 80.35 [77 79] 3.1E-6

ARCENE WCC normalized 11,367.94 61.18 [57 59] 3.3E-11
PSO normalized 3609.55 62.11 [57 60] 2.2E-4
DSOS normalized 17,512.47 60.02 [57 59] 3.6E-9

ARRYTH WCC fuzzified 1074.63 74.3 [71 72] 8.8E-21
PSO fuzzified 569.66 73.9 [69 71] 4.6E-8
DSOS fuzzified 2441.01 75.67 [71 74] 2.11E-4

PARKINSON WCC fuzzified 13,598.26 57.3 [54 57] 2.55E-6
PSO fuzzified 7955.52 54.7 [52 53] 9.63E-29
DSOS fuzzified 26,304.08 56.44 [53 55] 3.7E-5

GENEEXPR WCC normalized 54,244.9 89.8 [85 87] 7.02E-4
PSO normalized 21,673.86 84.5 [81 83] 4.88E-4
DSOS normalized 56,412.33 81.14 [77 80] 1.2E-3

Table 4
Overall comparison of algorithms' performance.

AN ET ACC % CI P_value

All datasets WCC 6367.518 77.824 [75.69 75.46] 5.42E-5
PSO 2823.065 75.735 [71.23 71.84] 3.67E-4
DSOS 8539.04 75.764 [73.23 71.61] 3.07E-3

FS-based datasets WCC 4005.55 90.003 [86.29 88.44] 3.66E-11
PSO 1899.62 86.243 [83.03 85.85] 3.05E-11
DSOS 5883.741 86.243 [83.96 84.43] 3.71E-11
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works. We separated each group's data and generated a model for each
one. Then we evaluated the performance of the algorithms on various
experiments and described their functionality. Convergence, stability,
error, the correlation between predicted and actual labels, accuracy,
sensitivity, and specificity were the main criteria used for the com-
parison of the algorithms. Based on the above-mentioned criteria, the
results produced by the WCC algorithm seemed to be better than those
delivered by the other ones. We also compared the current studies' re-
ported results on the PID, CHD, and SHD datasets with the results re-
ported by the previously done studies on these datasets, and found out
that the proposed method can achieve remarkable results in terms of
the average value of accuracy for the PID and SHD datasets.
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